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a b s t r a c t

The proposed semi-layerwise approach captures the mechanical behavior of delaminated

composite plates using four equivalent single layers independently of the lay-up. Two equiv-

alent single layers are applied for both the top and bottom parts of a delaminated plate. The

updated version of the system of exact kinematic conditions formulates the continuity of the

in-plane displacements between the neighboring layers, the location of the global reference

plane of the plate and – as important additions compared to previous papers – the continuity

of shear strains, their derivatives and curvatures, respectively. The method is demonstrated

using the first-, second- and third-order plate theories. As examples, simply supported de-

laminated plates are considered.The continuity between the delaminated and undelaminated

plate regions is established through the theorem of autocontinuity. The J-integral is calculated

along the straight delamination front and compared to the results of the virtual crack closure

technique. The results indicate that the the first- and third-order plate theories provide the

best solutions, and give good approximation even in those cases when the previous models

failed, i.e., when the delamination is asymmetrically placed between two layers and it is close

to the free surface of the plate.

© 2015 Published by Elsevier Inc.

1. Introduction1

Composite materials are susceptible to many type of damage modes [1–3]. One of them is delamination fracture induced2

by manufacturing and installation defects [4–8], low velocity impact [9–13], free edge effect [14,15] and the usage of notches3

and indentations [16,17] for the installation of the structure. The presence of cracks and delaminations in laminated composite4

beams and plates reduce significantly the stiffness and strength [18,19], moreover alter significantly the dynamical properties of5

the structure [20–25]. The stress intensity factor (SIF) [26–30] and energy release rate (ERR) [31–33] are the basic parameters6

of linear elastic fracture mechanics for the material characterization against delamination fracture (onset and propagation). The7

mode-I [34–43], mode-II [44–49], mode-III [50–63], and mixed-mode I/II [42,44,64–76], I/III [77,78], II/III [54,79–89], and I/II/III8

[90–92], fracture in composite materials is characterized by standard and nonstandard beam and plate specimens. While for9

beams the analytical solutions are relatively easy to develop, for plates similar exact solutions are difficult to obtain.10

The classical (CLPT) or Kirchhoff [93–96], first-order (FSDT) [97–101], second-order (SSDT) [102,103,103–106], general third-11

order (TSDT) [107–111] and Reddy’s [112–115] third-order shear deformation plate theories are widely-used in the composite12
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Fig. 1. Plate elements with orthotropic plies and the position of the delamination over the thickness of the plate.

literature to solve different plate problems in the field of statics, dynamics and stability. The layerwise (or zig-zag) theories13

[93,116–120] make it possible to calculate the interlaminar stresses more accurately than by using the ESL methods. However,14

the plate theories are applied only partially in the analysis of fracture mechanical tests, in most of the cases a 3D finite element15

(FE) analysis is preferred [121,122]. The finite element modeling of delaminations and cracks in 3D structures is computationally16

expensive. Typical examples in this respect are the different fracture mechanical configurations to determine the mode-III energy17

release rate [78,122].18

Recently many articles were published on the modeling of the bending of composite plates with delamination using CLPT,19

FSDT, SSDT, TSDT for symmetrically [123–125] and asymmetrically [106,114,125,126] delaminated plates and by using layerwise20

approximations for in-plane loading and cylindrical bending [127–130]. The method of two ESLs was introduced in the former21

works and it was shown that for symmetric (midplane) delamination each method works well; however Reddy’s third-order22

theory provides the best accuracy compared to FE results if the delamination is asymmetrically placed between two adjacent23

layers [114]. The mentioned problems involve typically mixed-mode II/III fracture conditions, in case it has already been shown24

that the coupling between the mode-II and mode-III SIFs could be significant [131,132].25

This paper proposes the method of four ESLs for the delamination modeling of laminated composite plates. Three different26

theories are applied: FSDT, SSDT and general TSDT. The main aspect of the formulation is that the delamination plane divides the27

plate into a top and a bottom subplate. These subplates are modeled by two ESLs. The kinematic continuity is provided by the28

updated version of the system of exact kinematic conditions (SEKC) [114,125], the novelty is the specification of the continuity29

conditions with respect to the shear strain derivative and curvature. The displacement field satisfying the continuity conditions30

are formulated and the governing equations are derived based on variational calculus. Two simply-supported plates with de-31

lamination are examined and the Lévy plate formulation is used to reduce the system of PDEs to system of ODEs. The continuity32

between the delaminated and undelaminated portions has been formulated and it was highlighted that the number of constants33

in the solution functions is less than the number of continuity conditions. Therefore, in conjunction with the proposed 4ESL34

method the theorem of autocontinuity is introduced and a proof is given, as well. This theorem makes it possible to ensure the35

continuity between the delaminated and undelaminated portions by assigning the so-called autocontinuity parameters, which36

ensures the automatic continuity of first-, second- and third-order displacement terms in a reduced form. The displacement and37

stress fields in the laminated plates were determined by FSDT, SSDT and TSDT and at certain sections located in the delamination38

front were plotted along the thickness of the plate. The distributions of the J-integrals and mode mixities along the delamination39

front were also calculated and were compared to the results of the virtual crack closure technique (VCCT). The agreements and40

disagreements of the 2D analytical results with the numerical models are discussed.41

2. Semi-layerwise laminated plate theory – the method of four ESLs42

The concept of the semi-layerwise modeling is shown in Fig. 1. The plate elements contain an interfacial delamination, which43

divides the plate into a top and a bottom layer. Each layer is divided into further two ESLs. In other words the whole lami-44

nate is modeled by four ESLs – two above and below the delamination plane. The interface plane between two adjacent ESLs45

is the perturbation plane. The ESLs can be modeled by different plate theories. In this work the FSDT, SSDT and TSDT are ap-46

plied to capture the mechanical fields. The components of the displacement field in general third-order plates can be written47
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(a) (b)

Fig. 2. Cross sections and deformation of the top and bottom plate elements of a delaminated plate in the X–Z plane (a). Distribution of the transverse shear

strains by FSDT, SSDT and TSDT (b).

as [107–110]:48

ui(x, y, z(i)) = u0(x, y) + u0i(x, y) + θ(x)i(x, y)z(i) + φ(x)i(x, y)(z(i))2 + λ(x)i(x, y)(z(i))3

vi(x, y, z(i)) = v0(x, y) + v0i(x, y) + θ(y)i(x, y)z(i) + φ(y)i(x, y)(z(i))2 + λ(y)i(x, y)(z(i))3

wi(x, y) = wi(x, y), (1)

where i is the index of the actual ESL, z(i) is the local through thickness coordinate of the ith ESL, u0 and v0 are the global, u0i and49

v0i are the local membrane displacements; moreover, θ means the rotations of the cross sections about the X and Y axes (refer to50

Fig. 1), φ denotes the second-order, λ represents the third-order terms in the displacement functions. The displacement fields of51

FSDT and SSDT can be obtained by reducing Eq. (1) [98,133].52

Definition (semi-layerwise plate model). If a laminated plate with the Nl number of layers is modeled by the NESL number53

of equivalent single layers and NESL < Nl then the model is called the semi-layerwise plate model. In this case the stiffness54

parameters and matrices of each ESL has to be determined based on the original lay-up of the plate. If NESL = Nl then the model55

is a standard layerwise model.56

3. The system of exact kinematic conditions – SEKC57

The system of exact kinematic conditions has been formulated in [125] for first-order plates, later it was applied to second-58

[111] and third-order (Reddy) plates [114]. In the former papers the method of two ESLs was applied. Among the models pub-59

lished recently by the author it was shown that the best agreement with the VCCT results can be obtained by using the Reddy60

third-order theory. However, if the delamination is very close to the free surface of the plate then because of the perturbated61

stress state even Reddy’s third-order theory predicts erroneously the shear stresses and the ERRs [114]. Therefore to perform62

some refinement the method of four ESLs is presented: both the top and bottom plates are captured by two ESLs.63

In the sequel we treat only orthotropic composite plates containing an interfacial delamination between any two adjacent64

plies. The following formulation is valid in the general sense (with optional number of ESLs), as an illustration Figs. 2 and 3 show65

the concept in the X–Z and Y –Z planes of a plate with 4ESLs. The kinematic continuity of the field variables has to be established66

between each neighboring ESLs. First, the in-plane displacements have to be continuous at each interface (or perturbation) plane67

involving the following conditions:68

(u(i), v(i), w(i))|z(i)=ti/2= (u(i+1), v(i+1), w(i+1))|z(i+1)=−ti+1/2, (2)

where t denotes the thickness. If the global reference plane (given by z
(k)
R

) is located in the kth layer, then at this plane the69

in-plane displacements are equal to the global membrane displacements u0 and v0 [93,94], viz.:70

u(k)|z(k)=z(k)
R

− u0 = 0, v(k)|z(k)=z(k)
R

− v0 = 0. (3)
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(a) (b)

Fig. 3. Cross sections and deformation of the top and bottom plate elements of a delaminated plate in the Y–Z plane (a). Distribution of the transverse shear

strains by FSDT, SSDT and TSDT (b).

The conditions given by Eqs. (2) and (3) are sufficient to develop semi-layerwise models using the FSDT. However, better accu-71

racy can be achieved by using higher-order theories. If SSDT is applied then even the shear strains are assumed to be continuous72

across the interfaces:73

(γxz(i), γyz(i))|z(i)=ti/2= (γxz(i+1), γyz(i+1))|z(i+1)=−ti+1/2. (4)

It will be discussed later, that for third-order plates even the derivatives and the curvatures of the shear strains need to be con-74

tinuous between the interfaces (otherwise the model becomes too compliant and leads to erroneous shear strain distributions):75

76 (
∂γxz(i)

∂z(i)
,
∂γyz(i)

∂z(i)

)∣∣∣∣
z(i)=ti/2

=
(

∂γxz(i+1)

∂z(i+1)
,
∂γyz(i+1)

∂z(i+1)

)∣∣∣∣
z(i+1)=−ti+1/2

, (5)

and:77 (
∂2γxz(i)

∂(z(i))2
,
∂2γyz(i)

∂(z(i))2

)∣∣∣∣
z(i)=ti/2

=
(

∂2γxz(i+1)

∂(z(i+1))2
,
∂2γyz(i+1)

∂(z(i+1))2

)∣∣∣∣
z(i+1)=−ti+1/2

. (6)

Based on the linear elasticity and assuming transversely inextensible deflection in each ESL, the SEKC formulates conditions78

using the in-plane displacement functions:79

∂n(u(i), v(i))

∂(z(i))n
, n = 0, 1, 2, 3, (7)

where n = 0 means condition against in-plane displacement, n = 1 means condition for shear strain, if n = 2 and n = 3 then a80

condition for the shear strain derivative and curvature is formulated.81

4. Development of kinematically admissible displacement fields82

In the sequel the SEKC is applied to the problem shown in Figs. 2 and 3. Therefore using the SEKC and the parameter elimina-83

tion we modify the terms in Eq. (1).84

Definition (Parameter elimination). Certain parameters of the in-plane displacement functions can be eliminated using the SEKC85

requirements. The remaining (or primary) parameters are untouched, the parameters to be eliminated are the secondary param-86

eters. The local membrane displacements and the second-order terms are typically secondary parameters, the global membrane87

displacements are primary parameters, the rotations and the third-order parameters are mixed (either primary or secondary)88

parameters. In the subsequent sections the undelaminated and delaminated regions are discussed separately. First, TSDT is con-89

sidered and the SSDT and FSDT field equations are obtained by the reduction of TSDT model.90
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4.1. Undelaminated plate portion91

Fig. 2a shows the transition zone around the delamination tip of the plate in the X–Z plate. The in-plane displacement dis-92

tributions are linear in the case of FSDT, and curved if the SSDT or TSDT is applied. In Fig. 2b the corresponding shear strain93

distributions are shown: γ xz is the piecewise constant if the FSDT is applied, piecewise linear if the fields are captured by SSDT94

and piecewise quadratic distribution can be obtained by TSDT. Fig. 3a and b show the same in the Y –Z plane. The in-plane95

displacement field has to satisfy the following conditions in accordance with Figs. 2a and 3a and the method of four ESLs:96

(u1, v1, w1)|z(1)=t1/2 = (u2, v2, w2)|z(2)=−t2/2,

(u2, v2, w2)|z(2)=t2/2 = (u3, v3, w3)|z(3)=−t3/2,

(u3, v3, w3)|z(3)=t3/2 = (u4, v4, w4)|z(4)=−t4/2.

