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The energy gap between the first excited state and the ground state is calculated for
the quantized anharmonic oscillator in the framework of the functional renormalization
group method. The compactly supported smooth regulator is used which includes various
types of regulators as limiting cases. It was found that the value of the energy gap
depends on the regulator parameters. We argue that the optimization based on the
disappearance of the false, broken symmetric phase of the model leads to the Litim’s
regulator. The least sensitivity on the regulator parameters leads, however, to an IR
regulator being somewhat different of the Litim’s one, but it can be described as a
perturbatively improved, or generalized Litim’s regulator and provides analytic evolution
equations, too.
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1. Introduction

The application of the functional renormalization group (RG) method1–6 for the

quantized one-dimensional anharmonic oscillator is a highly nontrivial task.7–9 In

the numerical treatment of the RG the problem arises from the fact that the ultra-

violet (UV) double-well potential cannot become convex in the infrared (IR) regime,

if the coupling of the anharmonic term is weak. The potential of the classical model,

i.e. the potential at the UV scale can be either a simple convex potential or a double-

well potential with nontrivial minima. In the second case, the classical model has

ground states with spontaneously broken Z2 symmetry. In quantum mechanics,

however, the effective potential should be convex due to the tunneling effect even

if the RG evolution is started from the double-well UV potential; so the quantized

model should have a single symmetric phase.
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Usually the energy gap between the ground state and the first excited state is the

observable calculated for the anharmonic oscillator. The model can be also handled

by solving the Schrödinger equation for the anharmonic potential numerically. Let

us call the results of the latter exact. The exact results can then serve as guidelines

in controlling and optimizing the results of the RG calculations.

The original optimization strategy is based on determining the IR regulator

which provides the fastest convergence for the RG flows.10,11 A plausible optimiza-

tion condition could be to find the IR regulator which gives the closest to the exact

value of the observable. The problem of this reasoning is that, on the one hand, we

have numerical results in RG with strong truncations in the gradient expansion,

and the Taylor expansions in its functionals. On the other hand, the regulators

can be deformed easily to provide a wide range of results which may reproduce any

exact values for an observable. Therefore, we should choose another strategy for the

optimization of the IR regulator. In this paper, we follow the optimization strategy

which is based on choosing that value of the observable as the optimized one that

shows the slightest dependence on the parameters of the regulator. Recently, this

optimization strategy has often been used.12–18 At first glance, it seems to be rather

a mathematical condition. Nevertheless, it can be made plausible by simple physi-

cal reasoning. The original generating functional does not contain the IR regulator,

therefore it is reasonable to look for such physical results which have the least depen-

dence on the regulator. However, the systematic search for the extremal value of

any observable could not be performed among the various available IR regulators

due to their rather different functional forms. This situation has been changed as

the compactly supported smooth (css) IR regulator function has been introduced19

inspired by the so-called Salamon–Vertse potential used in nuclear physics.20–23

One can recast the css regulator into a simpler form that enables one to deform

it continuously into the Litim’s, the exponential and the power-law regulators by

using only two parameters,24 and to perform the optimization program on a simple

two-dimensional surface. By this technique we found successfully the least sensitive

extremal value of the critical exponent ν of the correlation length for the quantum

Einstein gravity and for the three-dimensional O(1) model.24 Then, this method

was also used successfully to investigate sine-Gordon type models.25 In the present

paper, the same approach is used for the determination of the energy gap of the

one-dimensional anharmonic oscillator.

We can find an optimized regulator different of the Litim’s optimized one. How-

ever, the obtained optimized css regulator is very close to the Litim’s result, so

that one can consider it the perturbative generalization of the Litim’s regulator.

For the resulting new regulator one can perform the momentum integration in the

RG equation in order to obtain for it a closed analytic form and that makes much

more simple to handle the RG equation numerically.

The paper is organized as follows. In Sec. 2, the investigated model, the RG

method, and the regulators are introduced. In Sec. 3, we discuss the truncations
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applied during the numerical calculations.We collect the results for the optimization

strategies in Sec. 4. Finally, in Sec. 5 the conclusions are drawn up.

