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Abstract—Survivable routing methods have been thoroughly
investigated in the past decades in transport networks. However,
the proposed approaches suffered either from slow recovery time,
poor bandwidth utilization, high computational or operational
complexity, and could not really provide an alternative to the
widely deployed single edge failure resilient dedicated 1 + 1
protection approach. Diversity coding is a candidate to overcome
these difficulties with a relatively simple technique: dividing the
connection data into two parts, and adding some redundancy
at the source node. However, a missing link to make diversity
coding a real alternative to 1+1 in transport networks is finding
its minimum cost survivable routing, even in sparse topologies,
where previous approaches may fail. In this paper we propose
a polynomial-time algorithm with O(|V ||E| log |V |) complexity
for this routing problem. On the other hand, we show that the
same routing problem turns to be NP-hard as soon as we limit
the forwarding capabilities of some nodes and the capacities of
some links of the network.

Index Terms—survivable routing, diversity coding, fast recov-
ery, transport networks

I. INTRODUCTION

A survivable routing scheme in transport networks has three
utmost important requirements: low recovery time, simplicity
(i.e., low computational and operational complexity) and effi-
cient capacity allocation. But which one is the most important
for service providers, and what are they willing to sacrifice in
order to reach that? To answer this, we have to look what
is used in practice. In networks, the most commonly used
survivable routing scheme is the so called dedicated 1+1 path
protection, which sends the user data along two disjoint paths
(primary and backup). Although it consumes twice as much
capacity as the primary capacity, there are efficient algorithms
to calculate 1+ 1 routing (i.e., disjoint path-pair [1]), while it
provides instantaneous recovery from any single edge failure.

Although 1 + 1 is still the most commonly used pro-
tection scheme, in bandwidth utilization there is still room
for improvement. On the other hand, based on the previous
observation, simplicity and ultra fast recovery time seem to be
the most important features, and efficient capacity allocation
comes only after them. Several survivable routing schemes
were introduced [2], [3] in the past decades which could
significantly reduce the bandwidth utilization [3], [4], but
they sacrifice either the ultra fast recovery time, the low
computational complexity, or – most importantly – the simple
operation. Following this argument we show that with a

careful design we can keep these merits while near optimal
capacity allocation can be reached.

In transport networks, optimal capacity efficiency can be
achieved with in-network modification of data (called network
coding) [4]–[6] while low recovery time (i.e., < 40-50 ms)
is maintained. However, the application of complex network
coding operations sacrifices simplicity. On the other hand,
there are some simple special cases of coding which could
satisfy all three requirements in transport networks, e.g.,
diversity coding (DC) [7], which splits the data at the source
node into two parts A and B, and creates redundancy data
A ⊕ B, too (⊕ denotes the exclusive OR (XOR) operation
on the data), then sends these on three edge-disjoint paths.
Diversity coding can reduce the capacity consumption of 1+1
(from 2 to 1.5 unit), while its complexity and recovery time
are the same. On the other hand, this method is applicable only
in 3 edge-connected networks which is a crucial drawback.

Recently, the papers [8] and [9] made important steps to
remedy the connectivity problem of diversity coding, and
enable it to be an alternative of 1 + 1 in transport network
protection. They formulate the survivable routing problem of
1 + 1 and diversity coding more generally, while considering
the same routing scenario: single edge failure resilience [10],
while the connection data is divided into two parts at the
source node. Although they provide polynomial-time network
(and diversity) coding algorithms in a minimum cost sur-
vivable routing (called coding subgraph), the issue of find-
ing a minimum cost survivable routing is not addressed in
these works. However, this would be the last step towards
the practical implementation of a capacity efficient, simple
and low-complexity diversity coding based survivable routing
method with ultra-fast recovery time as a counterpart of 1+1
protection; which will be made in this paper.

Although the general versions of minimum cost survivable
routing have shown to be NP-complete [11], [12], surprisingly,
the computational complexity of optimal capacity allocation
for this practically relevant special case is an open question.
However, using the state-of-the-art results [9] it is known
that a minimum cost survivable routing with diversity coding
can be decomposed into three directed acyclic graphs (DAG),
which preserves one of the most important features of 1 + 1,
i.e., simplicity. Thus, in order to solve the optimal capacity
allocation of diversity coding, we formulate the minimum cost
survivable routing problem as finding three appropriate DAGs.ISBN 978-3-901882-68-5 c© 2015 IFIP



TABLE I
NOTATION LIST FOR THE SURVIVABLE ROUTING PROBLEM

Notations Description

G = (V,E, k, c)
directed graph with node set V , edge set E,
edge costs c(e) ∈ R+, capacities k(e) ∈ N

D = (s, t, d)
connection with source node s, target node t

with bandwidth d unit demand
survivable routing of a connection with node

R = (V R, ER, f) set V R ⊆ V , edge set ER ⊆ E,
and flow values ∀e ∈ ER : f(e) ≤ k(e)

directed multi-graph with edge set E∗, where
G∗ = (V,E∗, c) all edge in G = (V,E, k, c) are replaced by

k(e) parallel edges each with cost c(e)

R∗ = (V R∗
, ER∗

)
survivable routing of a connection in
G∗ = (V,E∗, c), which is a DAG

A,B
two parts in which the connection’s

data is decomposed

A⊕B
redundancy XOR data created at source s

from connection’s data parts
EA, EB , EA⊕B routing DAGs for A, B and A⊕B

We will demonstrate that with the help of this formulation
the problem is polynomial time solvable, which result makes
diversity coding an alternative to 1 + 1 in 2 edge-connected
networks as well.

