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Abstract

Objectives: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is

one of the most commonly used antidepressant drugs in clinical practice for the

treatment of major depressive disorder (MDD). Despite being more potent than its

predecessors, similarly to them, the therapeutical effect of VLX is visible only 3–4

weeks after the beginning of treatment. Furthermore, recent papers show that

antidepressants, including also VLX, enhance the motor recovery after stroke even

in non depressed persons. In the present, transcriptomic-based study we looked for

changes in gene expressions after a long-term VLX administration.

Methods: Osmotic minipumps were implanted subcutaneously into Dark Agouti

rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal

regions of the cerebral cortex were isolated and analyzed using Illumina bead

arrays to detect genes showing significant chances in expression. Gene set

enrichment analysis was performed to identify specific regulatory networks

significantly affected by long term VLX treatment.

Results: Chronic VLX administration may have an effect on neurotransmitter

release via the regulation of genes involved in vesicular exocytosis and receptor

endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously,

VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2,
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Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity

(Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes

(Clstn2). Interestingly, VLX increased the expression of genes involved in

mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration

also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4

and Enpp1), a mechanism that has recently been linked to neuroprotection,

learning and memory.

Conclusions: Our results strongly suggest that chronic VLX treatment improves

functional reorganization and brain plasticity by influencing gene expression in

regulatory networks of motor cortical areas. These results are consonant with the

synaptic (network) hypothesis of depression and antidepressant-induced motor

recovery after stroke.

Introduction

Major depressive disorder is a highly complex disease characterized by several

symptoms including depressed mood, diminished interest or tiredness and

negative thoughts. [1]. According to earlier views, the main cause of MDD is the

depletion of neurotransmitters serotonin (5-hydroxytryptamine, 5-HT) and

noradrenaline (NA). This monoamine hypothesis was based on empirical

observation about the mood-related effect of compounds used in non-mental

disorders but capable to modify the levels of monoamines [2]. However, it turned

out that the aetiology of MDD is more complex; besides of neurotransmitter

depletions, the depressed brain also shows morphological abnormalities (changes

in gray matter volume and neuronal organization), impairments in electro-

physiological activity as well as in receptor pharmacology [3]. In this context,

mood disorders are thought to be resulted from an inability of the neuronal

networks that guide mood-related behaviour adjusting to inputs from the external

world optimally (network hypothesis) [4, 5].

Despite extensive research, response of depressed patients to the currently

available pharmacological therapies is rather unpredictable and varies widely,

namely, 30–40% of patients do not respond. Yet, one of the best tolerated

antidepressant drug used in MDD is venlafaxine (VLX), which seems to be more

advantageous compared to selective serotonin reuptake inhibitors both in terms

of remission rates and economical costs [6]. VLX is characterized as a serotonin

and noradrenaline reuptake inhibitor (SNRI). To a lesser degree, it also blocks

dopamine reuptake and exhibits a mild b-receptor antagonistic activity [7]. The

acutely enhanced availability of extracellular 5-HT and NA is, however, likely not

responsible for the antidepressant action of the drug directly since VLX exerts its

positive effects on mood only after a few weeks (three and four weeks in male and

female individuals, respectively) [6, 8]. Rather, gradual adaptation to the
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enhanced monoaminergic neurotransmission; e.g. desensitization of counter-

acting mechanisms [9], establishment of new neuronal connections and changes

in synaptic plasticity as well as information processing, may all be responsible for

the treatment effect of VLX [10].

As it was shown by human in vivo imaging- or post mortem studies for several

brain areas, including regions of frontal, prefrontal and cingulate cortices, limbic

system, hippocampus, striatum, amygdala and thalamus that they can mediate the

diverse symptoms of depression [11]. Most of the studies dealing with depression

focus on the limbic system and the prefrontal cortex, since these brain areas are

critically involved in emotion processing and executive control. However, to the

best of our knowledge, only few papers are available that investigates the role of

other brain regions, such as frontal cortex (FC, motor cortical areas) in depression

and even those studies do not examine the effects of VLX after a chronic

administration which would have a substantial clinical relevance.

A recent study found a strong association between depressed mood and altered

locomotor patterns (decreased locomotor activity and intermittent periods of low

activity) [12]. Also, the co-morbidity of depression with disorders that affect the

FC [e.g. frontal lobe atrophy [13] or multiple sclerosis [14]], is well established.