2. Evolution Equations

The RG method provides us a partial integro-differential equation for the effective

action, which is called the Wetterich equation1,2

Γ̇k =
1

2
Tr

Ṙk

Rk + Γ′′
k

, (1)

where · = k∂k,
′ = ∂/∂φ,Rk is the regulator and the trace Tr denotes the integration

over all momenta and summation for internal indices. Equation (1) has been solved

over the functional subspace defined by the ansatz

Γk =

∫

x

[

Zk

2
(∂µφ)

2 + Vk

]

, (2)

with the potential Vk, and the wave function renormalization Zk. In the case of the

local potential approximation (LPA) Zk = 1. Quantummechanics can be considered

as a quantum field theory with zero spatial and one time dimension, therefore one

can apply the RG technique there, the field variable φ represents the oscillator

coordinate. Then the evolution equation for the potential reads as

V̇k =
1

2π

∫ ∞

0

dp
Ṙk

p2 +Rk + V ′′
k

, (3)

where p stands essentially for the frequency in that case. The initial condition for

Eq. (1) is given by the explicit form of the microscopic effective action at the UV

cutoff k = Λ. There are lots of examples in the literature for different types of

regulator functions. Here we use the dimensionless form of the css regulator,

rcss =
s1

exp[s1yb/(1− s2yb)]− 1
θ(1 − s2y

b) , (4)

with y = p2/k2 and r = r(y) is the dimensionless regulator r = R/p2, furthermore

b ≥ 1 and s1, s2 are positive parameters. Unfortunately, the momentum integral

in the evolution equation (3) has no analytic form for this regulator. For the limit-

ing cases of the css regulator one recovers the following commonly used regulator

functions,24

lim
s1→0

rcss =

(

1

yb
− s2

)

θ(1− s2y
b) , (5)

lim
s1→0,s2→0

rcss =
1

yb
, (6)

lim
s2→0

rcss =
s1

exp[s1yb]− 1
, (7)
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where the first limit gives the Litim’s regulator for s2 = 1, the second one is the

power-law regulator, and the third one gives the exponential regulator, if s1 = 1.

One can perform the optimization by finding an extremum of the energy gap on

the parameter space spanned by s1 and s2. We note that the case b = 1 satisfies

the normalization conditions26

lim
y→0

yr = 1 and lim
y→∞

yr = 0 . (8)

The usage of the power-law regulator with b = 1 is usually called Callan–Symanzik

(CS) scheme. We investigate the quantum mechanical anharmonic oscillator in

terms of the Taylor-expanded potential

Vk =
m2

k

2
φ2 + gkφ

4 +
N
∑

n=3

g2n(k)

(2n)!
φ2n , (9)

where besides the harmonic and the quartic anharmonic terms we have introduced

the additional couplings g2n with n ≥ 3 which are generated by the RG method.

Inserting Eq. (9) into Eq. (3) we obtain a system of ordinary differential equations

for the couplings, as usual. The evolution equations for the couplingsmk and gk are:

ṁ2
k = −

12

π

∫ ∞

0

dp Ṙk

gk
(

p2 +Rk +m2
k

)2
,

ġk =
1

48π

∫ ∞

0

dp Ṙk

[

3456g2k
(

p2 +Rk +m2
k

)3
−

g6
(

p2 +Rk +m2
k

)2

]

.

(10)

The evolution equations for the further couplings have similar qualitative structures.

The solution of the RG equations in LPA provides us the effective potential

V0, i.e. the potential in the limit k → 0. We look for the energy gap of the model

given by

∆E =
√

V ′′
0

∣

∣

φ=〈φ〉
, (11)

where 〈φ〉 is the vacuum expectation value of the field variable. In quantum

mechanics the vacuum expectation value is the trivial field configuration, i.e.

〈φ〉 = 0. From Eq. (9), the energy gap is

∆E = m0 , (12)

which is the IR limit of the coupling mk.