(8)

The reference plane is located in the second ESL; therefore we have:97

(u2, v2)|z(2)=z(2)
R

= (u0(x, y), v0(x, y)), (9)

where based on figure z
(2)
R

= 1/2(t3 + t4 − t1). The shear strains have to be continuous between the neighboring ESLs, i.e. we98

have:99

(γxz(1), γyz(1))|z(1)=t1/2 = (γxz(2), γyz(2))|z(2)=−t2/2,

(γxz(2), γyz(2))|z(2)=t2/2 = (γxz(3), γyz(3))|z(3)=−t3/2,

(γxz(3), γyz(3))|z(3)=t3/2 = (γxz(4), γyz(4))|z(4)=−t4/2.

(10)

To ensure the better distribution of the strains even the derivatives and the curvatures of the shear strains are imposed to be100

continuous at interface planes 1–2 and 3–4:101 (
∂γxz(1)

∂z(1)
,
∂γyz(1)

∂z(1)

)∣∣∣∣
z(1)=t1/2

=
(

∂γxz(2)

∂z(2)
,
∂γyz(2)

∂z(2)

)∣∣∣∣
z(2)=−t2/2

,

(
∂γxz(3)

∂z(3)
,
∂γyz(3)

∂z(3)

)∣∣∣∣
z(3)=t3/2

=
(

∂γxz(4)

∂z(4)
,
∂γyz(4)

∂z(4)

)∣∣∣∣
z(4)=−t4/2

. (11)

102 (
∂2γxz(1)

∂(z(1))2
,
∂2γyz(1)

∂(z(1))2

)∣∣∣∣
z(1)=t1/2

=
(

∂2γxz(2)

∂(z(2))2
,
∂2γyz(2)

∂(z(2))2

)∣∣∣∣
z(2)=−t2/2

,

(
∂2γxz(3)

∂(z(3))2
,
∂2γyz(3)

∂(z(3))2

)∣∣∣∣
z(3)=t3/2

=
(

∂2γxz(4)

∂(z(4))2
,
∂2γyz(4)

∂(z(4))2

)∣∣∣∣
z(4)=−t4/2

. (12)

If Eq. (1) applies and the displacement functions are modified in order to satisfy Eqs. (8)–(12) then – using FSDT, SSDT or TSDT103

– it is possible to have:104

ui = u0 + θ(x)iz
(i) +

(
K(0)

i j
+ K(2)

i j
(z(i))2 + K(3)

i j
(z(i))3

)
ψ(x)i,

vi = v0 + θ(y)iz
(i) +

(
K(0)

i j
+ K(2)

i j
(z(i))2 + K(3)

i j
(z(i))3

)
ψ(y)i.

(13)

where the matrices denoted by Kij are related exclusively to the geometry; moreover ψ is the vector of primary parameters,105

finally wi(x, y) = w(x, y) for each ESLs, i.e. the transverse normals of each ESL are inextensible [93].106

4.1.1. Third-order plate theory107

Using the conditions above (Eqs. (8)–(12)) we can eliminate 22 parameters from Eq. (1), the secondary parameters are: u0i,108

v0i, φ(x)i, φ(y)i for i = 1..4, λ(x)i, λ(y)i for i = 1, 2 and 4. The primary parameters are: u0, v0, θ (x)i, θ (y)i for i = 1..4 and λ(x)3, λ(y)3.109

The nonzero elements of the matrices K
(0)
i j

, K
(2)
i j

and K
(3)
i j

are defined in Appendix A. The vector of primary parameters is: ψ(p) =110

(θ(p)1 θ(p)2 θ(p)3 θ(p)4 λ(p)3)
T with p = x or y.111

4.1.2. Second-order plate theory112

In this case λ(x)i = 0 and λ(y)i = 0 in Eq. (1). Eqs. (8) and (9) apply together with Eqs. (10) (shear strain continuity), however113

Eqs. (11) and (12) are omitted. Therefore we can eliminate 14 parameters from Eq. (1), the secondary parameters are: u0i, v0i,114

φ(x)i, φ(y)i for i = 1, 2 and 4. The primary parameters are: u0, v0, θ (x)i, θ (y)i for i = 1..4, φ(x)3 and φ(y)3. The nonzero elements of115

the matrices K
(0)
i j

and K
(2)
i j

are defined in Appendix B. Obviously K
(3)
i j

= 0 in this case. The vector of primary parameters becomes:116

ψ(p) = (θ(p)1 θ(p)2 θ(p)3 θ(p)4 φ(p)3)
T with p = x or y.117
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4.1.3. First-order plate theory118

If the FSDT is applied then φ(x)i = 0, φ(y)i = 0, λ(x)i = 0 and λ(y)i = 0 in Eq. (1). Only Eq. (8) is utilized together with Eq. (9). The119

continuity of shear strains cannot be imposed. Thus we can eliminate eight parameters from Eq. (1), the secondary parameters120

are: u0i and v0i for i = 1..4, The primary parameters are: u0 and v0 and θ (x)i, θ (y)i for i = 1..4. The nonzero elements of K
(0)
i j

are121

defined in Appendix C. K
(2)
i j

= 0 and K
(3)
i j

= 0 in this case. The vector of primary parameters is: ψ(p) = (θ(p)1 θ(p)2 θ(p)3 θ(p)4)
T122

with p = x or y.123

4.2. Delaminated plate portion124

In the delaminated portion (refer to Figs. 2 and 3) the top and bottom plates are modeled by two ESLs, and thus the first and125

third of Eq. (8) still hold. The definition of the top and bottom reference planes involve:126

(u1, v1)|z(1)=t2/2 = (u0b(x, y), v0b(x, y))

(u3, v3)|z(3)=t4/2 = (u0t(x, y), v0t(x, y))
(14)

where u0b and u0t are the global membrane displacements of the bottom and top layers in accordance with Figs. 2 and 3. More-127

over, the first and third of Eq. (10) apply again, as well as Eqs. (8) and (11) in the same form leading to ten conditions altogether.128

4.2.1. Third-order plate theory129

The first and third in Eq. (8) hold; moreover Eq. (14) is implied, again the first and third of Eq. (10) are utilized together with130

Eqs. (11) and (12) leading to 20 conditions altogether. The secondary parameters are: u0i, v0i, φ(x)i, φ(y)i for i = 1..4, λ(x)i, λ(y)i131

for i = 2 and 4. The primary parameters are: u0t, v0t , u0b, v0b, θ (x)i, θ (y)i for i = 1..4 and λ(x)i, λ(y)i for i = 1 and 3. The modified132

displacement field has the same form as that given by Eq. (13), the nonzero coefficients denoted by K are placed in Appendix A133

and: ψ(p) = (θ(p)1 θ(p)2 θ(p)3 θ(p)4 λ(p)1 λ(p)3)
T , where p = x or y.134

4.2.2. Second-order plate theory135

In this case λ(x)i = 0 and λ(y)i = 0 in Eq. (1). The first and third in Eq. (8) hold; moreover Eq. (14) is implied, again the first and136

third of Eq. (10) is utilized; however Eqs. (11) and (12) are omitted. Therefore we can eliminate 12 parameters from Eq. (14), the137

secondary parameters are: u0i, v0i for i = 1..4 and φ(x)i, φ(y)i for i = 2 and 4. The primary parameters are: u0t, v0t , u0b, v0b, θ (x)i,138

θ (y)i for i = 1..4, φ(x)i and φ(y)i for i = 2 and 4. The nonzero elements of the matrices K
(0)
i j

and K
(2)
i j

are defined in Appendix B.139

Apparently K
(3)
i j

= 0 in this case. The vector of primary parameters takes the form: ψ(p) = (θ(p)1 θ(p)2 θ(p)3 θ(p)4 φ(p)1 φ(p)3)
T ,140

where p = x or y.141

4.2.3. First-order plate theory142

Similarly to the undelaminated portion we have: φ(x)i = 0, φ(y)i = 0, λ(x)i = 0 and λ(y)i = 0 in Eq. (1). Only the first and third143

of Eq. (8) apply together with Eq. (14). The shear strains are approximated by constant distributions in all four ESLs. Thus we144

can eliminate eight parameters from Eq. (1), the secondary parameters are: u0i and v0i, the primary parameters are: u0t, v0t , u0b,145

v0b and θ (x)i, θ (y)i for i = 1..4. The nonzero elements of K
(0)
i j

are defined in Appendix C. K
(2)
i j

= 0 K
(3)
i j

= 0 in this case and finally146

ψ(p) = (θ(p)1 θ(p)2 θ(p)3 θ(p)4)
T with p = x or y.147

5. Equilibrium equations148

If the displacement field is known, then the strain field is obtained by the following equation [134]:149

εi j = 1

2
(ui, j + uj,i), (15)

where ε ij is the strain tensor, ui is the displacement vector field. In plates assuming plane stress state the vector of in-plane150

strains is [93]:151 {
εx

εy

γxy

}
(i)

=

⎧⎨
⎩

ε(0)
x

ε(0)
y

γ (0)
xy

⎫⎬
⎭

(i)

+ z(i) ·

⎧⎨
⎩

ε(1)
x

ε(1)
y

γ (1)
xy

⎫⎬
⎭

(i)

+ [z(i)]2 ·

⎧⎨
⎩

ε(2)
x

ε(2)
y

γ (2)
xy

⎫⎬
⎭

(i)

+ [z(i)]3 ·

⎧⎨
⎩

ε(3)
x

ε(3)
y

γ (3)
xy

⎫⎬
⎭

(i)

. (16)

The vector of transverse shear strains becomes:152 {
γxz

γyz

}
(i)

=
{
γ (0)

xz

γ (0)
yz

}
(i)

+ z(i) ·
{
γ (1)

xz

γ (1)
yz

}
(i)

+ [z(i)]2 ·
{
γ (2)

xz

γ (2)
yz

}
(i)

(17)

The stress field can be obtained by using the constitutive equation [93,94]. The stress resultants are calculated by integrating153

the stresses over the thicknesses of each ESL:154
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⎧⎪⎨
⎪⎩

Nαβ

Mαβ

Lαβ

Pαβ

⎫⎪⎬
⎪⎭

(i)

=
∫ ti/2

−ti/2

σαβ

⎧⎪⎨
⎪⎩

1
z

z2

z3

⎫⎪⎬
⎪⎭

(i)

dz(i),

{
Qα

Rα

Sα

}
(i)

=
∫ ti/2

−ti/2

σαz

{
1
z

z2

}(i)

dz(i), (18)

where α and β takes x or y. The relationship between the strain field and the stress resultants can be written as:155 ⎧⎪⎨
⎪⎩

{N}
{M}
{L}
{P}

⎫⎪⎬
⎪⎭

(i)

=

⎡
⎢⎣

[A] [B] [D] [E]
[B] [D] [E] [F ]
[D] [E] [F ] [G]
[E] [F ] [G] [H]

⎤
⎥⎦

(i)

⎧⎪⎨
⎪⎩

{ε(0)}
{ε(1)}
{ε(2)}
{ε(3)}

⎫⎪⎬
⎪⎭

(i)

, (19)

156 {{Q}
{R}
{S}

}
(i)

=
[

[A]∗ [B]
∗

[D]
∗

[B]
∗

[D]
∗

[E]
∗

[D]
∗

[E]
∗

[F ]
∗

]
(i)

{{γ (0)}
{γ (1)}
{γ (2)}

}
(i)