The rest of the paper is organized as follows. In Section II
we formulate the minimum cost survivable routing problem
with diversity coding (SRDC), and reveal some structural
properties of the three DAGs, which will be used in the algo-
rithms. As the main contribution of the paper, in Section III a
polynomial-time algorithm with O(|V ||E| log |V |) complexity
is presented for the SRDC problem. In Section IV we show
that the SRDC problem is NP-hard with some bottleneck links
and with limited node capabilities. Finally, in Section V we
show some simulation results, which reveals some network
scenarios where SRDC can be a real alternative of 1 + 1
protection, and in Section VI we conclude the paper.

II. PROBLEM FORMULATION AND RELATED WORK

A. Survivable Routing

A transport network is a collection of routers, switches (re-
ferred to as nodes) and high bandwidth communication links
(referred to as edges) between them. It may be represented
by a directed graph G = (V,E, k, c) with node set V and
edge set E. Each e ∈ E edge has two attributes, namely its
capacity k(e) ∈ N, i.e., number of bandwidth units available
for data transmission, and its cost c(e) ∈ R+, which is defined
as the cost of using one unit of bandwidth along edge e. Given
a connection D = (s, t, d), with information source s ∈ V ,
with information sink t ∈ V , and the number of bandwidth
units d requested for data transmission.

Definition 1. We say that R = (V R, ER, f) is a survivable
routing of a connection D = (s, t, d) in G (where V R ⊆ V ,
ER ⊆ E, and ∀e ∈ ER : f(e) ≤ k(e)), if there is an s − t
flow of value F ≥ d in R, even if we delete any single edge
of R. On the other hand, a routing is vulnerable if it is not
survivable.

Note that, after the edge failure is identified any routing
method could be adopted and resend the flows on the intact
edges of a survivable routing R, clearly resulting in slow
recovery. However, several network coding theorems [4], [5],
[13] ensure that a sufficient amount of information reaches the
destination after a failure occurred without failure identifica-
tion; but for the price of complex in-network operations. We
will demonstrate that we can bring together these merits (i.e.,
fast recovery and simplicity) of survivable routing approaches
with the help of current research results on network coding [8]
and on diversity coding [9]. This is discussed in Section II-B.

We say that a survivable routing R is critical, if we can
not further decrease the flow value f(e) along any edge in
e ∈ ER without making routing R vulnerable. Our goal is to
find a survivable routing R for connection D with minimum
bandwidth cost from the possible set of survivable routings
RD, formally:

min
R∈RD

∑
e∈ER

c(e) · f(e). (1)

Claim 1. The minimum cost survivable routing in terms of
Eq. (1) is critical.

This optimization problem has been investigated for decades
in the literature, and it was shown that finding the optimal
survivable routing for a connection with d > 2 data parts,
or finding the optimal survivable routing for multiple edge
failures are NP-complete problems [11], [12], [14]. However,
in current transport networks single edge failures are the most
relevant failure scenarios [10], while dividing user data into
more than two parts is impractical from an operational point of
view. Surprisingly, the complexity of this practically relevant
special case of single edge failure minimum cost survivable
routing when d = 2 is an open question.

Thus, in this paper we will investigate the survivable routing
problem when d = 2, i.e., the connection can be routed as
two parts of equal size, denoted by A and B (for the sake of
simplicity, the problem can be scaled to have both with rate 1).
This restriction is motivated by the fact that the minimum cost
routing solution in most real word networks can be reached
by dividing the input flow into 2 subflows [2]. Furthermore,
assuming two data parts a survivable routing solution preserves
the simplicity of 1 + 1 protection.

For the sake of easier presentation of our results, the auxil-
iary graph G∗ = (V,E∗, c) is introduced. The node set of G∗

is the same as the node set of G, and each e ∈ E is replaced by
k(e) (parallel) edges which have the same tail and head node
as e, each with cost c(e). Note that single edge failure e in G
corresponds to the failure of all k(e) edges in G∗. A critical
survivable routing R∗ = (V R∗

, ER∗
) forms a directed acyclic

graph (DAG) in G∗ (discussed in Section II-B), representing
the routing of the connection, where V R∗ ⊆ V , ER∗ ⊆ E∗,
while the objective function in Eq. (1) can be rewritten as:

min
∑

e∈ER∗

c(e) . (2)

The notation is summarized in Table I.
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Fig. 1. A survivable routing R∗ = (V R∗
, ER∗

) for connection D = (s, t, 2)
with the corresponding routing DAGs EA, EB and EA⊕B .

B. Diversity Coding

In survivable routing besides the theoretically good prop-
erties like low bandwidth utilization and fast recovery, from
a practical point of view simplicity and easy deployment are
essential as well. Thus, complex data processing at core nodes
(i.e., other than s and t) like network coding is not desired.
Thus, all complex operations have to be moved to the edge
of the network (i.e., to nodes s and t). We will refer to the
survivable routing approaches which satisfy this property as
diversity coding based methods, or simply diversity coding.
Luckily, for single edge failures and two data parts, the range
of survivable routings providing this simplicity is quite wide:

Theorem 1. [9, Theorem 2] Suppose that survivable routing
R is critical. Then there are disjoint edge sets EA, EB , EA⊕B
of R∗, called routing DAGs, such that for an arbitrary edge
e ∈ ER, after removing the corresponding edge(s) from ER∗

at least two of the routing DAGs connect s to t.