On the other side, earlier preliminary studies and a recent meta-analysis

confirmed that selective serotonin reuptake inhibitors improve motor recovery

after stroke, even in people who were actually not depressed [15, 16]. In a

randomized, double blind, crossover study 1 week treatment with VLX

significantly improved finger-tapping rate, a motor task compared to placebo

[17]. This improvement showed positive correlation with the activation of sensory

and motor cortical areas caused by the drug [17].

The aim of the present study is to investigate the potential changes in gene

expressions of the frontal cortex following chronic VLX administration of Dark

Agouti rats. In addition, by performing gene set enrichment analysis, we also

studied the molecular alterations in regulatory networks, which may help to

understand how gene expression changes lead to the clinical action of VLX.

Methods

Animals and Drugs

In this study, 20 male Dark Agouti rats (Harlan, Olac Ltd, Shaw’s Farm,

Blackthorn, Bicester, Oxon, UK, aged: 8 weeks, weighing 158¡4 g [mean ¡

S.E.M.) were used. The animal experiments and housing conditions were carried

out in accordance with the European Community Council Directive of 24

November 1986 (86/609/EEC), as well as the National Institutes of Health

Principles of Laboratory Animal Care (NIH Publication 85-23, revised 1985) and

special national laws (the Hungarian Governmental Regulation on animal studies,

31 December 1998 Act). The experiments were approved by the National

Scientific Ethical Committee on Animal Experimentation and permitted by the
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Food Chain Safety and Animal Health Directorate of the Central Agricultural

Office, Hungary (permission number: 22.1/3152/001/2007).

Prior to implantation, Alzet 2001 osmotic minipumps (Durect Corp., CA,

USA) were filled with VLX dissolved in 0.9% NaCl solution.

Drug Administration and Experimental Design

The animals were randomly divided into two groups according to the treatments.

In VLX treated group, Alzet osmotic minipumps were implanted subcutaneously

under the back skin of the animals, delivering 40 mg/kg VLX each day. The

control group underwent sham surgery without the implantation of osmotic

minipump. All surgeries were performed under halothane anaesthesia, and all

efforts were made to minimize suffering of the animals. Following surgery,

animals were returned to their home cages and were kept there until further

processes. Food and water were available ad libitum for each animal. During

surgical procedures one animal died, thus, altogether 19 animals were used in the

experiments.

RNA Extraction and Sample Preparation

Three weeks after the first osmotic minipump insertion rats were sacrificed

quickly by decapitation. The brains were removed; approximately 2 mm thick

coronal sections were cut and the FC regions (M1, M1 and Fr2), were dissected

out according to Paxinos and Watson [18], (between approximately bregma +1.7

and +3.7) and stored at 280 C̊. The samples were homogenized with 1 ml TRIzol

reagent and RNA was isolated as it was described before [19]. The pellets were

dissolved in 20 ml diethylpyrocarbonate-treated-dH2O (DEPC-dH2O) and the

samples stored at 280 C̊ until further processing. To determine the quality of the

samples, 1–2 ml were used for optical density (OD, 260/230 and 260/280 ratios)

measurements. The OD ratios were determined for all samples and randomly

repeated to evaluate the reliability of the measurements (no significant difference

was observed, data not shown). Samples with the lowest RNA concentrations were

excluded from further analysis and thus both VLX and control groups consisted of

8 animals. From these samples, two-two randomly selected samples were pooled.

From VLX treated and vehicle-treated pools microarray experiments were

performed by Service XS (Leiden, Netherlands) on the Illumina platform (RatRef-

12 v1 Beadarray Expression Chip, San Diego, CA, USA).

Data Analysis

Raw microarray data were processed with beadarray [20], preprocessCore [21]

and puma [22] Bioconductor [23] packages for R [24] as described in [25].

Briefly, backgroundCorrect method, used in the beadarray package, was set to

‘‘minimum’’, and ‘‘log5TRUE; n510’’ variables were used for

createbeadsummaryData method. The normalization was performed by the

‘quintile method’ in the preprocessCore package. Additionally, pumaComb,
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pumaDE, and write.rslts functions with default settings were applied. Changes

were considered statistically significant when the MinPplr was below 0.005.