, (20)

where:157

[..]
∗ =
[
(.)55 0

0 (.)44

]
, (21)

moreover: {N}T
(i) = {Nx Ny Nxy}(i) is the vector of in-plane forces, {M}T

(i) = {Mx My Mxy}(i) is the vector of bending and twisting158

moments, {Q}T
(i) = {Qx Qy}(i) is the vector of transverse shear forces, and finally {L}T

(i) = {Lx Ly Lxy}(i), {P}T
(i) = {Px Py Pxy}(i) and159

{R}T
(i) = {Rx Ry}(i), {S}T

(i) = {Sx Sy}(i) are the vectors of higher-order stress resultants. In Eq. (19) Aij is the extensional, Bij is cou-160

pling, Dij is the bending, Eij, Fij, Fij and Hij are higher-order stiffnesses [114]:161

(Ai j, Bi j, Di j, Ei j, Fi j, Gi j, Hi j)(i) =
Nl∑

k=1

∫ zk+1

zk

C
(k)

i j (1, z, z2, z3, z4, z5, z6)(i)dz(i). (22)

The stiffnesses above have to be calculated with respect to the local reference planes of each ESL. The equilibrium equations162

of the plate system can be obtained by using the virtual work principle [93]. In previous papers it was shown many times163

[114,125,126]. Therefore, here only the final results are given. To give the equilibrium equations in compact form we define the164

following vectors:165

N(x,xy)
i

= (Nx Nxy)
T
(i), N(xy,y)

i
= (Nxy Ny)

T
(i)

M(x,xy)
i

= (Mx Mxy)
T
(i), M(xy,y)

i
= (Mxy My)

T
(i) (23)

Moreover, the vectors of higher-order stress resultants are:166

L(x,xy)
i

= (Lx Lxy)T
(i)

, L(xy,y)
i

= (Lxy Ly)T
(i)

P(x,xy)
i

= (Px Pxy)T
(i)

, P(xy,y)
i

= (Pxy Py)T
(i)

(24)

Finally the vectors of shear and higher-order forces become:167

Qi = (Qx Qy)
T
(i), Ri = (Rx Ry)

T
(i), Si = (Sx Sy)

T
(i) (25)

In the sequel the equilibrium equations are derived separately for the undelaminated and delaminated parts.168

5.1. Undelaminated portion169

Formulating the total potential energy of the undelaminated plate portion based on the displacement field satisfying the SEKC170

requirements (Eq. (13)) the equilibrium equations can be obtained by variational calculus [93]. The equilibrium of the in-plane171

forces involves the following independently of the applied theory:172

δu0 :

4∑
i=1

∇ · N(x,xy)
i

= 0, δv0 :

4∑
i=1

∇ · N(xy,x)
i

= 0, (26)

where ∇ is the Hamilton differential operator [134]. In the general case (including FSDT, SSDT and TSDT) the number of primary173

parameters in the displacement field is k, the variation of the total potential energy results in the following equations:174

δψ(x)k :
δψ(y)k :

}
4∑

i=1

K(0)
ik

(∇ · N(x,xy)
i

∇ · N(xy,y)
i

)
+ αik

(∇ · M(x,xy)
i

∇ · M(xy,y)
i

)
+ K(2)

ik

(∇ · L(x,xy)
i

∇ · L(xy,y)
i

)

+ K(3)
ik

(∇ · P(x,xy)
i

∇ · P(xy,y)
i

)
+ βik

(
Qix

Qiy

)
− 2K(2)

ik

(
Rix

Riy

)
− 3K(3)

ik

(
Six

Siy

)
= 0,

(27)
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where ψ (x)k and ψ (y)k denote the primary parameters. Finally, the variation of the total potential energy with respect to the plate175

deflection provides:176

δw :

4∑
i=1

∇ · Qi − q = 0, (28)

and q = q(x, y) is the function of external load [93]. As can be seen the differences among the equilibrium equations of FSDT,177

SSDT and TSDT are the matrices defined in Appendices A, B and C. Besides the matrices αij and β ij are defined in the next section.178

5.1.1. TSDT and SSDT179

In the case of the TSDT and SSDT the matrices are defined as180

α = −β =

⎛
⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎠. (29)

5.1.2. FSDT181

If the FSDT is applied then both α and β is related to the Kronecker symbol: αik = −βik = δik.182

5.2. Delaminated portion183

The delaminated region consist of a top and bottom plate. Each is modeled by two ESLs. Therefore, the global membrane184

displacements u0, v0 are replaced by u0b, v0b for ESL1 and ESL2, moreover by u0t, v0t for ESL3 and ESL4 in accordance with Figs. 2185

and 3. Thus, the equilibrium equations of in-plane forces take the form below:186

δu0b :

2∑
i=1

∇ · N(x,xy)
i

= 0, δu0t :

4∑
i=3

∇ · N(x,xy)
i

= 0,

δv0b :

2∑
i=1

∇ · N(xy,x)
i

= 0, δv0t :

4∑
i=3

∇ · N(xy,x)
i

= 0. (30)

The other equilibrium equations have the same form as those given by Eqs. (27) and (28).187

5.2.1. TSDT and SSDT188

If the TSDT and SSDT is used then the α and β matrices become:189

α = −β =

⎛
⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞
⎟⎠. (31)

5.2.2. FSDT190

If the FSDT is applied then αik = −βik = δik. In the next section the solution of the equations is presented for simply-supported191

plates.192

6. Examples – simply supported plates193

The examples taken into account are simply supported laminated orthotropic plates with asymmetric delamination shown in194

Fig. 4a and b. The plates are loaded by a concentrated force. The same problem has been solved in previous papers [114,125,126]195

by using the method of two ESLs. In accordance with the Lévy plate formulation [135–136] the displacement parameters in196

Eqs. (13) are expressed by trial functions:197 ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θx(x, y)
θy(x, y)
φx(x, y)
φy(x, y)
λx(x, y)
λy(x, y)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
∞∑

n=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xn(x) sin βy
Yn(x) cos βy
Txn(x) sin βy
Tyn(x) cos βy
Zxn(x) sin βy
Zyn(x) cos βy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

⎧⎪⎨
⎪⎩

u0(x, y)
v0(x, y)
q(x, y)
w(x, y)

⎫⎪⎬
⎪⎭ =

∞∑
n=1

⎧⎪⎨
⎪⎩

U0n(x) sin βy
V0n(x) cos βy
Qn(x) sin βy
Wn(x) sin βy

⎫⎪⎬
⎪⎭, (32)

where β = nπ/b. By taking back the solution in Eq. (32) into the equilibrium equations given by Eqs. (26)–(28) it is possible198

to reduce the system of PDEs to system of ODEs, which can be solved by the state-space formulation [138]. Even the stress199
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(a) (b)

Fig. 4. Simply supported delaminated composite plates subjected to a concentrated force.

resultants can be expressed in terms of the displacement parameters through Eqs. (19) and (20). The state-space model takes the200

form [93,138]:201

Z′ = TZ + F (33)

where Z is the state vector, T is the system matrix, and F is the vector of particular solutions. The general solution of Eq. (33) is:202

Z(x) = eTx

(
K +

∫ x

x0

e−Tξ F(ξ)dξ

)
= G(x)K + H(x), (34)

where K is the vector of constants. The parameters of the displacement field can be accessed by:203

Z(d)
i

=
r∑

j=1

G(d)
i j

K(d)
j

+ H(d)
j

, Z(ud)
i

=
s∑

j=1

G(ud)
i j

K(ud)
j

+ H(ud)
j

, (35)

where subscript (d) refers to the delaminated (ud) means the undelaminated plate portion, r and s are the size of vectors, respec-204

tively. Since many papers have been published on the construction of the state-space model [104,111,114,124], the vectors and205

matrices in Eqs. (33)–(35) are discussed here only briefly.206

6.1. Undelaminated region207

In the case of the TSDT the state vector contains the parameters of vector ψ (refer to Sections 4.1.1, 4.1.2, 4.1.3), the global208

membrane parameters u0 and v0, the deflection w and the first derivatives of all these parameters leading to (and using the Lévy209

solution): ZT =(U0n, U ′
0n

, V0n, V ′
0n

, [Xin, X ′
in

, Yin, Y ′
in

], Zx3, Z′
x3

, Zy3, Z′
y3

, Wn, W ′
n) for i = 1..4, i.e. the vector Z contains 26 elements,210

while the system matrix size is 26 × 26. If the SSDT is applied then Zx3 and Zy3 (and their derivatives) have to be replaced by211

Tx3 and Ty3 (refer to Eq. (32)), the size of the system vector and matrix is the same as that in the TSDT. Finally, the FSDT model212

involves only the membrane displacements, rotations and the deflection yielding a state vector with 22 elements and a system213

matrix with size of 22 × 22, respectively.214

6.2. Delaminated region215

The state vector of the TSDT model of the delaminated part contains the following elements ZT = (U0bn, U ′
0bn

, V0bn, V ′
0bn

, U0tn,216

U ′
0tn, V0tn, V ′

0tn, [Xin, X ′
in

, Yin, Y ′
in

], Zx1, Z′
x1, Zy1, Z′

y1, Zx3, Z′
x3, Zy3, Z′

y3, Wn, W ′
n) for i = 1..4, i.e. the size of vector Z is 34, the system217

matrix size is 34 × 34. In the case of the SSDT Zxi and Zyi, i = 1 and 3 (and their derivatives) should be replaced by Txi and Tyi, i = 1218
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and 3, the size of the state vector and system matrix is the same as that in the TSDT. The FSDT model involves the top and bottom219

membrane displacements, rotations and the deflection, consequently the state vector consists of 22 elements and system matrix220

size is 22 × 22, respectively.221

In the next sections the boundary and continuity conditions are given for the TSDT model, the same for the SSDT and FSDT222

are placed in appendices.223

7. Boundary conditions224

The B.C.s of the problem in Fig. 4a at x = a are determined through the displacement parameters:225

(w, v0b, v0t , θy1, θy2, θy3, θy4, λy1, λy3)
(1a)|x=a = 0 (36)

and the stress resultants:226

(Nx1 + Nx2, Nx3 + Nx4, Mx1, Mx2, Mx3, Mx4, Px1, Px3)
(1a)|x=a = 0. (37)

At x = −c we have:227

(w, v0, θy1, θy2, θy3, θy4, λy3)
(2)|x=−c = 0, (38)

228 (Mx1, Mx2, Mx3, Px3, Mx4, Nx1 + Nx2 + Nx3 + Nx4)
(2)
∣∣

x=−c
= 0. (39)

8. Continuity conditions between regions (1) and (2)229

The conditions between regions (1) and (2) (refer to Fig. 4a) involve the continuity of the displacement parameters and stress230

resultants. In the sequel, the continuity of the displacement field and stress resultants are discussed separately.231

8.1. Continuity of stress resultants232

To define the continuity conditions the equivalent stress resultants can be defined based on the equilibrium Eqs.233

(Eqs. (26) and (27)) and (30) and the vectors given by Eqs. (23) and (24):234

M̂(x,xy)(1)
i

= M(x,xy)(1)
i

+
∑
j=1,4

(
K(0)

ji
N(x,xy)

j
+ K(2)

ji
L(x,xy)

j

)(1)

, i = 1. . .4, (40)

235

P̂(x,y)(1)
3

=
∑

i=3,4

P(x,xy)(1)
j

+
∑
j=3,4

(
K(0)

j6
N(x,xy)

j
+ K(2)

j6
L(x,xy)

j

)(1)

, (41)

for the delaminated portion (1). Moreover, for the undelaminated region (2) we have:236

M̂(x,xy)(2)
i

= M(x,xy)(2)
i

+
∑
j=1,4

(
K(0)

ji
N(x,xy)

j
+ K(2)

ji
L(x,xy)

j
+ K(3)

ji
P(x,xy)

j

)(2)

, i = 1. . .4, (42)

237

P̂(x,y)(2)
3

=
∑

i=1..4

P(x,xy)(2)
i

+
∑

j=1..4

(
K(0)

j5
N(x,xy)

j
+ K(2)

j5
L(x,xy)

j

)(2)

. (43)

The continuity conditions using the equivalent stress resultants are:238 (
M̂(x,xy)

i
, P̂(x,y)

3
,
∑

i=1..4

N(x,xy)
i

)
(1)
∣∣

x=−0
=
(

M̂(x,xy)
i

, P̂(x,y)
3

,
∑

i=1..4

N(x,xy)
i

(2)

∣∣∣∣∣
x=+0

, i = 1. . .4. (44)

8.2. Continuity of displacement parameters239

In the case of the general TSDT the continuity of the in-plane displacement is ensured only if the constant, linear, quadratic240

and cubic terms are exactly the same in the delamination front (x = 0). Because of the parameter elimination based on the241

SEKC it is not possible to match directly the constant, quadratic and cubic terms in the displacement function from layer by242

layer. Only the continuity of rotations can be defined between each ESL. In spite of that the continuity can be ensured indirectly243

(automatically) if certain conditions are met. The requirements of automatic continuity is formulated in the form of a theorem.244

We define the following set of parameters:245

gα = (w, w′, θx1, θy1, θx2, θy2, θx3, θy3, θx4, θy4λx3, λy3). (45)

The continuity of the displacement parameters involves the following necessary conditions:246

g(1)
α

∣∣∣
x=+0

= g(2)
α

∣∣∣
x=−0

. (46)

However these are not sufficient. The sufficient conditions are presented through a theorem.247
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(a) (b)

Fig. 5. Illustration of the theorem of autocontinuity: similar (a) and dissimilar (b) conditions are imposed at interface planes 1–2 and 3–4 of the delaminated

and undelaminated parts.