For example, in “traditional” diversity coding, for a connec-
tion D = (s, t, 2) the redundancy data A⊕B is calculated at
the source s, and A, B and A⊕B is sent along three disjoint
end-to-end paths between s and t. The edge sets used by
the disjoint paths are denoted as EA, EB , EA⊕B , respectively.
Also 1 + 1 protection could be treated as an implementation
of diversity coding: A and B are sent along two disjoint paths
EA and EB , while the redundancy data A⊕ B is sent along
both paths. Note that both of these routings are survivable.

We will refer to routings satisfying Theorem 1 as Surviv-
able Routing with Diversity Coding (SRDC) throughout this
paper. Note that with the help of diversity coding the three
routing DAGs can be operated independently from each other
(EA ∪EB ∪EA⊕B = ER∗

, EA ∩EB = ∅, EA ∩EA⊕B = ∅,
EB∩EA⊕B = ∅), i.e., they carry the same data part regardless
of the failure, while involved operations are performed only at
the end nodes of the connection. However, this general imple-
mentation of diversity coding requires splitting and merging
of the paths at the core nodes. Let δ−(v) and δ+(v) denote
the in-degree and the out-degree of a node, respectively.

Definition 2. Node p ∈ V R∗
is called splitter, if δ−(p) = 1

and δ+(p) = 2, i.e., it receives data on a single edge, while
forwards the same copy on two outgoing edges. Similarly, node
m ∈ V R∗

is called merger, if δ−(m) = 2 and δ+(m) = 1,
i.e., it receives the same data on two incoming edges, while
forwards one of them (or upon failure the intact one) on its
single outgoing edge. The set of available splitters and mergers

are denoted as P ⊆ V and M⊆ V , respectively.

We believe that splitting and merging operations are simple
enough in the sense that every node in the network can perform
them without any complicated software update. Furthermore,
in current networking paradigm, such as Software Defined
Networking (SDN), a splitter can be easily deployed by
applying simple flow rules, while a merger functionality can
be implemented as a simple network function as well [14].

In [8], [9] it was shown that a critical survivable routing
has a well defined structure (created by a maximal series of
s− t cuts or by a block decomposition). In a critical solution,
we have an alternating series of splitter and merger nodes (if
there are any at all). An example of a survivable routing with
diversity coding is presented in Figure 1. For routing DAG
EA⊕B node p is a splitter and node m is a merger, while
for routing DAG EA node v and node t act as a splitter and
merger, respectively.

Definition 3. Nodes p and m are splitting and merging node-
pair (or pm-pair shortly) of a survivable routing R∗ (given
with its routing DAGs EA, EB , EA⊕B), if there exists a routing
DAG, without loss of generality, EA, which splits at node p
and merges back at m. The edge set of the corresponding
disjoint path-pair between p and m in the survivable routing
is denoted by ER∗

p,m, and referred to as an island in DAG EA.

Note that, there always exists an edge disjoint pair of paths
between a splitter and its corresponding merger in a critical
survivable routing R∗ [8], [9].

Claim 2. Each routing DAG in a critical solution consists
of a series of paths and islands from s to t. Furthermore, a
pm-pair could be part of at most one routing DAG [8], [9].

For example, in “traditional” diversity coding all of
EA, EB , EA⊕B are s → t paths. In Figure 1 EA consists
of an s → v path and a v → t island, EB is an s → t path,
while EA⊕B consists of a path s→ p, an island p→ m, and a
path m→ t. The algorithms to find the optimal routing DAGs
with their computational complexity are shown in Table II.
Note that, diversity coding corresponds to the case when only
the source and destination node can be a pm-pair, which can
be solved by Suurballe’s algorithm1. We are interested in the
general cases as well, when more pm-pairs exists till the other
extreme, i.e., all node-pairs can act as a pm-pair. In the rest of
the paper, we introduce these capacity allocation approaches,
and conduct simulations to demonstrate their benefits.

III. SURVIVABLE ROUTING WITH INFINITE CAPACITIES

In this section we show that the minimum cost survivable
routing problem with diversity coding is solvable in poly-
nomial time, if the edge capacities k(e) are “infinite”, i.e.,
there are no bottleneck links in the network. Note that for
the demand D = (s, t, 2) in survivable routing with diversity
coding (SRDC) we are searching three routing DAGs, each

1Note that the augmenting path technique of Suurballe’s algorithm can be
used to find 3 edge-disjoint paths.



TABLE II
OPTIMAL SURVIVABLE ROUTING ALGORITHMS PROPOSED IN THIS PAPER

(INFINITE: ∀e ∈ E : k(e) = 2, CONSTRAINED: ∃e ∈ E : k(e) = 1)

Infinite Capacities Capacity Constrained
P = {s}, Suurballe Suurballe
M = {t} O(|V | log2 |V |+ |E|) O(|V | log2 |V |+ |E|)
P ⊂ V , - -
M⊂ V NP-complete
P = V , SRDC-I Integer Linear Program
M = V O(|V ||E| log1+|E|/|V | |V |) -

forwarding one unit of capacity (either A, B or A⊕B). Thus,
in a critical survivable routing one would think that infinite
edge capacity means ∀e ∈ E : k(e) = 3, i.e., the case when all
DAGs may use the same edge. However, it was shown in [9]
(as a consequence of Theorem 1) that with the application
of diversity coding (called resilient flow decomposition) in
a critical survivable routing for a connection with d = 2
the flow values are ∀e ∈ ER : f(e) ≤ 2. Thus, without
loss of generality, we can restrict the available capacities to
k(e) = 2 for every edge e, without ruling out the minimum
cost survivable routing (which is critical, obviously). Hence,
in SRDC infinite edge capacities mean ∀e ∈ E : k(e) = 2
(instead of 3). Further note that, in this case the auxiliary
graph G∗ has 2|E| edges, as each edge of G is duplicated.