3. Truncations

Performing the RG analysis of the quantized one-dimensional anharmonic oscillator

we have used two kinds of truncations, that of the gradient expansion in its lowest

order, the LPA, and that of the Taylor expansion of the local potential. We have

restricted ourselves to the LPA because the field-dependence of the wave function

renormalization cannot be handled by Taylor expansion due to its strange functional
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Fig. 1. The evolution of the coupling mk is shown for Callan–Symanzik scheme, for m2
Λ

= 1.
The curves correspond to various initial values of gΛ.

form.8 At the UV scale chosen for Λ = 1500 we set the couplingsm2
Λ and gΛ and the

further couplings are suppressed. We investigate the energy gap ∆E as the function

of these initial values.

Figure 1 shows the flow of the coupling mk during the evolution in CS scheme

for various initial values of the quartic coupling gΛ. In the IR limit the dimensionful

coupling m2
k as well as the other dimensionful couplings scale marginally, i.e. they

tend to positive constant values.

The obtained numerical value of the energy gap is sensitive to many parameters

in the calculations. Ideally, one should optimize the values of the energy gap for the

regulator parameters b, s1, s2, and for N , i.e. the order of the expansion in Eq. (9).

Throughout the present work, we set b = 1 because only this choice satisfies the

normalization condition in Eq. (8) for the regulator. We note, on the one hand,

that previous results in the literature showed that the optimal value is around

b ≈ 2 in the two-dimensional sine–Gordon model27 and in the three-dimensional

O(N) model. On the other hand, it is impossible to find an optimal value for the

energy gap of the one-dimensional anharmonic oscillator by varying the value of the

parameter b, because for various initial values of m2
Λ and gΛ one obtains various

“optimal” values in the interval b ∈ (1 · · · 6).

The power-law regulator was chosen to explore the N -dependence, the results

are demonstrated in Fig. 2. We choose the case m2
Λ < 0 for the optimization.

Although one expects that larger values of N could improve the approximation of

the expansion, one can see in Fig. 2 that the numerical errors increase for too large

N values. Thus, one concludes that the optimal value of the number of couplings

is about 6 in the LPA for the power-law regulator.

The results for the most important regulators are collected in Table 1.
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Fig. 2. The relative deviation of the numerical values of the energy gap (∆En) from the exact
ones (∆Ee) as the function of N is shown for various initial values of gΛ for m2

Λ
= −1. The black

column corresponds to gΛ = 0.4, the dark grey column denotes gΛ = 0.3 and the light grey one
refers to gΛ = 0.2. The data were calculated in the CS scheme.

Table 1. The value of the first energy gap is shown for various initial conditions.
In the order of the columns it is shown the well-known exact values, the values
calculated by Heat Kernel renormalization and the values calculated by us in the
Litim, CS and exponential schemes.

m2
Λ

gΛ ∆Eexact ∆EHK ∆ELitim ∆ECS ∆Eexp

1 1 1.9341 1.9380 1.9386 1.9358 1.9382

1 0.4 1.5482 1.5498 1.5507 1.5490 1.5504

1 0.1 1.2104 1.2109 1.2110 1.2105 1.2109

1 0.05 1.1208 1.1210 1.1211 1.1208 1.1210

1 0.03 1.0779 1.0780 1.0780 1.0779 1.0778

1 0.02 1.0540 1.0542 1.0542 1.0541 1.0542

−1 0.4 0.9667 0.9730 0.9778 0.9733 0.9772

−1 0.3 0.8166 0.8233 0.8288 0.8241 0.8281

−1 0.2 0.6159 0.6227 0.6309 0.6262 0.6302

For negative values of m2
Λ and for small values of gΛ the RG approach does

not work, the effective potential becomes concave at φ = 0 and we have no result

for the energy gap. This happens presumably due to the strong truncation of the

potential and that of the gradient expansion. Table 1 shows that the choice N = 6

provides rather close values of the energy gap for the various kinds of regulators.

Their deviations from each other are much less then their deviations of ∼ 1% from

the exact values form2
Λ > 0. Similar is true whenm2

Λ < 0 and when gΛ is sufficiently

large.
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Fig. 3. The energy gap ∆E is shown as the function of the regulator parameters s1 and s2. The
initial couplings are m2

Λ
= 1 and gΛ = 0.1. We set b = 1.