8.2.1. The theorem of autocontinuity (AC theorem)248

Theorem. If the displacement field in the form of Eq. (13) in a laminated plate with delamination is developed by using the SEKC249

requirements and Nd ∈ N and Nud ∈ N are the numbers of eliminated parameters in the delaminated and undelaminated parts, respec-250

tively, and Nd �= Nud, then the total continuity of the in-plane displacement functions of the delaminated and undelaminated plate parts251

– apart from those imposed by Eq. (46) (mutual primary parameters) – can be ensured by imposing the continuity of |Nd − Nud| ∈ N252

number of parameters. These parameters are the autocontinuity (or simply AC) parameters, which are at the same time primary pa-253

rameters too. The autocontinuity is satisfied only if along interfaces 1–2 and 3–4 (Figs. 2 and 3) the same conditions are imposed in254

the delaminated and undelaminated portions. Along the delamination plane (interface 2–3) different conditions can be applied. Fig. 5a255

shows the case when the autocontinuity between the delaminated and undelaminated parts is satisfied, Fig. 5b indicates a case when256

dissimilar conditions are imposed at interface 3–4 leading to discontinuous displacement field in the top plates.257

Proof. In the case of the TSDT model Nd = 20, Nud = 22 (refer to Sections 4.1.1 and 4.2.1), so the number of AC parameters258

is |Nd − Nud| = 2. The AC parameters can be assigned based on the vector of primary parameters: the comparison of the ψ(p)259

vectors in Sections 4.1.1 and 4.2.1 reveals that the AC parameters are λx1 and λy1 in the delaminated region. The comparison of260

the displacement field (Eq. (13)) for the undelaminated and delaminated regions (Appendix A) reveals the following sufficient261

conditions:262

λp1

∣∣∣∣∣(1)
x=+0

=
∑

j=1..5

K(3)
3 j

ψ(p) j

∣∣∣∣∣
(2)

x=−0

, p = x, y. (47)

The former conditions ensure the continuity of the cubic terms in the displacement fields of regions (1) and (2) at x = 0263

(Fig. 4a). Considering the fact that the parameters in gβ are continuous between regions (1) and (2) and by using the matrix264

elements given in Appendix A it is possible to have the following expression for λp1 at x = +0:265

(λp1)
(1)|x=+0 = 4

3

(
1

(t1 + t2)

[
θp1

(t1 + 2t2)
− θp2

t2

]
+ (2t3 + t4)θp3 − t3θp4

t2(t3 + t4)(t1 + 2t2)

)
+ (2t3 + t4)t3λp3

t2(t1 + 2t2)

∣∣∣∣
(2)

x=−0

. (48)
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Taking the former condition back into the quadratic part of the displacement field given by Eq. (13) of each ESL of the unde-266

laminated part (2) yields the following at x = −0:267

∑
j=1..5

(
K(2)

1 j
ψ∗

(p) j

)∣∣∣∣∣
(2)

x=−0

=
(

1

(t1 + t2)

[
− (3t2 + 2t1)θp1

(t1 + 2t2)
+ (t1 + 2t2)θp2

t2

]
− (2t3 + t4)θp3 − t3θp4

t2(t3 + t4)(t1 + 2t2)

)

+ (2t3 + t4)t3λp3

t2(t1 + 2t2)

∣∣∣∣
(2)

x=−0

, (49)

268

∑
j=1..5

(
K(2)

2 j
ψ∗

(p) j

)∣∣∣∣∣
(2)

x=−0

=
(

−1

(t1 + t2)

[
t2θp1

(t1 + 2t2)
+ t1θp2

t2

]

+ (t1 + t2)((2t3 + t4)θp3 − t3θp4)

t2(t3 + t4)(t1 + 2t2)

)
+ 3

4

(2t3 + t4)(t1 + t2)t3λp3

t2(t1 + 2t2)

∣∣∣∣
(2)

x=−0

, (50)

269

∑
j=1..5

(
K(2)

3 j
ψ∗

(p) j

)∣∣∣∣∣
(2)

x=−0

= −θp3 + θp4

(t3 + t4)
− 3

4
(t3 + t4)λp3

∣∣∣∣∣∣
(2)

x=−0

, (51)

270

∑
j=1..5

(
K(2)

4 j
ψ∗

(p) j

)∣∣∣∣∣
(2)

x=−0

= −θp3 + θp4

(t3 + t4)
+ 3

4
(t3 + t4)λp3

∣∣∣∣∣∣
(2)

x=−0

. (52)

Simultaneously, by taking back Eq. (48) into the displacement functions of every ESL of the delaminated part (1) defined by271

Eq. (13) we have at x = +0:272

∑
j=1..6

(
K(2)

1 j
ψ∗

(p) j

)∣∣∣∣∣
(1)

x=+0

=
(

1

(t1 + t2)

[
− (3t2 + 2t1)θp1

(t1 + 2t2)
+ (t1 + 2t2)θp2

t2

]

− (2t3 + t4)θp3 − t3θp4

t2(t3 + t4)(t1 + 2t2)

)
+ (2t3 + t4)t3λp3

t2(t1 + 2t2)

∣∣∣∣
(1)

x=+0

, (53)

273

∑
j=1..6

(
K(2)

2 j
ψ∗

(p) j

)∣∣∣∣∣
(1)

x=+0

=
(

−1

(t1 + t2)

[
t2θp1

(t1 + 2t2)
+ t1θp2

t2

]

+ (t1 + t2)((2t3 + t4)θp3 − t3θp4)

t2(t3 + t4)(t1 + 2t2)

)
+ 3

4

(2t3 + t4)(t1 + t2)t3λp3

t2(t1 + 2t2)

∣∣∣∣
(1)

x=+0

, (54)

274

∑
j=1..6

(
K(2)

3 j
ψ∗

(p) j

)∣∣∣∣∣
(1)

x=−0

= −θp3 + θp4

(t3 + t4)
− 3

4
(t3 + t4)λp3

∣∣∣∣∣∣
(1)

x=−0

, (55)

275 ∑
j=1..6

(
K(2)

4 j
ψ∗

(p) j

)∣∣∣∣∣
(1)

x=+0

= −θp3 + θp4

(t3 + t4)
+ 3

4
(t3 + t4)λp3

∣∣∣∣∣∣
(1)

x=+0

. (56)

Obviously, the right-hand sides of Eqs. (49)–(52) and Eqs. (53)–(56) are the same. Considering the continuity of the parameters276

in Eq. (45) by Eq. (46) it can be seen that the continuity of the quadratic term in the displacement functions of regions (1) and (2)277

is automatically satisfied. �278

Consequence. If the continuity of linear terms (rotations) in the displacement field in each ESL given by Eq. (13) are continuous,279

moreover the continuity of quadratic and cubic terms of each ESL are imposed using the AC parameters, then the continuity of280

the membrane displacement components between the top plates (as well as the bottom plates) of the delaminated and unde-281

laminated regions can be ensured by imposing the equality between the membrane (constant) displacement terms of only a282

single ESL in the delaminated part and a single one in the undelaminated part, but not in every ESLs. The ESLs can be chosen283

optionally, however the chosen ESLs should be in the same through-thickness position in the delaminated and undelaminated284
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plate regions. In this case the continuity of the membrane parts in the other ESLs is satisfied automatically. We choose the first285

(in the bottom layer) and third (in top layer) ESLs to impose the continuity of the membrane displacements using the equations286

below:287 (
u0b

v0b

)
+
∑

j=1,2,5

K(0)
1 j

(
ψ(x) j

ψ(y) j

)∣∣∣∣∣
(1)

x=+0

=
(

u0

v0

)
+
∑

j=1..5

K(0)
1 j

(
ψ(x) j

ψ(y) j

)∣∣∣∣∣
(2)

x=−0

,

(
u0t

v0t

)
+
∑

j=3,4,6

K(0)
3 j

(
ψ(x) j

ψ(y) j

)∣∣∣∣∣
(1)

x=+0

=
(

u0

v0

)
+
∑

j=1..5

K(0)
3 j

(
ψ(x) j

ψ(y) j

)∣∣∣∣∣
(2)

x=−0

. (57)

9. Continuity between regions (1)–(1q) and (1q)–(1a)288

The continuity between regions (1)–(1q) and (1q)–(1a) (see Fig. 4a) can be imposed by defining the sets of parameters below:289

290

gβ = (u0b, u0t , v0b, v0t , w, w′, θxi, θyi, λx1, λy1, λx3, λy3), i = 1. . .4, (58)

291

gγ =
(

M̂xi, Px1, Px3,
∑

i=1..2

Nxi,
∑

i=3..4

Nxi, M̂xyi, Pxy1, Pxy3,
∑

i=1..2

Nxyi,
∑

i=3..4

Nxyi

)
, i = 1. . .4. (59)

The continuity conditions are (refer to Fig. 4a):292

g(1)
β

∣∣∣
x=x0−d0

= g(1q)
β

∣∣∣
x=x0−d0

, g(1)
γ

∣∣∣
x=x0−d0

= g(1q)
γ

∣∣∣
x=x0−d0

, (60)

293

g(1q)
β

∣∣∣
x=x0+d0

= g(1a)
β

∣∣∣
x=x0+d0

, g(1q)
γ

∣∣∣
x=x0+d0

= g(1a)
γ

∣∣∣
x=x0+d0

. (61)

The summary of the equations results in: Eq. (36)–(39) means 30 B.C.s, Eqs. (44), (46), (47) and (57) yields 30 conditions294

between regions (1) and (2). Eqs. (60) and (61) provides 2 × 34 conditions. That means 30 + 30 + 34 + 34 = 128 conditions295

altogether in the case of the TSDT solution of problem a in Fig. 4. Problem b in Fig. 4 can be solved similarly; therefore the details296

are not given. The B.C.s and the C.C.s for the FSDT and SSDT models can be defined similarly, these are discussed in Appendix D.297

In the sequel through some definitions it is explained why the dynamic boundary conditions [114] are not imposed at the298

traction-free surfaces of the plate.299

Definition (Over-constrained plate model). If the displacement field given by Eq. (13) is developed by using the SEKC require-300

ments and the resulting equilibrium equations by the basic theory of elasticity, as well as the solution of the corresponding301

boundary value problem do not make it possible to provide the continuity of the equivalent bending (M̂x) and twisting moments302

(M̂xy), between each ESL, moreover the sum of in-plane normal (Nx) and shear forces (Nxy) of the delaminated and undelami-303

nated plate regions, then the model becomes over-constrained. The result of the over-constraining is the bad estimation of the304

displacement, strain and stress fields.305

Definition (Well-constrained plate model). If the solution of the boundary value problem (the number of constants in the solu-306

tions functions) makes it possible to provide the continuity of the of the equivalent bending (M̂x) and twisting moments (M̂xy)307

between each ESL, moreover the sum of in-plane normal (Nx) and shear forces (Nxy) of the delaminated and undelaminated plate308

regions, then the model is well-constrained.309

The models proposed in this paper are well-constrained models. If we impose even the dynamic BC.s [114], then in the310

delaminated portion there are four traction-free surfaces, leading to eight further conditions. Moreover in the undelaminated311

part, there are two traction-free surfaces involving four dynamic B.C.s. Due to these conditions the number of parameters that312

should be eliminated from Eq. (13) leads to an over-constrained model with incorrect results, although the autocontinuity is313

satisfied even in this case.314

10. J-integral315

The J-integral for FSDT, SSDT and TSDT has already been derived for plates with symmetric [104,111,123,124] and asymmetric316

[114,125,126] lay-up. Therefore, in this work the details are not discussed. The mode-II and mode-III J-integrals are given in317

Appendix E.318
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Fig. 6. Distribution of the in-plane displacements (u and v), normal stresses (σ x and σ y) and shear stresses (τ xz and τ yz) over the plate thickness for example in

Fig. 4a, case I, b = 100 mm.