Claim 3. Let R∗ be a critical survivable routing, decomposed
into 3 routing DAGs EA, EB , and EA⊕B according to
Theorem 1 and let ER∗

p,m be an island for a given pm-pair
in EA. Let EGp,m denote an arbitrary edge-disjoint path-pair
between nodes p and m in G, with the corresponding edges
EG∗

p,m in G∗. If the network has infinite edge capacities, the
routing R′ = R∗ \ ER∗

p,m ∪ EG
∗

p,m is also survivable.

Proof: Note that in R′ = R∗ \ ER∗

p,m ∪ EG
∗

p,m the routing
DAG EA has island EG∗

p,m instead of island ER∗

p,m. In order to
demonstrate that R′ is survivable against single edge failures
of G, we have to show that at least two routing DAGs connect
s to t upon these failures. For an edge failure not in EG∗

p,m,
DAGs that remained connected in R∗ will be also connected
in R′. If the failed edge e ∈ EG∗

p,m, then we know that in R∗

there were two routing DAGs which connected s to t. The
only DAG that changed is EA, but note that it also remains
connected, because the failure is in an island. This proves the
claim.

Corollary 1. Let R∗ be a minimum cost survivable routing
and ER∗

p,m an island for a given pm-pair. If the network has
infinite edge capacities, then ER∗

p,m is a minimum cost disjoint
path-pair between nodes p and m in G.

Such a pair can be calculated with Suurballe’s algorithm
in O(|E| + |V | log2 |V |) steps [1]. Note that EG∗

p,m survives a
single edge failure, as it corresponds to a disjoint path-pair in
G. Thus, we can substitute it with a fail-safe edge between
p and m in EA. This gives the basic idea for the algorithm,
searching for a survivable routing in a tractable form.

Claim 4. Let R∗ be a critical survivable routing, decomposed
into 3 routing DAGs EA, EB , and EA⊕B . Replacing every
island EG∗

p,m with an edge (p,m) results in three edge-disjoint
st-paths.

Now, we are ready to present the main result of the paper.

Theorem 2. If the network has infinite edge capacities on
all edges, the minimum cost survivable routing R∗ can be
computed in O(|V ||E| log1+|E|/|V | |V |) steps.

Proof: Let cost(u, v) denote the sum of the edge costs
of a minimum cost disjoint path-pair between nodes u and
v in G. We construct the following auxiliary (multi-)graph
Ĝ = (V, Ê, ĉ). The node set of Ĝ is the same as the node
set of G, and the edges of Ĝ are the edges of G with cost
ĉ(e) = c(e) and we add an edge en = (u, v) for every pair of
distinct node-pairs with cost ĉ(en) = cost(u, v). We refer to
the newly added edges as virtual edges.

Claim 5. Let PA, PB , PA⊕B be three edge-disjoint st-paths
in Ĝ. By replacing every virtual edge (p,m) with an island
EG∗

p,m of minimum cost we get DAGs EA, EB , and EA⊕B in
G∗ that form a survivable routing. Moreover, the cost of these
DAGs in G∗ equals the cost of the paths in Ĝ, and vice versa.

Proof: Equality of costs is straightforward. Since
PA, PB , PA⊕B are edge-disjoint in Ĝ, every edge e in E is
contained in at most one path as a non-virtual edge, and may
be contained in other island(s) used for substituting virtual
edges. In case of the failure of e, the latter ones remain
connected, so at most one of the DAGs can be disconnected,
which proves the claim.

Since a minimum cost survivable routing is critical, from
Claim 2 and Claim 4 we get that it corresponds to three edge-
disjoint st-paths in Ĝ. In our algorithm, we search for 3 edge-
disjoint paths with minimum bandwidth cost in Ĝ, which in
turn corresponds to three DAGs in G∗. According to Claim 5,
the obtained routing is survivable, and the cost of the minimum
cost 3 edge-disjoint paths equals to the cost of the minimum
cost survivable routing R∗. Finding minimum cost 3 edge-
disjoint paths could be done in O(|E|).

In the construction, finding the pair of shortest edge-
disjoint path from a single source to every destination is
O(|E| log1+|E|/|V | |V |) time [1], which should be launched
for every source node, resulting O(|V ||E| log1+|E|/|V | |V |)
steps, which proves the theorem.

The proof is constructive, and gives the polynomial-time
algorithm to find an optimal survivable routing, detailed in
Algorithm 1. A natural question is why the algorithm cannot
cope with networks with some edge capacities k(e) = 1.
The problem is that in such a capacity constrained case EGp,m
depends on the route of the other two routing DAGs, i.e.,
another routing DAG may use the single available capacity
unit along an edge e ∈ EGp,m of the minimum cost disjoint
path-pair. For example, Figure 2(a) shows a network with an
optimal survivable routing of cost 20. Note that, the virtual
edge en = (v1, t) has cost ĉ(en) = 5 because cost(v1, t) is
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Fig. 2. An example network G∗ = (V,E∗, c) with capacity constraint on the edges (remember from the construction of G∗ that k(e) = 2 edges in G are
parallel edges in G∗), where c(e) = 1, or written next to the edge otherwise. The edges of the routing DAGs EA, EB and EA⊕B are denoted as dashed,
dotted and densely dotted lines, respectively. Here Algorithm 1 fails for connection D = (s, t, 2).