Heat map visualization of the differences in gene expression was done using

Multiexperiment Viewer Tool [26, 27]. Genes with similar expression patterns are

grouped together with hierarchical clustering (Euclidean distance, average linkage,

predicted genes and locus predictions were excluded) [28].To provide an even

more wide-scale analysis of the possible pathways involved in VLX effects (e.g.

neuropathic pain and migraine related pathways), we used textmining methods in

NCBI’s medical databases. The underlying principle for this extended method was

the well-known fact that VLX has positive effects in both of the latter conditions

(e.g. see [29] and [30]). To estimate the bibliometric relations between genes and

neuropathic pain we counted the hits of the Pubmed queries ‘‘,gene name.

AND (pain OR neuropath* OR nocicept* OR migraine)’’ [31]). After the

identification of the possible genes, we used individually written R scripts [32]

with the genome wide annotation database for Rattus Norvegicus [33] and the

Gene Ontology (GO) annotation database [34] from Bioconductor [23] to

reversely map these genes in the GO hierarchy. The resulting GO terms were then

filtered to contain more than 15 and less than 500 genes for valid statistical

analysis [35] and these terms together with the MSigDB C5 GO terms

(corresponding to the same criterion) formed the input of the Gene Set

Enrichment Analysis (GSEA).

GSEA was performed using the version 3.1 from the Broad Institute at MIT

(http://www.broadinstitute.org/gsea) [36]. Gene identifiers used in the array

dataset and gene sets were gene symbols. The data set had 22523 features

(Illumina probes), which were collapsed to gene symbols (the median expression

value was used for the probe set). T-test was used as the metrics for ranking genes

and ‘‘gene set’’ algorithm was chosen as the permutation type since the sample

size was less than 7 in this study. 1000 permutations were used to calculate p-value

with the seed of permutation set to 149. All other parameters were set to default.

A normalized enrichment score (NES) was calculated for each gene set to

represent the degree in which it was enriched in one phenotype. The nominal p-

value and the FDR corresponding to each NES were calculated. A NES with a

nominal p-value,0.05, FDR,0.25 were considered statistically significant.

Network visualization and analysis using enrichment results was done using

Cytoscape 2.8.3. and its plug in ‘‘Enrichment Analyzer’’ with the following cut-

offs: similarity coefficient cut-off 0.1, p-value cut-off 0.05 and FDR cut-off 0.25

[37, 38].

PCR Validation

We have validated 19 RNA products from the original pooled samples with real-

time polymerase chain reaction (PCR) on Fluidigm GEx array (San Francisco, CA,

USA) using Taqman Gene Expression assays for the appropriate RNAs obtained

from Applied Biosystems (Carlsbad, CA, USA). Each sample was used in duplicate

following quality control measurements. The validation experiment was
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performed by Service XS (Leiden, Netherlands). Upon arrival of the normalized

results, manually written R scripts using the cor.test function with default settings

were used for the comparison between microarray and PCR data. The Pearson

correlation coefficients were 0.421 and 0.438, while the p-values were 0.0085 and

0.006 for the 200 ng and 500 ng samples, respectively (the Spearman correlation

coefficients were 0.552 and 0.572 for the 200 ng and 500 ng samples, respectively;

while respective p-values were below 0.001).

Availability of supporting data

The data supporting the results of this publication have been deposited in NCBI’s

Gene Expression Omnibus [39] and are accessible through GEO Series accession

number GSE47541 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc5GSE47541).

Results

Profiling mRNA expression after treatment with VLX

Comparison of the gene expression profiles showed 222 genes expressed

differentially in the VLX treated group compared to the saline control (minimum

probability of positive log ratio (MinPplr) ,0.005) (Figure 1/A.). From these, 118

defined genes (gene activity of 97 genes was up- and 21 genes was downregulated)

showed changes higher than 1.2- or lower than 0.8-fold alteration (Figure 1/B.).