11. Results and discussions319

To demonstrate the accuracy of the analytical models two examples shown in Fig. 4 are solved. The data of the problem de-320

picted in Fig. 4a are: a = 105 mm (delamination length), c = 55 mm (undelaminated length), b = 100 and b = 160 mm (plate321

width), tt + tb = 4.5 mm (plate thickness), Q0 = 1000 N, xQ = 31 mm, yQ = 50 mm and yQ = 80 mm (point of action coordi-322

nates of Q0), d0 = 0.1 mm. For the problem in Fig. 4b the data are: a = 55 mm (delamination length), c = 35 mm (undelam-323

inated length), b = 60 and b = 90 mm (plate width), tt + tb = 4.5 mm (plate thickness), Q0 = 10000 N, xQ = 11 mm, yQ = 30324

mm and yQ = 45 mm (point of action coordinates of Q0), d0 = 0.1 mm. The material of the plates is carbon/epoxy. The lay-up325

of the plate is [±45 f /0/ ± 45
f
2
/0̄]S, the material properties can be found in [114]. Finite element models were also constructed326

to validate the analytical results. The details of the FE models are presented in a recent paper [114]. The position of the delam-327

ination was varied in the through thickness direction, these were assigned as cases I, II, III and IV in accordance with Fig. 1,328

respectively.329

11.1. Displacement and stress distributions330

Fig. 6 shows the distribution of the in-plane displacements u and v, normal stresses σ x, σ y and shear stresses τ xz and331

τ yz in specified cross sections at the delamination front for case I, when the delamination is near the midplane. The re-332

sults of the FSDT, SSDT, TSDT and FE solutions are presented. The displacement curves show very moderate nonlinearity, it333

can be seen that considering both components the TSDT provides the best fit to the numerical results. In contrast it is the334

SSDT that approximates the normal stresses (σ x and σ y) in the best way, especially the peak in the plane of the delami-335

nation. Regarding the shear stresses the TSDT provides the highest accuracy compared to the FE results. In the case of the336

SSDT it is clear that the model becomes overperturbated, i.e. large fluctuations take place in the through thickness distri-337

bution of τ xz and τ yz. In the case of the shear stresses, each theory approximates well the area under the distribution by338

FEM.339

The distributions of case II are presented in Fig. 7. Again, the TSDT provides the best fit to the displacement distributions340

by FEM. However, this time it is FSDT that fits the normal stresses in the best way. The TSDT and FSDT approximate the shear341

stresses well, the SSDT result becomes again overperturbated. The reason for the large fluctuations in the distribution are the342

uncontrolled derivatives (Eq. (5)) of the displacement functions.343

Cases III and IV – when the delamination is located closer to the top surface of the plate – are demonstrated through Figs. 8344

and 9. Briefly summarizing the results, it can be seen that SSDT provides inaccurate predictions for the shear stresses, it is clear345

that this model should be abandoned. On the contrary the FSDT and TSDT are still very reasonable to approximate the mechanical346

fields. The most accurate results are obtained by the TSDT model.347
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Fig. 7. Distribution of the in-plane displacements (u and v), normal stresses (σ x and σ y) and shear stresses (τ xz and τ yz) over the plate thickness for example in

Fig. 4a, case II, b = 160 mm.

Fig. 8. Distribution of the in-plane displacements (u and v), normal stresses (σ x and σ y) and shear stresses (τ xz and τ yz) over the plate thickness for example in

Fig. 4a, case III, b = 100 mm.

The results of problem b in Fig. 4 are plotted in Figs. 10–13. It is shown that in this example because of the smaller plate348

dimensions and the shorter crack length the perturbation in the mechanical fields is significantly more intense than in problem349

a. Case I is displayed in Fig. 10. An immediate observation is that u displacement by FEM is inaccurately predicted by all of the350

theories. Nevertheless, it has to be emphasized that the load of problem b is Q0=10000 N, i.e. ten times higher than that of351

problem a. Thus, smaller displacements and – as Fig. 10 shows – significantly higher stresses are obtained. In case I the normal352
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Fig. 9. Distribution of the in-plane displacements (u and v), normal stresses (σ x and σ y) and shear stresses (τ xz and τ yz) over the plate thickness for example in

Fig. 4a, case IV, b = 160 mm.

Fig. 10. Distribution of the in-plane displacements (u and v), normal stresses (σ x and σ y) and shear stresses (τ xz and τ yz) over the plate thickness for example

in Fig. 4b, case I, b = 60 mm.

stresses are again better predicted by the SSDT than FSDT and TSDT, however with respect to the shear stresses SSDT gives353

unrealistic results. The FSDT or TSDT follows reasonably τ xz but τ yz is badly estimated by both theory. The higher perturbation354

of the system is the reason for the latter discrepancy compared to the FE results. The subsequent cases II, III and IV are presented355

in Figs. 11–13. The conclusions are in fact the same as those for problem a. It can be stated that considering both problems and356

all the four cases TSDT provides the best results.357
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Fig. 11. Distribution of the in-plane displacements (u and v), normal stresses (σ x and σ y) and shear stresses (τ xz and τ yz) over the plate thickness for example

in Fig. 4b, case II, b = 90 mm.

Fig. 12. Distribution of the in-plane displacements (u and v), normal stresses (σ x and σ y) and shear stresses (τ xz and τ yz) over the plate thickness for example

in Fig. 4b, case III, b = 60 mm.

12. J-integral and mode mixity distributions358

The ERR (GII = JII, GIII = JIII) and mode mixity distributions are plotted in Figs. 14–17 for problem a in Fig. 4. In Fig. 14 cases359

I and II are presented for both plate widths (b = 100 and b = 160 mm). The symbols show the results of the FE calculations by360

the virtual crack closure technique (VCCT) [122,139], the curves represent the analytical solutions. The results of case I shows361
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Fig. 13. Distribution of the in-plane displacements (u and v), normal stresses (σ x and σ y) and shear stresses (τ xz and τ yz) over the plate thickness for example

in Fig. 4b, case IV, b = 90 mm.

Fig. 14. Distribution of the energy release rates and mode mixity along the delamination front for example a in Fig. 4, cases I and II.
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Fig. 15. Distribution of the energy release rates and mode mixity along the delamination front for example a in Fig. 4, cases III and IV.

that compared to the FE model the mode-II ERR is underpredicted by the FSDT and TSDT models if b = 100 mm. Although the362

SSDT still shows underprediction, it is obvious that it provides the best agreement with the numerical model. The mode-III ERR363

is captured better by the TSDT and SSDT than by FSDT. The mode mixities (GT = GII + GIII) are well predicted by each theory364

(b = 100 mm). If the plate width is b = 160 mm then again the SSDT is definitely the best choice, although the FSDT and TSDT365

theories also perform well. In case II (bottom part of Fig. 14) it is shown that the FSDT performs better than the other two theories366

for both plate widths.367

Fig. 15 shows the results in cases III and IV for both plate widths. In case III (top half of Fig. 15) if b = 100 mm the three theories368

provide similar distributions compared to the FE results. For b = 160 mm the FSDT follows better the ERRs and the mode mixity369

than the SSDT and TSDT. It has to be mentioned that in Fig. 8 the shear stresses are erroneously captured by the SSDT. In spite370

of that the ERRs and mode mixities are predicted in the acceptable way by the second-order theory. In case IV (bottom half of371

Fig. 15) it is conspicuous that close to the edges the SSDT gives negative distribution of the mode-II ERR both plate widths. For372

this reason the mode mixities by SSDT are not correct. It is again surprising that in case IV the FSDT is slightly better than the373

TSDT in the estimation of the ERRs, even the mode ratios are better predicted by FSDT. Considering all of the cases (I–IV) in374

Figs. 14 and 15 (problem a) it is concluded that the FSDT approximates the numerical results with the highest accuracy among375

the three theories considered.376

The results for problem b in Fig. 4 are displayed in Figs. 16 and 17. It has to be mentioned that the perturbation of the377

displacement and stress fields is significantly more intense than in the case of problem a. Therefore the agreement with the378

FE results is expected to be worse than in problem a. The layout of these figures is the same as that for Figs. 14 and 15. Briefly379

speaking, in case I the SSDT overestimates significantly the mode-III ERR for both plate widths (b = 60 mm and b = 90 mm),380

while the FSDT and TSDT perform with similar accuracy. Nevertheless each theory overpredicts the mode-III ERR. In case II381

(Fig. 16, bottom half) the performance of all three theories is similar, but SSDT seems to the best. Fig. 17 shows the results for382

cases III and IV. In case III (top half of Fig. 17) the SSDT theory seems to be the best choice, while in case IV TSDT is definitely383

better than the other two theories. Obviously the SSDT model is not suitable to capture the mechanical fields in case IV because384

the mode-II ERR distribution is negative again.385

Based on the results obtained it can be concluded that the accurate description of the displacement and stress fields is386

very important to obtain ERR and mode mixity distributions with high accuracy. Moreover each theory gives finite stresses387

that is why the delamination is nonsingular in each cases. The comparison of the shear stress distributions in Figs. 6–9 to388

the ERR and mode mixity distributions in Figs. 14 and 15 indicates that the better the approximation of shear stresses is, the389
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Fig. 16. Distribution of the energy release rates and mode mixity along the delamination front for example b in Fig. 4, cases I and II.