Algorithm 1: Survivable Routing with Diversity Coding -
Infinite Capacities (SRDC-I)
Input: G∗ = (V,E∗, c), D = (s, t, 2)
Result: R∗ = (V R∗

, ER∗
), in specific, routing DAGs

EA, EB , and EA⊕B
1 begin
2 Define cost ĉ : E → R+ and edge set Ê = ∅, Es = ∅ ;

// Create graph Ĝ = (V, Ê, ĉ).
3 Add ∀e ∈ E to Ê with ĉ(e) = c(e);
4 for u ∈ V : do
5 Find the pair of shortest edge-disjoint path from

source u to all other nodes v ∈ V, u 6= v in G with
Suurballe’s algorithm (denote their cost with
cost(u, v));

6 Add virtual edge en = (u, v) to Ê with
ĉ(en) = cost(u, v);

// Find 3 edge-disjoint paths in Ĝ.
7 Find minimum cost 3 edge-disjoint paths between s

and t in Ĝ with Suurballe’s algorithm;
8 Add the traversed edges (i.e., their corresponding edges

in G∗) to Es;
9 for e = (u, v) ∈ Es do

10 if e is a virtual edge then
11 Replace virtual edge e with minimum cost island

EG∗

u,v in Es;

// Save optimal survivable routing R∗.
12 for e = (u, v) ∈ Es do
13 Add nodes u, v to V R∗

(if u, v /∈ V R∗
);

14 Add edge e to ER∗
;

the cost of the shortest path-pair v1 → v2 → v3 → t and
v1 → v5 → t is 3+2 = 5. The minimum cost 3 edge-disjoint
paths in Ĝ are shown in Figure 2(b). Clearly, this is not a valid
solution in the capacity constrained case, as edge e = (v2, v3)
has only k(e) = 1 available capacity in G, while two routing
DAGs should use it in the optimal solution.

Another direction is to find the minimum cost 3 edge-
disjoint paths with Suurballe’s algorithm using the augmenting
path technique. Applying this technique to SRDC, the virtual

edges are only traversed by the 3rd augmenting path, only
after 2 edge-disjoint paths were already found. A natural
extension of Algorithm 1 may be to run the disjoint path
search for each virtual edge (e.g., to (v1, t)) as a disjoint
path-pair between nodes v1 and t. During this search the
reverse edges of the already found 2 edge-disjoint paths can
be used (shown in Figure 2(c)) similarly as in Suurballe’s
algorithm, and additionally it can use the reverse edges of the
third edge-disjoint path’s segment between s and v1 (which
is s → v7 → v2 → v3 → v6 → v5 → v1). This could
result in an augmenting path between splitter v1 and merger
t of v1 → v5 → v6 → v3 → t. In this case the second
augmenting path between splitter v1 and merger t would be
v1 → v4 → v5 → t. This in fact results in a vulnerable routing
shown in Figure 2(d) with cost 16. Thus, Algorithm 1 is not
applicable to the capacity constrained case.

IV. SURVIVABLE ROUTING WITH CAPACITY CONSTRAINTS

In this section, we will investigate the capacity constrained
scenario, i.e., when there are some bottleneck links with
k(e) = 1. Although a polynomial time algorithm exists for
the infinite capacity case (Section III), the survivable routing
with diversity coding (SRDC) problem is more complex in
this scenario. In Section IV-A we present an Integer Linear
Program (ILP) for finding the three routing DAGs for SRDC,
while Section IV-B presents our efficient heuristic solution for
the problem when all nodes can act as a pm-pair. Furthermore,
we show that if the splitter and merger nodes are restricted
in the topology from e.g., technological considerations, the
SRDC problem turns to be NP-hard (Section IV-C).

A. Integer Linear Program for Minimum Cost SRDC

In this section, we present an ILP to obtain an optimal
survivable routing R in terms of bandwidth cost. The ILP
formulation provides the three routing DAGs for SRDC.

To do so, we need to to introduce the so called reduced

capacity function [8]: k′(e) =


1.5 if k(e) ≥ 2

1 if k(e) = 1.

0 otherwise



Theorem 3. In [8, Theorem 2] the authors show that a
survivable routing exists in a given graph G = (V,E, k, c) if
and only if there is a flow of value three in G = (V,E, k′, c).

Theorem 3 will be used both in our ILP formulation and in
the heuristic approach described in Section IV-B. Note that,
given a routing DAG EA in a critical survivable routing, a
function xA which is half on the edges of an island and 1 on
all other (path) edges in EA, forms an s− t flow of value 1,
according to Claim 2.

Armed with this fact, we investigate the benefits which
diversity coding can provide for survivable routing. Our goal
is to obtain the (critical) flow values f(e) in the input graph
G = (V,E, k, c) which minimize the bandwidth cost in terms
of Equation 1 for the connection D = (s, t, 2). The three
flows are denoted as w ∈ {A,B,A⊕B} = W , respectively,
with corresponding (real) flow variables xw(e) and indicator
variables fw(e). Based on Theorem 3 the reduced capacity
values k′(e) ensure that the failure of an arbitrary edge e
disconnects at most one routing DAG, thus, at least two routing
DAGs remain which connect s and t, i.e., the data can be
decoded at the destination. Our objective is to minimize the
bandwidth cost of the SRDC problem in terms of Equation 1:

min
∑
e∈E

c(e) · f(e).