4. Optimization Strategies

For the further investigations, we set N = 6 and look for the extremum of the

energy gap in the parameters s1 and s2. In Fig. 3, we plotted ∆E for different

regulator parameters and for positive m2
Λ. Interestingly, the results show very slight

regulator-dependence. We had to go beyond 3 digits in the numerical precision

to find some nontrivial results. As a comparison we note that in the case of the

optimization of the model of quantum Einstein gravity24 we obtained very strong

regulator-dependence. There the value of the critical exponent could change several

orders of magnitude, and even its sign could change. The anharmonic oscillator

investigated here is a one-dimensional model and this can be the reason of such a

weak regulator-dependence. The removal of UV divergences in higher-dimensional

models may introduce strong scheme-dependence, while there is no need to remove

UV divergences in one-dimensional models. Furthermore there is no IR singularity

due to the positive mass term.

It would be the most straightforward optimization strategy to recover the exact,

i.e. physical value of the observable ∆E for a given IR regulator. Figure 3 shows

for a particular choice of the initial conditions, that the exact value of the energy

gap ∆E = 1.2104 can be obtained by the power-law regulator near the origin

s1 ≈ 0 and s2 ≈ 0 of the parameter space. Unfortunately, other initial condi-

tions require other IR regulators with different regulator parameters. Although this

strategy can be supported mostly by physical arguments and it can be the only

reasonable optimization, nevertheless it does not work in our RG framework. This

strategy may work when the truncations are minimal, which is not the case in our

treatment.

It is another possibility for the optimization to look for that value of the observ-

able ∆E which shows the least sensitivity to the regulator parameters, i.e. to find

an extremum of the energy gap in the parameter space. At the maximum of the

surface in Fig. 3 the sensitivity of ∆E is minimal to s1 and s2. Figure 3 shows that

there is a maximum of the energy gap at s1 = 0.05 and s2 = 3. Accordingly, the
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Fig. 4. The sections of the surface plot are shown through the extremum. The initial couplings
are m2

Λ = 1 and gΛ = 0.05. We set s2 = 3 and s1 = 0.05 in the inset.

optimized regulator corresponds to the css regulator of the form

ropt =
0.05

exp[0.05y/(1− 3y)]− 1
θ(1 − 3y) . (13)

For other initial couplings we have got by means of this least-sensitivity optimiza-

tion the same results with the same optimized IR regulator. The value of s1 = 0

corresponds to the limit of a general Litim’s regulator in Eq. (5). Figure 3 shows

that this Litim’s regulator zone gives neither the minimal value nor an extremum for

∆E. In Fig. 4, we demonstrate how the energy gap changes close to the Litim’s limit.

There is a maximum at s1 = 0.05 for practically all of the sections with s2 =const.

These maxima create a saddle along the s2 direction for the small values s1 ≈ 0.05.

The s1 = 0.05 section of the saddle is plotted in the inset of Fig. 4. This curve also

has a local maximum at s2 = 3.

The minimal sensitivity optimization works well if we choose a positive initial

value m2
Λ when both the blocked potential and the resulting effective potential are

convex. However, for negative initial values m2
Λ the convexity cannot be granted.

The quantized anharmonic oscillator can have only a symmetric phase, the sponta-

neously broken symmetric phase is excluded by the tunneling effect. For sufficiently

small initial values of gΛ there is no room to turn the concave blocked potential into

a convex one during the RG evolution. This appears probably due to the strongly

truncated gradient expansion of the effective action.7,8 Taking into account the wave

function renormalization and solving the RG equations without Taylor expansion

may improve the treatment, i.e. may enable one to determine ∆E even for smaller

initial values of gΛ.