Fig. 17. Distribution of the energy release rates and mode mixity along the delamination front for example b in Fig. 4, cases III and IV.
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higher the accuracy of the approximation of the ERRs is. The final conclusion is that for problem a the FSDT theory gives the390

best approximation of the numerical results. In contrast, for problem b the TSDT theory should be highlighted, especially in391

case IV.392

13. Conclusions393

The method of four equivalent single layers is presented in this paper for the modeling of delaminated orthotropic composite394

plates. The in-plane displacement functions were captured by the first-, second- and third-order plate theories. The problem of a395

plate with straight delamination front was considered, each region was captured by four equivalent single layers. The kinematic396

continuity between the equivalent single layers was established by the system of exact kinematic conditions. It is important to397

note that the set of conditions was complemented with the continuity of the derivative and the curvature of the shear strains398

between the adjacent layers of third-order plates. With the aid of the kinematic conditions the number of parameters in the399

displacement functions was reduced significantly. The strain and stress fields were derived using the basic equations of elasticity.400

The equilibrium equations of the delaminated and undelaminated parts were derived based on variational calculus. To exemplify401

the developed models simply supported layered plates were considered with concentrated load. The problems were solved402

by the state-space approach.403

An important contribution of this paper compared to similar previous developments is the introduction of the theorem of404

autocontinuity (AC theorem) for second- and third-order plates. Because of the parameter elimination the number of parameters405

in the displacement field that continuity is required against is higher than the available constants in the state-space model.406

Thus, there are no free constants for the matching of certain second- and third-order displacement parameters. However, in407

accordance with the AC theorem the continuity of these parameters can be achieved by imposing the continuity of certain408

autocontinuity (AC) parameters. An important requirement is that the autocontinuity is satisfied only if in each interface plane409

between the adjacent equivalent single layers the same conditions are imposed in the delaminated and undelaminated plate410

regions, except for the plane of delamination, where different conditions are necessary to be specified because of the presence411

of the delamination front. Using the proposed conditions and the AC theorem the examples were solved and the mechanical412

fields were compared to the results of 3D finite element calculations. It was shown that in problem a, very good agreement was413

achieved with the numerical results. The energy release rate and the mode mixity were predicted by the FSDT in the best way.414

Apparently the disadvantage of the theories were discovered through problem b, for which the TSDT theory was the best choice.415

In this example the more intense perturbation led to the fact that the analytical models gave inaccurate results.In spite of that,416

the updated system of exact kinematic conditions and the theorem of autocontinuity work well and can be implemented into417

more accurate plate (and even beam and shell) theories. Also, it was discussed that the dynamic boundary condition is important418

to be satisfied by an accurate plate model. However, in the method of four equivalent single layers these conditions make the419

model over-constrained leading to continuity problems between the delaminated and undelaminated portions, and thus these420

were not considered in this work.421

More work is required to solve the benchmark problems discussed with higher accuracy and to find a model to be the candi-422

date for the development of a plate/shell finite element in the delamination modeling of composite plates, which can replace the423

computationally expensive 3D model and the VCCT. As a matter of fact there are numerous refined models [118–120,140–145]424

that can be tried out before the final decision.425
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Appendix A. TSDT constants429

In this Appendix the nonzero constants in Eq. (13) denoted by K
(0)
i j

, K
(2)
i j

and K
(3)
i j

are collected.430

A1. Undelaminated region431

In accordance with Section 4.1.1 the following constants can be obtained:432

K(0)
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(t1 + t2 + 2z(2)
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)(5t2
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A2. Delaminated region441

Based on Section 4.2.1 the following constants can be derived:442
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Appendix B. SSDT constants448

B1. Undelaminated region449

On the base of the explanation in Section 4.1.2 the SSDT constants become:450
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B2. Delaminated region453

In accordance with Section 4.2.2 we have:454
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Appendix C. FSDT constants456

C1. Undelaminated part457

The explanation in Section 4.1.3 provides the following:458
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C2. Delaminated region459

According to Section 4.2.3 the following constants can be obtained:460
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Appendix D. B.C.s and C.C.s for SSDT and FSDT461

The B.C.s of SSDT can be defined by replacing λ with φ and P with L in Eqs. (36)–(39). The equivalent bending moments are462

given by Eqs. (40) and (42) with K
(3)
i j

= 0, moreover the equivalent higher-order stress resultants become:463
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(D.1)
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The continuity of stress resultants requires:465 (
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, (D.3)

where i = 1..4. The displacement continuity can be defined by replacing λ with φ in Eq. (46). Moreover, the continuity of the466

second-order terms is imposed by:467

φp1

∣∣(1)

x=+0
=
∑

j=1..5

K(3)
1 j

ψ(p) j

∣∣∣∣∣
(2)

x=−0

, p = x, y. (D.4)

Between regions (1)–(1q) and (1q)–(1a) we can replace λ with φ and P with L in Eqs. (58) and (59) and impose the conditions468

by Eqs. (60) and (61). Finally, the conditions of the FSDT can be derived by ignoring φ, λ in the former displacement parameters;469

moreover L and P in the stress resultants, i.e. only membrane displacements, rotations, normal forces and bending moments470

should be continuous at x = 0.471

Appendix E. J-integral – mode-II and mode-III ERRs472

The J-integral has already been derived in previous papers [106,114,125,126] for similar problems to those considered in this473

paper. The mode-II and mode-III integrals are:474
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where the notations can be found in the former papers.476

References477

[1] D.F. Adams, L.A. Carlsson, R.B. Pipes, Experimental Characterization of Advanced Composite Materials, third ed., CRC Press, Boca Raton, London, New York,478
Washington, D.C., 2000.479

[2] W. Zhou, X. Liang, Y. Li, S. You, R. Liu, H. Chai, Z. Lv, Acoustic emission monitoring for delaminated composites under bending damage failure condition,480
Appl. Mech. Mater. 310 (2013) 51–54.481

[3] W. Zhou, L. Zhi-Hui, Y.-R. Wang, R. Liu, W.-Y. Chen, X.-T. Li, Acoustic response and micro-damage mechanism of fiber composite materials under mode-II482
delamination, Chinese Phys. Lett. 32 (2015) 046201.483

[4] R.A. Chaudhuri, K. Balaraman, A novel method for fabrication of fiber reinforced plastic laminated plates, Compos. Structures 77 (2007) 160–170.484
[5] I.D. Baere, W.V. Paepegem, J. Degrieck, Feasibility study of fusion bonding for carbon fabric reinforced polyphenylene sulphide by hot-tool welding, J.485

Thermoplastic Compos. Mater. 25 (2012) 135–151.486
[6] K. Allaer, I.D. Baere, W.V. Paepegem, J. Degrieck, Infrared welding of carbon fabric reinforced thermoplastics, JEC Compos. Mag. 77 (2012) 44–47.487
[7] T. Czigány, T. Deák, Preparation and manufacturing techniques for macro- and microcomposites, Polymer Compos. 1 (2012) 111–134.488
[8] L. Mészáros, T. Deák, G. Balogh, T. Czvikovszky, T. Czigány, Preparation and mechanical properties of injection moulded polyamide 6 matrix hybrid489

nanocomposite, Compos. Sci. Technol. 75 (2013) 22–27.490
[9] V. Rizov, A. Shipsha, D. Zenkert, Indentation study of foam core sandwich composite panels, Compos. Struct. 69 (2005) 95–102.491

[10] V.I. Rizov, Non-linear indentation behavior of foam core sandwich composite materials – a 2D approach, Comput. Mater. Sci. 35 (2006) 107–115.492
[11] C. Wang, H. Zhang, G. Shi, 3-D finite element simulation of impact damage of laminated plates using solid-shell interface elements, Appl. Mech. Mater.493

130-132 (2012) 766–770.494
[12] V.N. Burlayenko, T. Sadowski, A numerical study of the dynamic response of sandwich plates initially damaged by low-velocity impact, Comput. Mater. Sci.495

52 (2012) 212–216.496
[13] G. Goodmiller, S. TerMaath, Investigation of composite patch performance under low-velocity impact loading, in: 55th AIAA/ASME/ASCE/AHS/SC Struc-497

tures, Structural Dynamics, and Materials Conference, National Harbor, Maryland, USA.498
[14] N. Carrere, T. Vandellos, E. Martin, Multilevel analysis of delamination initiated near the edges of composite structures, in: 17th International Conference499

on Composite Materials (ICCM17), pp. 1–10. 27–31 July 2009, Edinburgh, UK.500
[15] J.-S. Ahn, Y.-W. Kim, K.-S. Woo, Analysis of circular free edge effect in composite laminates by p-convergent global-local model, Int. J. Mech. Sci. 66 (2013)501

149–155.502
[16] T. Özben, N. Arslan, FEM analysis of laminated composite plate with rectangular hole and various elastic modulus under transverse loads, Appl. Math.503

Model. 34 (2010) 1746–1762.504
[17] J.-S. Ahn, K.-S. Woo, D.-W. Lee, Delamination analysis of carbon fiber-reinforced peek using coarse mesh, Adv. Mater. Res. 538-541 (2012) 1624–1629.505
[18] M. Hajikazemi, M. Sadr, A variational model for stress analysis in cracked laminates with arbitrary symmetric lay-up under general in-plane loading, Int. J.506

Solids Structures 51 (2014) 516–529.507
[19] M. Hajikazemi, M. Sadr, Stiffness reduction of cracked general symmetric laminates using a variational approach, Int. J. Solids Structures 51 (2014) 1483–508

1493.509
[20] E. Manoach, J. Warminski, A. Mitura, S. Samborski, Dynamics of a composite Timoshenko beam with delamination, Mech. Res. Commun. 46 (2012) 47–53.510
[21] E. Manoach, J. Warminski, A. Mitura, S. Samborski, Dynamics of a laminated composite beam with delamination and inclusions, Eur. Phys. J. Special Topics511

222 (2013) 1649–1664.512
[22] E. Manoach, S. Samborski, A. Mitura, J. Warminski, Vibration based damage detection in composite beams under temperature variations using Poincaré513

maps, Int. J. Mech. Sci. 62 (2012) 120–132.514
[23] A. Szekrényes, Coupled flexural-longitudinal vibration of delaminated composite beams with local stability analyis, J. Sound Vibration 333 (2014) 5141–515

5164.516
[24] A. Szekrényes, A special case of parametrically excited systems: free vibration of delaminated composite beams, Eur. J. Mech. A/Solids 49 (2015) 82–105.517
[25] H. Ovesy, A. Totounferoush, S. Ghannadpour, Dynamic buckling analysis of delaminated composite plates using semi-analytical finite strip method, J. Sound518

Vibrat. 343 (2015) 131–143.519
[26] D.A. Hills, P.A. Kelly, D.N. Dai, A.M. Korsunsky, Solution of Crack Problems, The Distributed Dislocation Technique, Kluwer Academic Publishers, Dordrecht,520

Boston, London, 1996.521
[27] V.E. Petrova, L. Marsavina, T. Sadowski, Revisit of compact mode II crack specimen: analysis and fracture interpretation, Theoret. Appl. Fract. Mech. 59522

(2012) 41–48.523
[28] V.E. Petrova, T. Sadowski, Theoretical analysis of mode II cracks in a compact shear specimen, Comput. Mater. Sci. 64 (2012) 248–252.524
[29] S. Parvanova, Calculation of stress intensity factors based on force-displacement curve using element free Galerkin method, J. Theor. Appl. Mech. 42 (2012)525

23–40. Sofia.526
[30] D. Gardeazabal, Z. He, A. Kotousov, On influence of non-singular states on brittle fracture, Int. J. Fract. 185 (2014) 201–208.527
[31] V. Rizov, Mixed-mode I/II fracture study of polymer composites using single edge notched bend specimens, Comput. Mater. Sci. 77 (2013) 1–6.528
[32] B.D. Davidson, Encyclopedia of Aerospace Engineering, John Wiley & Sons, Ltd,529
[33] M.F.S.F. De Moura, R.M. Guedes, L. Nicolais, Wiley Encyclopedia of Composites, Fracture: Interlaminar, John Wiley & Sons, Inc.530
[34] M.A. Hamed, A. Nosier, G.H. Farrahi, Separation of delamination modes in composite beams with symmetric delaminations, Mater. Des. 27 (2006) 900–910.531
[35] L. Sorensen, J. Botsis, T. Gmür, J. Cugnoni, Delamination detection and characterisation of bridging tractions using long FBG optical sensors, Compos. Part532

A – Appl. Sci. Manuf. 38 (2007) 2087–2096.533
[36] M.M. Islam, R.K. Kapania, Delamination Growth using Cohesive Zone Model for Adhesive Bonding under Compression, Experimental and Applied Mechan-534

ics, 6, Springer, New York, 2011, pp. 527–536.535
[37] M.M. Islam, R.K. Kapania, Global-local finite element analysis of adhesive joints and crack propagation, J. Aircraft 51 (2014) 310–319.536
[38] S. Kim, J.S. Kim, H. Yoon, Experimental and numerical investigations of mode I delamination behaviors of woven fabric composites with carbon, Kevlar and537

their hybrid fibers, Int. J. Precis. Eng. Manuf. 12 (2011) 321–329.538
[39] L. Peng, J. Zhang, L. Zhao, R. Bao, H. Yang, B. Fei, Mode I delamination growth of multidirectional composite laminates under fatigue loading, J. Compos.539