The following constraints are required:

∀w ∈ W,∀i ∈ V :

∑
(i,j)∈E

xw(i, j)−
∑

(j,i)∈E

xw(j, i) =

 1 , if i = s
−1 , if i = t
0 , otherwise

,

(3)
∀e ∈ E:

∑
w∈W

xw(e) ≤ k′(e), (4)

∀w ∈ W, ∀e ∈ E: xw(e) ≤ fw(e), (5)

∀e ∈ E:
∑
w∈W

fw(e) ≤ f(e) ≤ k(e), (6)

∀w ∈ W, ∀e ∈ E: 0 ≤ xw(e) ≤ 1, (7)

∀w ∈ W, ∀e ∈ E: 0 ≤ fw(e) are integer variables. (8)

The constraint in Equation (3) formulates the flow conserva-
tion for each routing DAG w. Constraint (4) sets the maximal
flow value based on the reduced capacity function, while
Constraint (5) sets the indicator variables fw(e) of edge usage
for the routing DAGs in G. Constraint (6) sets the flow value
in G = (V,E, k, c), i.e., if edge e was used in an arbitrary
routing DAG w, we have to include it in the final solution
with value f(e) =

∑
W fw(e). Constraints (7)-(8) sets the

bounds for the flow variables, and sets the integer constraint
for the indicator variables fw(e). Note that the fw(e) variables
correspond to the edge set w in the solution, i.e., provide the
three end-to-end DAGs. Since xA+xB+xA⊕B gives an s− t
flow of value 3 in G, from Theorem 3 we get that f is indeed
survivable.

B. Heuristic Approach for Finding the Optimal Coding Graph

As the ILP in Section IV-A is NP-hard, the running time of
its solutions can be really long, especially in large networks.
In this section, we present a fast heuristic approach for finding
a survivable routing in the capacity constrained case.

Algorithm 2: Survivable Routing with Diversity Coding -
Capacity Constrained (SRDC-C)

Input: G = (V,E, k, c), D = (s, t, 2), α
Result: R = (V R, ER, f)

1 begin
2 Define capacity k′, k′′ : E → R+, cost c′ : E → R+

and edge sets En = ∅; E′ = ∅; Es = ∅;
// Create graph G′ = (V,E′, k′, c′).

3 Add e ∈ E to E′ with k′(e) = min {1, k(e)} and
c′(e) = c(e);

4 for e = (u, v) ∈ E : 2 ≤ k(e) do
5 Add extra edge en = (u, v) to En with k′(en) := 0.5

and c′(en) := c(e) · α;
6 E′ := E′ ∪ En;

// Phase 1: Find flow in
G′ = (V,E′, k′, c′).

7 Find a minimum cost s− t flow f ′ of value 3 in G′
with respect to the reduced capacity function k′;

8 for e = (u, v) ∈ E do
9 Set k′′(e) := 0;

10 Set en = (u, v) ∈ En : k′′(en) := 0;
11 if 0 < f ′(e) then
12 if en = (u, v) ∈ En : 0 < f ′(en) then
13 Add edge e to Es and set k′′(e) := 1;

14 for e1 = (u1, v1), e2 = (u2, v2) ∈ Es, e
1 6= e2 do

15 if no pair of edge-disjoint s− t paths in G \ (e1 ∪ e2)
then

16 e1n = (u1, v1), e2n = (u2, v2) ∈ En : k′′(e1n) = 0.5;
k′′(e2n) = 0.5;

// Phase 2: Find flow in
G′′ = (V,E′, k′′, c′).

17 Find a minimum cost s− t flow f ′′ of value 3 in G′′
with respect to the capacity function k′′;
// Save survivable routing R.

18 for e = (u, v) ∈ E : 0 < f ′′(e) do
19 Add node u, v to V R (if u, v /∈ V R);
20 Add edge e to ER;
21 Set flow value f(e) to 2 if

en = (u, v) ∈ En : 0 < f ′′(en), and to 1 otherwise;

The detailed description is given in Algorithm 2. The input
of the algorithm is a graph G = (V,E, k, c) and the connection
request D = (s, t, 2). The output is the survivable routing
R = (V R, ER, f). In Steps (4)-(6) the auxiliary graph G′ =
(V,E′, k′, c′) is created using the reduced capacities (k′(e) =
min {1, k(e)}). In the transformation, the e ∈ E edges of G
are added to E′ with their original cost c(e). Based on its
capacity k(e) of e ∈ E, we add a parallel edge en = (u, v)
(called extra edge) to E′ if 2 ≤ k(e) with reduced capacity
k′(en) = 0.5 and with cost c′(en) = c(e) · α.

The main idea of the algorithm is to find a minimum



cost s − t flow with value of 3 in the reduced capacity
graph G′ = (V,E′, k′, c′) in Steps (7)-(13)2, in such way
that “creating islands” (i.e., using the extra edge en with
k′(en) = 0.5 capacity) is penalized via a scaling factor (i.e.,
the extra edges have a higher cost c′(en) = c(e) · α, α ≥ 1).