The determination of the smallest initial value of gΛ for which the effective

potential becomes convex gives another possibility to optimize the IR regulator,

since the model should have only a symmetric phase. We note that the disappear-

ance of the false phase has been used recently to find optimized IR regulators for

1550058-8
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Table 2. The energy gap is shown as the function of the regulator parameters
s1 and s2 for the initial couplings m2

Λ
= −1 and gΛ = 0.08.

s2 = 0.001 s2 = 1 s2 = 2 s2 = 3

s1 = 0.001 — 0.23538 0.23679 753913.25671
s1 = 0.05 — 0.23598 0.23785 23102.53408

s1 = 1 0.23766 0.23556 341061.15077 —
s1 = 2 0.23612 0.23604 — —
s1 = 3 0.23566 0.23644 — —

sine–Gordon type models.28 We found that gΛ = 0.08 is the smallest initial value

for which the energy gap can be determined reliably in the RG framework used by

us. We note that in Ref. 8 the smallest value is gΛ = 0.02 which is a better result.

Here we cannot have such a precision, because we did not include the wave function

renormalization and Taylor-expanded potential that was avoided in Ref. 8. Never-

theless, the issue of optimization is important even if the RG framework involves

quite strong truncations, like in our case. In Table 2, we collected the results for

the energy gap for m2
Λ = −1 and gΛ = 0.08.

The extremely large values show numerical instabilities during the calculations.

Table 2 shows that the IR regulator in Eq. (13) is not the optimized one in Eq. (13).

If one defines the optimized regulator via finding the smallest gΛ which restores the

convexity of the potential, then the Litim’s regulator proves to be the best one,

since it gives the smallest value of ∆E there. It seems that various optimization

procedures give different IR regulators.

The IR regulator Eq. (13) is very close to the Litim’s one. If one Taylor expands

the css regulator in s1 at s1 = 0 then one obtains that

rpert ≈

(

1− s2y
b

yb
−

s1
2

+
ybs21

12(1− s2yb)
+ · · ·

)

θ(1 − s2y
b) . (14)

Up to the linear term in s1 the LPA evolution equation for the potential takes the

form

V̇ =
1

2π

∫ k
√

s2

0

dp
2k2

k2 + p2(1− s2 −
s1
2
) + V ′′

. (15)

The perturbative Litim’s regulator in Eq. (14) does not cancel the momentum

dependence in the integrand of the loop integral. In this sense the regulator rpert
takes after the CS type regulator, however the UV divergence does not appear,

since the upper integration limit is restricted by the θ function and it guarantees

the finiteness in any dimensions. Moreover, the resulting RG equation remains

analytic. In d = 1, it reads as

V̇ =
k2

π

1
√

(

1− s2 −
s1
2

)

(k2 + V ′′)
tan−1

(

√

(

1− s2 −
s1
2

)

k2

s2(k2 + V ′′)

)

. (16)
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5. Conclusions

By using the functional RG method we calculated the energy gap for the quantized

one-dimensional anharmonic oscillator. The RG approach requires approximations

which can introduce some regulator-dependence. We used the LPA and the Taylor

expansion of the potential with a truncation yielding the smallest deviation of the

energy gap of the oscillator from its exact value. The regulator-dependence of the

results has been investigated by making use of the css regulator that enables one

to consider various types of regulator functions in a unique parametrization. The

css regulator Eq. (4) depends on the parameters b, s1 and s2. We set b = 1 for our

study when the normalization conditions Eq. (8) are satisfied. The optimization of

the css regulator with respect to the parameters s1 and s2 has been carried out.

For the anharmonic oscillator with a single-well UV potential, it turned out

that the optimization strategy based on the minimal sensitivity on the regulator

parameters works rather well. It is found that the energy gap has an extremum

as the function of the regulator parameters. The optimized regulator found in that

manner is shown to be the generalization of the Litim’s regulator and it provides an

analytic evolution equation for the potential in d = 1. For the anharmonic oscillator

with a double-well UV potential, this generalized Litim’s regulator seems not to be

the optimal one. Instead of the optimization via achieving the minimal sensitivity

of the observable on the regulator parameters another optimization strategy can

be followed. Then one looks for the regulator that enables one to reestablish the

convexity of the numerically determined effective potential for the smallest value of

the quartic coupling. We have found that the Litim’s regulator appears in that case

rather optimal instead of the generalized Litim’s regulator introduced in the case

of the single-well potential. It is argued that such a situation is due to the strong

truncations in the gradient expansion and in the Taylor expansion of the potential.
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