Mater. 45 (2011) 1077–1090.540

Please cite this article as: A. Szekrényes, Semi-layerwise analysis of laminated plates with nonsingular delamination—The

theorem of autocontinuity, Applied Mathematical Modelling (2015), http://dx.doi.org/10.1016/j.apm.2015.06.037

http://dx.doi.org/10.1016/j.apm.2015.06.037


26 A. Szekrényes / Applied Mathematical Modelling xxx (2015) xxx–xxx

ARTICLE IN PRESS
JID: APM [m3Gsc;September 9, 2015;19:12]

[40] J. Jumel, M.K. Budzik, M.E.R. Shanahan, Beam on elastic foundation with anticlastic curvature: application to analysis of mode I fracture tests, Eng. Fract.541
Mech. 78 (2011) 3253–3269.542

[41] N.B. Salem, M.K. Budzik, J. Jumel, M.E.R. Shanahan, F. Lavelle, Investigation of the crack front process zone in the double cantilever beam test with backface543
strain monitoring technique, Eng. Fract. Mech. 98 (2013) 272–283.544

[42] I. de Baere, S. Jacques, W.V. Paepegem, J. Degrieck, Study of the mode I and mode II interlaminar behaviour of a carbon fabric reinforced thermoplastic,545
Polymer Testing 31 (2012) 322–332.546

[43] J.D. Gracia, A. Boyano, A. Arrese, F. Mujika, A new approach for determining the R-curve in DCB tests without optical measurements, Eng. Fract. Mech. 135547
(2015) 274–285.548

[44] H. Yoshihara, A. Satoh, Shear and crack tip deformation correction for the double cantilever beam and three-point end-notched flexure specimens for549
mode I and mode II fracture toughness measurement of wood, Eng. Fract. Mech. 76 (2009) 335–346.550

[45] A. Arrese, N. Carbajal, G. Vargas, F. Mujika, A new method for determining mode II R-curve by the end-notched flexure test, Eng. Fract. Mech. 77 (2010)551
51–70.552

[46] A. Argüelles, J.V. na, A.F. Canteli, J. Bonhomme, Influence of resin type on the delamination behavior of carbon fiber reinforced composites under mode-II553
loading, Int. J. Damage Mech. 20 (2011) 963–977.554

[47] V. Rizov, A.S. Mladensky, Analysis of mode II crack in bilayered composite beam, J. Theoret. Appl. Mech. 42 (2012) 67–78.555
[48] M.F.S.F. de Moura, R.D.S.G. Campilho, J.P.M. Gonçalves, Pure mode II fracture characterization of composite bonded joints, Int. J. Solids Struct. 46 (2009)556

1589–1595. (Cited by 48).557
[49] M.F.S.F. de Moura, R. Fernandes, F.G.A. Silva, N. Dourado, Mode II fracture characterization of a hybrid cork/carbon-epoxy laminate, Compos. Part B: Eng. 76558

(2015) 44–51.559
[50] V. Rizov, Y. Shindo, K. Horiguchi, F. Narita, Mode III interlaminar fracture behaviour of glass fiber reinforced polymer woven laminates at 293 to 4 k, Appl.560

Compos. Mater. 13 (2006) 287–304.561
[51] A. Szekrényes, Improved analysis of the modified split-cantilever beam for mode III fracture, Int. J. Mech. Sci. 51 (2009) 682–693.562
[52] H. Yoshihara, Examination of the 4-ENF test for measuring the mode III R-curve of wood, Eng. Fract. Mech. 73 (2006) 42–63.563
[53] R.M. Marat-Mendes, M.M. Freitas, Characterisation of the edge crack torsion (ECT) test for the measurement of the mode III interlaminar fracture toughness,564

Eng. Fract. Mech. 76 (2009) 2799–2809.565
[54] H. Suemasu, Y. Tanikado, Delamination propagation behavior and the fracture toughness of composite laminates under shear fracture mode, in: 27th566

Annual Technical Conference of the American Society for Composites 2012, Held Jointly with 15th Joint US–Japan Conference on Composite Materials and567
ASTM-D30 Meeting, pp. 367–379.568

[55] A. Szekrényes, The influence of crack length and delamination width on the mode-III energy release rate of laminated composites, J. Compos. Mater. 45569
(2011) 279–294.570

[56] A.L. Johnston, B.D. Davidson, K.K. Simon, Evaluation of new test methods for the determination of GIIIc of laminated polymeric composites, in: 27th Annual571
Technical Conference of the American Society for Composites 2012, Held Jointly with 15th Joint US–Japan Conference on Composite Materials and ASTM-572
D30 Meeting, pp. 120–139.573

[57] F.A. Mehrabadi, M. Khosravan, Mode III interlaminar fracture in woven glass/epoxy composite laminates, World Acad. Sci. Eng. Technol. 73 (2013) 479–483.574
[58] A. Johnston, B. Davidson, K. Simon, Assessment of split-beam-type tests for mode III delamination toughness determination, Int. J. Fract. 185 (2014) 31–48.575
[59] A. Johnston, B. Davidson, Intrinsic coupling of near-tip matrix crack formation to mode III delamination advance in laminated polymeric matrix composites,576

Int. J. Solids Struct. 51 (2014) 2360–2369.577
[60] J. Rodríguez-González, A. May-Pat, F. Avilés, A beam specimen to measure the face/core fracture toughness of sandwich materials under a tearing loading578

mode, Int. J. Mech. Sci. 79 (2014) 84–94.579
[61] M.R. Khoshravan, M. Moslemi, Investigation on mode III interlaminar fracture of glass/epoxy laminates using a modified split cantilever beam test, Eng.580

Fract. Mech. 127 (2014) 267–279.581
[62] A. López-Menéndez, J.V. na, A. Argüelles, J. Bonhomme, V. Mollón, M. Lozano, A new methodology for testing composite materials in mode III of fracture,582

16th European Conference on Composite Materials, ECCM 2014, June 22–26, Sevilla, Spain.583
[63] G. Cricrì, M. Perrella, S. Sessa, N. Valoroso, A novel fixture for measuring mode III toughness of bonded assemblies, Eng. Fract. Mech. 138 (2015) 1–18.584
[64] M. Nikbakht, N. Choupani, Fracture toughness characterization of carbon-epoxy composite using Arcan specimen, World Acad. Sci. Eng. Technol. 41 (2008)585

738–744.586
[65] S. Bennati, M. Colleluori, D. Corigliano, P.S. Valvo, An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite587

laminates, Compos. Sci. Technol. 69 (2009) 1735–1745.588
[66] M. Kenane, S. Benmedakhene, Z. Azari, Fracture and fatigue study of unidirectional glass/epoxy laminate under different mode of loading, Fatigue Fract.589

Eng. Mater. Struct. 33 (2010) 285–293.590
[67] B. Davidson, A. Bansal, Q. Bing, X. Sun, Geometrically nonlinear determination of energy release rate and mode ratio in single leg bending tests, J. Reinforced591

Plastics Compos. 28 (2009) 1881–1901.592
[68] J. Jumel, M.K. Budzik, M.E.R. Shanahan, Process zone in the single cantilever beam under transverse loading. Part I. Theoretical analysis, Theoretical Appl.593

Fract. Mech. 56 (2011) 7–12.594
[69] L.F.M.d. Silva, V.H.C. Estevez, F.J.P. Chavez, Fracture toughness of a structural adhesive under mixed mode loadings, Materialwissen. Werkstofftech. 42595

(2011) 460–470.596
[70] M.V. Fernández, M.F.S.F. Moura, L.F.M. da Silva, A.T. Marques, Mixed-mode fatigue/fracture characterization of composite bonded joints using the single-leg597

bending test, Compos. Part A: Appl. Sci. Manuf. 44 (2013) 63–69.598
[71] S. Wang, C.M. Harvey, Mixed mode partition theories for one dimensional fracture, Eng. Fract. Mech. 79 (2012) 329–352.599
[72] S. Bennati, P. Fisicaro, P.S. Valvo, An enhanced beam-theory model of the mixed-mode bending (MMB) test. Part I. Literature review and mechanical model,600

Meccanica 48 (2013) 443–462.601
[73] S. Bennati, P. Fisicaro, P.S. Valvo, An enhanced beam-theory model of the mixed-mode bending (MMB) test – Part II: applications and results, Meccanica602

48 (2013) 465–484.603
[74] A. Mladensky, V. Rizov, Non-linear fracture study of single cantilever beam specimen, ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik604

(2014) 1–13, doi:10.1002/zamm.201400104.605
[75] P. Liu, J. Yang, B. Wang, Z. Zhou, J. Zheng, A study on the intralaminar damage and interlaminar delamination of carbon fiber composite laminates under606

three-point bending using acoustic emission, J. Failure Anal. Prev. 15 (2015) 101–121.607
[76] G. Charalambous, G. Allegri, J.K. Lander, S.R. Hallett, A cut-ply specimen for the mixed-mode fracture toughness and fatigue characterisation of FRPs,608

Compos. Part A: Appl. Sci. Manuf. 74 (2015) 77–87.609
[77] A. Szekrényes, Interlaminar fracture analysis in the GI-GIII plane using prestressed transparent composite beams, Compos. Part A – Appl. Sci. Manuf. 40610

(2009) 1621–1631.611
[78] M. Miura, Y. Shindo, T. Takeda, F. Narita, Mixed-mode I/III fatigue delamination growth in woven glass/epoxy composite laminates at cryogenic tempera-612

tures, J. Compos. Mater. 48 (2014) 1251–1259.613
[79] A. Szekrényes, Delamination fracture analysis in the GII-GIII plane using prestressed composite beams, Int. J. Solids Struct. 44 (2007) 3359–3378.614
[80] H. Suemasu, A. Kondo, K. Gozu, Y. Aoki, Novel test method for mixed mode II and III interlaminar fracture toughness, Adv. Compos. Mater. 19 (2010)615

349–361.616
[81] S.L. Ho, A.A.O. Tay, A numerical analysis of penny-shaped delaminations in an encapsulated silicon module, IEEE, in: IEEE 61st Electronic Components and617

Technology Conference (ECTC), 2011, pp. 1115–1121618

Please cite this article as: A. Szekrényes, Semi-layerwise analysis of laminated plates with nonsingular delamination—The

theorem of autocontinuity, Applied Mathematical Modelling (2015), http://dx.doi.org/10.1016/j.apm.2015.06.037

http://dx.doi.org/10.1002/zamm.201400104
http://dx.doi.org/10.1016/j.apm.2015.06.037


A. Szekrényes / Applied Mathematical Modelling xxx (2015) xxx–xxx 27

ARTICLE IN PRESS
JID: APM [m3Gsc;September 9, 2015;19:12]

[82] A. Kondo, Y. Sato, H. Suemasu, Y. Aoki, Fracture resistance of carbon/epoxy composite laminates under mixed-mode II and III failure and its dependence on619
fracture morphology, Adv. Compos. Mater. 20 (2011) 405–418.620

[83] A. Kondo, Y. Sato, H. Suemasu, K. Gouzu, Y. Aoki, Characterization of fracture resistance of carbon/epoxy composite laminates during mixed-mode II and III621
stable damage propagation, J. Jpn. Soc. Compos. Mater. 36 (2010) 179–188.622

[84] M. Nikbakht, N. Choupani, S.R. Hosseini, 2D and 3D interlaminar fracture assessment under mixed-mode loading conditions, Mater. Sci. Eng. A 516 (2010)623
162–168.624

[85] A. Szekrényes, Interlaminar fracture analysis in the GII-GIII plane using prestressed transparent composite beams, Compos. Part A – Appl. Sci. Manuf. 43625
(2012) 95–103.626

[86] M. Miura, Y. Shindo, T. Takeda, F. Narita, Interlaminar fracture characterization of woven glass/epoxy composites under mixed-mode II/III loading conditions627
at cryogenic temperatures, Eng. Fract. Mech. 96 (2012) 615–625.628

[87] T. Takeda, M. Miura, Y. Shindo, F.F. Narita, Fatigue delamination growth in woven glass/epoxy composite laminates under mixed-mode II/III loading condi-629
tions at cryogenic temperatures, Cryogenics 58 (2013) 55–61.630