In order to avoid “false” island creation (resulting from
an imprecise selection of α), based on the results f ′(e) of
the first phase, we prepare the input of the second phase of
Algorithm 2. First, we initialize the reduced capacity for the
next stage ∀e ∈ E : k′′(e) = 0. We create an edge set Es, so
that the original edge e = (u, v) is in Es, if both e = (u, v)
and the corresponding extra edge en = (u, v) is used in the
solution of the minimum cost flow, in other words if 0 < f ′(e)
and en = (u, v) ∈ En : 0 < f ′(en). Additionally, we set the
capacity of all used original edges (e = (u, v) ∈ Es : 0 <
f ′(e)) to k′′(e) = 1. In Iteration (14)-(16) we check for every
edge-pair e1 = (u1, v1), e2 = (u2, v2) ∈ Es, e

1 6= e2, whether
there are two edge-disjoint s−t paths in G\(e1∪e2) or not. If
there is no such flow, then we consider the corresponding extra
edges as potential islands in the survivable routing, and we
set their capacity values to k′′(e1n) = 0.5 and k′′(e2n) = 0.5,
respectively. Note that, the cost c′(e) remains the same.

In Phase 2 in Step (17), we search again for a minimum
cost flow with value of 3 between s and t, now in graph
G′′ = (V,E′, k′′, c′). Finally, the flow values f ′′(e) of the
solution give the survivable routing R. Hence, in Steps (18)-
(21) the survivable routing is saved in a way that if both e =
(u, v) and en = (u, v) were used in the solution (f ′′(e) > 0
and f ′′(en) > 0), then we set f(e) = 2. If f ′′(e) > 0 and
f ′′(en) = 0, then f(e) = 1, and else f(e) = 0, which gives
R = (V R, ER, f). The routing DAGs in R can be constructed
as shown in [9].

Selection of Scaling Factor α: We have seen that choosing a
proper α for a network is essential. For this purpose, intuitively
we used the ratio α = |E|

|V | , which is corresponding to the
density (to be specific, it is half of the average nodal degree)
of the network. In a denser network it is more likely to have
3 edge-disjoint paths with a relatively short third path, which
might be the optimal routing DAGs. Therefore, the cost of
the extra edge is relatively high (α is high) in order to avoid
creation of islands. Meanwhile in sparse networks, it is more
likely that the third path (if it exists at all) is really long, and
not beneficial to use. Note that, if any of the edges e ∈ E′

is used (f(e) > 0), we have to reserve f(e) = 1 flow on
its corresponding edge in G (despite the fact that we used
only 0.5 in the reduced capacity graph G′), as the flow values
of the routing DAGs are integers in the optimal survivable
routing R. Note that, theoretically this could result in a higher
capacity consumption than 1 + 1 for some connections in
special topologies. However, as it is shown in Section V, in
real-like networks with such a carefully chosen α it performs
much better than 1 + 1.

2Note that based on [8, Theorem 2] this is equivalent with finding a
survivable routing in G = (V,E, k, c).
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Fig. 3. The reduction of 2-DPP to the survivable routing problem (graph
G∗ = (V,E∗, c) is shown).

C. Finding an SRDC in Directed Graphs with Restricted pm-
Pairs is NP-Hard

Here, we show that if from technological considerations not
all nodes can perform splitting and merging, the survivable
routing problem turns to be NP-hard. In our proof we will
use the well-known 2-Disjoint Path Problem (2-DPP), that has
been proven to be NP-complete, both for the edge- and node-
disjoint case by Fortune et al. [15].

Definition 4. 2-Disjoint Path Problem (2-DPP)
Input: Directed graph G0 = (V0, E0) and four distinct nodes
s1, s2, t1, t2 ∈ V0.
Question: Is there an edge-disjoint path-pair P1 : s1  t1
and P2 : s2  t2 in G0?

Theorem 4. It is NP-complete to decide the existence of an
SRDC in a directed graph G = (V,E, k, c) if the candidate
splitter (P ⊂ V ) and merger (M ⊂ V ) nodes are restricted
to a given subset of the nodes.

Proof: First, we give a polynomial-time reduction of the
2-DPP problem to our survivable routing problem. For this,
we add six new nodes s, t, a, b, c, and d to G0 and define the
network G = (V,E, k, c) as follows:

V = V0 ∪ {s, t, a, b, c, d},
E = E0 ∪ {(s, s1), (s, a), (s, b), (a, s2),

(a, c), (b, d), (t1, c), (t2, d), (c, t), (d, t)},
k(e) = 2 if e ∈ {(c, t), (d, t)}; and 1 otherwise.

Besides the input graph, it is given, that P = {a} can only be
a splitter node, and M = {t} can only be a merger. See also
Figure 3 for the transformation of G0 to G∗ = (V,E∗, c).
G∗ was constructed in polynomial time. Therefore, it is

sufficient to show that there exist two directed disjoint paths
between nodes s1  t1 and s2  t2 if and only if there exist
a survivable routing R∗ for G∗.
⇒ If there exist two directed edge-disjoint paths between

nodes s1  t1 and s2  t2, then the flowing three routing
DAGs give a survivable routing:
EA: is the path s→ b→ d→ t,
EB : contains path s→ s1  t1 → c→ t, and
EA⊕B :consists of path s → a and island a → t between

pm-pair a and t with edge-disjoint paths a→ s2 →
t2 → d→ t and a→ c→ t.