[88] F.A. Mehrabadi, Analysis of pure mode III and mixed mode (III+ II) interlaminar crack growth in polymeric woven fabrics, Mater. Des. 44 (2013) 429–437.631
[89] A.S. Mladensky, V. Rizov, Analysis of mixed mode II/III crack in bilayered composite beam, J. Theoret. Appl. Mech. 42 (2013) 41–52.632
[90] B.D. Davidson, F.O. Sediles, K.D. Humphrey, A shear-torsion-bending test for mixed-mode I-II-III delamination toughness determination, in: 25th Technical633

Conference of the American Society for Composites and 14th US-Japan Conference on Composite Materials, 20–22 September 2010, Dayton, Ohio, USA,634
volume 2, pp. 1001–1020.635

[91] A. Szekrényes, Interlaminar fracture analysis in the GI-GII-GIII space using prestressed transparent composite beams, J. Reinforced Plastics Compos. 30636
(2011) 1655–1669.637

[92] B.D. Davidson, F.O. Sediles, Mixed-modeI-II-III delamination toughness determination via a shear-torsion-bending test, Compos. Part A: Appl. Sci. Manu-638
facturing 42 (2011) 589–603.639

[93] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells – Theory and Analysis, CRC Press, Boca Raton, London, New York, Washington, D.C., 2004.640
[94] L.P. Kollár, G.S. Springer, Mechanics of Composite Structures, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,641

São Paolo, 2003.642
[95] H. Hajheidari, H.R. Mirdamadi, Frequency-dependent vibration analysis of symmetric cross-ply laminated plate of Levy-type by spectral element and finite643

strip procedures, Appl. Math. Model. 37 (2013) 7193–7205.644
[96] V. Radosavljević, M. Dražić, Exact solution for buckling of FCFC stepped rectangular plates, Appl. Math. Model. 34 (2010) 3841–3849.645
[97] A. Assie, A. Kabeel, F. Mahmoud, Optimum design of laminated composite plates under dynamic excitation, Appl. Math. Model. 36 (2012) 668–682.646
[98] J. Petrolito, Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements, Appl. Math. Model. 38 (2014) 5858–5869.647
[99] M. Endo, Study on an alternative deformation concept for the Timoshenko beam and Mindlin plate models, Int. J. Eng. Sci. 87 (2015) 32–46.648

[100] M. Endo, N. Kimura, An alternative formulation of the boundary value problem for the Timoshenko beam and Mindlin plate, J. Sound Vibrat. 301 (2007)649
355–373.650

[101] H. Ovesy, M. Naghinejad, M. Kharazi, Delamination growth speed analysis in a compressed composite laminate based on first-order shear deformation651
theory, J. Compos. Mater. (2015).652

[102] A.A. Khdeir, J.N. Reddy, Free vibrations of laminated composite plates using second-order shear deformation theory, Comput. Struct. 71 (1999) 617–626.653
[103] A. Shahrjerdi, F. Mustapha, M. Bayat, D.L.A. Majid, Free vibration analysis of solar functionally graded plates with temperature-dependent material prop-654

erties using second order shear deformation theory, J. Mech. Sci. Technol. 25 (2011) 1–15.655
[104] A. Szekrényes, Interface fracture in orthotropic composite plates using second-order shear deformation theory, Int. J. Damage Mech. 22 (2013) 1161–1185.656
[105] M. Izadi, M. Tahani, Analysis of interlaminar stresses in general cross-ply laminates with distributed piezoelectric actuators, Compos. Struct. (2010) 757–657

768.658
[106] A. Szekrényes, Antiplane–inplane shear mode delamination between two second-order shear deformable composite plates, Math. Mech. Solids (2015)659

1–24, doi:10.1177/1081286515581871.660
[107] M. Talha, B. Singh, Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Appl. Math. Model. 34 (2010)661

3991–4011.662
[108] S.K. Panda, B.N. Singh, Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM, Finite663

Elements Anal. Des. 47 (2011) 378–386.664
[109] V.K. Singh, S.K. Panda, Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels, Thin-Walled Struct. 85 (2014). 431–349.665
[110] S.K. Panda, B.N. Singh, Nonlinear free vibration of spherical shell panel using higher order shear deformation theory – a finite element approach, Int. J.666

Pressure Vessels Piping 86 (2009) 373–383.667
[111] A. Szekrényes, Stress and fracture analysis in delaminated orthotropic composite plates using third-order shear deformation theory, Appl. Math. Model.668

38 (2014) 3897–3916.669
[112] C.H. Thai, L.V. Tran, D.T. Tran, T. Nguyen-Thoi, H. Nguyen-Xuan, Analysis of laminated composite plates using higher-order shear deformation plate theory670

and node-based smoothed discrete shear gap method, Appl. Math. Model. 36 (2012) 5657–5677.671
[113] A.S. Oktem, V. Alankaya, C.G. Soares, Boundary-discontinuous Fourier analysis of simply supported cross-ply plates, Appl. Math. Model. 37 (2013) 1378–672

1389.673
[114] A. Szekrényes, Bending solution of third-order orthotropic Reddy plates with asymmetric interfacial crack, Int. J. Solids Structures 51 (2014) 2598–2619.674
[115] M.G. Taj, A. Chakrabarti, A.H. Sheikh, Analysis of functionally graded plates using higher order shear deformation theory, Appl. Math. Model. 37 (2013)675

8484–8494.676
[116] A.J.M. Ferreira, C.M.C. Roque, E. Carrera, M. Cinefra, O. Polit, Two higher order zig-zag theories for the accurate analysis of bending, vibration and buckling677

response of laminated plates by radial basis functions collocation and a unified formulation, J. Compos. Mater. 45 (2011) 2523–2536.678
[117] P. Malekzadeh, A. Afsari, P. Zahedinejad, R. Bahadori, Three-dimensional layerwise-finite element free vibration analysis of thick laminated annular plates679

on elastic foundation, Appl. Math. Model. 34 (2010) 776–790.680
[118] R. Sahoo, B. Singh, A new trigonometric zigzag theory for static analysis of laminated composite and sandwich plates, Aerosp. Sci. Technol. 35 (2014) 15–28.681
[119] R. Sahoo, B. Singh, A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates, Compos.682

Structures 117 (2014) 316–332.683
[120] R. Sahoo, B. Singh, A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates, Compos. Struct. 105 (2013)684

385–397.685
[121] F.A. Mehrabadi, M. Khoshravan, Mode III interlaminar fracture and damage characterization in woven fabric-reinforced glass/epoxy composite laminates,686

J. Compos. Mater. 47 (2013) 1583–1592.687
[122] F.A. Mehrabadi, The use of ECT and 6PBP tests to evaluate fracture behavior of adhesively bonded steel/epoxy joints under mode-III and mixed mode III/II,688

Appl. Adhesion Sci. 2 (2014) 1–15.689
[123] A. Szekrényes, Analysis of classical and first-order shear deformable cracked orthotropic plates, J. Compos. Mater. 48 (2014a) 1441–1457.690
[124] A. Szekrényes, Application of Reddy’s third-order theory to delaminated orthotropic composite plates, Eur. J. Mech. A/Solids 43 (2014b) 9–24.691
[125] A. Szekrényes, The system of exact kinematic conditions and application to delaminated first-order shear deformable composite plates, Int. J. Mech. Sci.692

77 (2013) 17–29.693
[126] A. Szekrényes, Antiplane-inplane shear mode delamination between two second-order shear deformable composite plates, Math. Mech. Solids (2014). (in694

press).695
[127] N. Saeedi, K. Sab, J.-F. Caron, Delaminated multilayered plates under uniaxial extension. Part I. Analytical analysis using a layerwise stress approach, Int. J.696

Solids Struct. 49 (2012) 3711–3726.697

Please cite this article as: A. Szekrényes, Semi-layerwise analysis of laminated plates with nonsingular delamination—The

theorem of autocontinuity, Applied Mathematical Modelling (2015), http://dx.doi.org/10.1016/j.apm.2015.06.037

http://dx.doi.org/10.1177/1081286515581871
http://dx.doi.org/10.1016/j.apm.2015.06.037


28 A. Szekrényes / Applied Mathematical Modelling xxx (2015) xxx–xxx

ARTICLE IN PRESS
JID: APM [m3Gsc;September 9, 2015;19:12]

[128] N. Saeedi, K. Sab, J.-F. Caron, Delaminated multilayered plates under uniaxial extension. Part II. Efficient layerwise mesh strategy for the prediction of698
delamination onset, Int. J. Solids Structures 49 (2012) 3727–3740.699

[129] N. Saeedi, K. Sab, J.-F. Caron, Cylindrical bending of multilayered plates with multi-delamination via a layerwise stress approach, Comp. Struct. 95 (2013)700
728–739.701

[130] N. Saeedi, K. Sab, J.-F. Caron, Stress analysis of long multilayered plates subjected to invariant loading: Analytical solutions by a layerwise stress model,702
Compos. Struct. 100 (2013) 307–322.703

[131] A. Kotousov, P. Lazzarin, F. Berto, L. Pook, Three-dimensional stress states at crack tip induced by shear and anti-plane loading, Eng. Fract. Mech. 108 (2013)704
65–74.705

[132] A. Kotousov, F. Berto, P. Lazzarin, F. Pegorin, Three dimensional finite element mixed fracture mode under anti-plane loading of a crack, Theoret. Appl.706
Fract. Mech. 62 (2012) 26–33.707

[133] N. Baddour, Second order shear deformation theory (SSDT) for free vibration analyis on a functionally graded quadrangle plate, in: A. Shahrjerdi and F.708
Mustapha (Eds.), Recent Advances in Vibration Analysis. Intech pp. 60–78.709

[134] P.C. Chou, N.J. Pagano, Elasticity – Tensor, Dyadic, and Engineering Approaches, D. Van Nostrand Company, Inc., Princeton, New Jersey, Toronto, London,710
1967.711

[135] S. Hosseini-Hashemi, M. Fadaee, H.R.D. Taher, Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear defor-712
mation, Appl. Math. Model. 35 (2011) 708–727.713

[136] H.-T. Thai, S.-E. Kim, Lévy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory, Appl. Math. Model. 36714
(2012) 3870–3882.715

[137] M. Bodaghi, A.R. Saidi, Lévy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order, Appl. Math.716
Model. 34 (2010) 3659–3673.717

[138] Y. Jianqiao, Laminated Composite Plates and Shells – 3D Modelling, Springer, London, Berlin, Heidelberg, New York, Hong Kong, Milan, Paris, Tokyo, 2003.718
[139] J. Bonhomme, A. Argüelles, M.A. Castrillo, J. Vina, Computational models for mode I composite fracture failure: the virtual crack closure technique versus719

the two-step extension method, Meccanica 45 (2010) 297304.720
[140] H.-T. Thai, T.P. Vo, A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates, Appl. Math. Model. 37721

(2013) 3269–3281.722
[141] G. Shi, A new simple third-order shear deformation theory of plates, Int. J. Solids Struct. 44 (2007) 4399–4417.723
[142] A. Alibeigloo, A.P. Zanoosi, Static analysis of rectangular nano-plate using three-dimensional theory of elasticity, Appl. Math. Model. 37 (2013) 7016–7026.724
[143] H.-T. Thai, D.-H. Choi, Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates, Appl. Math. Model. 37 (2013)725

8310–8323.726
[144] J. Mantari, A. Oktem, C.G. Soares, A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates, Int. J. Solids727

Struct. 49 (2012) 43–53.728
[145] R. Sahoo, B. Singh, A new shear deformation theory for the static analysis of laminated composite and sandwich plates, Int. J. Mech. Sci. 75 (2013) 324–336.729

Please cite this article as: A. Szekrényes, Semi-layerwise analysis of laminated plates with nonsingular delamination—The

theorem of autocontinuity, Applied Mathematical Modelling (2015), http://dx.doi.org/10.1016/j.apm.2015.06.037

http://dx.doi.org/10.1016/j.apm.2015.06.037