⇐ The proof is by contradiction. Assume there is an SRDC
in G∗, but there is no directed edge-disjoint path-pair between
nodes s1  t1 and s2  t2. Note that (c, t) and (d, t) forms
a 2 link cut in G, while (s, s1), (s, a) and (s, b) is a 3 edge
cut, thus there should be a splitter node between these cuts;
however a is the only node that can be a splitter. Thus a is
a splitter node and two paths are traversing through s1 and
s2. As the routing is survivable, two paths have to go from
s1 and s2 to t1and t2 in G∗. Because every edge in G0 has
k(e) = 1, the two paths can not use the same (multi-)edge in
G∗; thus, these two paths are edge-disjoint in G0. However,
owing to the indirect assumption, these are not 2 edge-disjoint
paths s1  t1 and s2  t2. Therefore, these edge-disjoint
paths could be s1  t2 and s2  t1 only. In this case edge
(c, t) is traversed by two copies of the same data, one through
a → c → t and an other through a → s2  t1 → c → t.
Thus the routing is vulnerable of edge failure (d, t) because
after deleting this edge there will be a cut of capacity 1 in the
SRDC (consisting of edge (s, a)).

V. EXPERIMENTAL RESULTS

In this section we investigate the bandwidth cost in terms of
Eq. (1) of the different survivable routing approaches through
simulations. We compare our methods to the theoretical lower
bound on the bandwidth cost of survivable routing methods
(assuming the connection data can be split into arbitrary
many parts), called “lower bound” [14] on the charts. We
also compare our algorithms to the bandwidth cost of the
most common deployed survivable routing scheme, the 1 + 1
protection, which is the 2-approximation of the survivable
routing problem [12] with assuming two data parts3. In the
charts SRDC-I refers to Algorithm 1, SRDC-C refers to
Algorithm 2, and ILP refers to the Integer Linear Program
presented in Section IV-A. We investigated random generated
real-like planar G = (V,E, k, c) topologies with different
sizes and densities, and some real world transport network
topologies, too. The edge capacities were set high enough
to ensure “infinite” edge capacities for all demands. This is
important in the fair comparison of the bandwidth cost of
different methods as we can get rid of blocking because of
lack of resources. Note that, traffic demands D = (s, t, 2)
were generated between all s− t pairs, and all the arcs have
unit cost (∀e ∈ E : c(e) = 1).

A. Gap to the Theoretical Lower Bound

The simulation results in sparse networks are presented in
Figure 4a. This is an excellent example why 1 + 1 is still the
most often deployed protection scheme, as the gap between
the bandwidth cost of 1 + 1 and the theoretical lower bound
for survivable routing is small. However, our SRDC methods
outperform 1 + 1 even in this scenario, when 1 + 1 performs
well. In fact, the SRDC-I and the ILP reach the theoretical
lower bound, as optimal survivable routing can be reached
with dividing connection data into two parts.

3Note that the 2-approximation algorithm for feasible coding graphs pre-
sented in [8] gives 1 + 1 for most practical scenarios.

Figure 4b shows the simulation results in maximal planar
graphs. It can be observed that all of our methods approaching
the theoretical lower bound. However, in these topologies
the theoretical lower bound requires that connection data is
divided into more than two data parts, which is not always
feasible from a practical point of view. The gap between 1+1
and our SRDC methods is significant, especially if we take
into consideration the fact, that the bandwidth cost reduction
of 1 unit means that every SRDC connection in the network
uses one less bandwidth unit than 1 + 1.

B. Scalability in Terms of Network Size
In Figure 4c and in Figure 4d, we investigated the perfor-

mance of SRDC in larger networks. One can observe that the
performance gap between the minimum cost SRDC-I solution
and 1 + 1 grows as the network size increases, which clearly
shows the benefit of SRDC, while the simplicity of 1 + 1
is maintained. Furthermore, the SRDC-C heuristic method
outperforms 1 + 1 in both scenarios. In specific, it performs
close to the minimum cost SRDC-I in maximal planar graphs,
while its running time is 10 times faster. This is because the
maximal planar graphs are relatively dense networks. Thus,
there are a number of disjoint paths between s and t, which
likely results 3 edge-disjoint paths for both algorithms.

C. Performance Analysis in Real-World Topologies
Finally, in this section we investigated the performance of

our methods in real network topologies (SNDLib [16] and
Rocketfuel [17]). In this scenario the edge capacities are
constrained, i.e., we identified a certain number of edges which
are most prone to congestion based on their betweenness
centrality value. We considered these edges as bottlenecks in
the simulations (i.e., only a single capacity unit k(e) = 1 is
available on these edges), thus, 1+ 1 and SRDC-I cannot use
them in the survivable routing. One can observe in Figure 5
that as the number of bottleneck edges increases, the average
bandwidth cost of 1 + 1 and SRDC-I increases dramatically,
while the average bandwidth cost of SRDC-C scales much
better in terms of the number of bottleneck links.

VI. CONCLUSIONS

Survivable routing with diversity coding (SRDC) is a novel,
easily deployable routing scheme in transport networks which
keeps the ultra-fast recovery and simplicity (both in com-
putation and operation) of 1 + 1. Furthermore, SRDC can
reduce the bandwidth cost of 1+1 in most network scenarios
with 1 unit per connection, which could lead to a significant
capacity saving in transport networks with excessive number
of connections. This requires only some minor modification
in the current operation of the widely deployed dedicated
1 + 1 protection from the service providers. As a missing
link of the practical implementation of SRDC, we investigated
its optimal capacity allocation. We showed that a minimum
cost routing for SRDC can be computed in polynomial time
without capacity constraints on the links, while the problem
turns to be complex when both bottleneck links and limited
node capabilities coexist in the network.
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