Network analysis

To analyze the functional outcome, namely, to identify activated or depressed

gene clusters following long-term VLX treatment in the FC, we chose pathway-

centric statistical approach, GSEA, in which functionally interacting genes were

analyzed. Beside well-described, canonical GO-pathways derived from MSigDB,

we intended to increase the chance to find yet unidentified networks in the effects

of chronic VLX-treatment. For this purpose, we focused also on pathways found

with text mining as described in methods section. To reduce spurious findings, we

chose a restrictive false discovery rate cut off ,0.25 for selecting enriched gene

sets. The results of GSEA were visualized in Cytoscape and with the mentioned

criteria, 525 gene sets (nodes) and 29259 interactions (edges) were found. To

interpret the results, the interactome was clustered with spectral clustering [40] in

Cytoscape to smaller subnetworks (Figure 2A–D).

Figure 1. Significantly changed genes after three-week-long venlafaxine administration in the frontal cortex of rats. (A) All significantly changed
genes clustered to a heat map (Euclidean distance, average linkage, p,0.005, red; upregulated, blue; downregulated). (B) Genes modulated more than 1.2
or less than 0.8 are clustered. Heat maps were produced using simultaneous clustering of rows and columns of the data matrix using average linkage
algorithm and a Euclidean distance metric. The mRNA clustering tree is shown on the left and the sample clustering tree is shown on the top. The colour
scale shown at the right illustrates the fold change of the indicated mRNA compared to control: red denotes fold change.1 and blue denotes fold change ,1
(Minimum probability of positive log ratio ,0.005).

doi:10.1371/journal.pone.0113662.g001
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Neurotransmitter release and uptake

This cluster represents an interaction between 20 upregulated gene sets with a

nominal enrichment score (NES) range between 1.39–1.96. Functions of these genes

were related to both neurotransmitter transport and secretion, synaptic endo- or

exocytosis as well as regulation of these processes. The top five gene sets, with the

highest NES were as follows: ‘regulation of exocytosis’ (NES51.96), ‘exocytosis’

(NES51.85), ‘synaptic vesicle’ (NES51.77), ‘synaptic vesicle membrane’ (NES51.71)

and ‘regulation of calcium ion dependent exocytosis’ (NES51.7) (Figure 2A).

Neuronal processes and development

This cluster reveals interaction between 76 gene sets representing general neuronal

processes and functions, such as ‘synaptic plasticity’, ‘synaptosome’, ‘neuron

Figure 2. Network analyses of significantly enriched gene sets after three-week-long venlafaxine administration in rats. Nodes represent gene
ontology (GO) terms significantly changed in gene set enrichment analysis (p,0.05, false discovery rate ,0.25). Blue and red circles represent down-and
upregulation of the associated GO terms, respectively. The size of the nodes is proportional with the number of genes in the GO term and the thickness of
grey edges represents the number of common genes between two GO terms (A) Neurotransmitter release and uptake, (B) Neuronal processes and
development, (C) Insulin signaling, (D) Mitochondrial antioxidant activity.

doi:10.1371/journal.pone.0113662.g002
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migration’, ‘neuron death’, glutamate signaling’, ‘memory’, learning’ and

‘cognition’ with NES range 2.36-(21.72). The top five gene sets, with the highest

NES were as follows: ‘terminal button’ (NES52.36), ‘pallium development’

(NES52.16), ‘regulation of long-term neuronal synaptic plasticity’ (NES52.15),

‘telenchephalon development’ (NES52.07) and ‘synapse part’ (NES52.05). There

were two downregulated gene sets: ‘response to iron ion’ (NES521.72) and

‘negative regulation of neuronal projection development’ (NES521.45). The

latter one shows downregulation of inhibitory genes, which practically means the

facilitation of neuronal projection development (Figure 2B).

Insulin signalling

The subnetwork is composed of 5 upregulated gene sets with NES values ranged

between 1.2–1.9. Four from these five networks, such as ‘insulin receptor binding’

(NES51.55), ‘phosphoprotein phosphatase activity’ (NES51.28), ‘protein

dephosphorylation’ (NES51.26) and ‘regulation of glycogen biosynthetic process’

(NES51.89) could be directly linked to insulin signaling (Figure 2C).

Mitochondrial antioxidant activity

This small interactome is made from 9 downregulated gene sets, which are related

to superoxide metabolism. From these, the following five gene sets exhibited the

highest level of downregulation: (i) ‘superoxide metabolic process’ (NES521.82),

(ii) ‘response to oxygene radical’ (NES521.78), (iii) ‘mitochondrial inner

membrane’ (NES521.77), (iv) ‘response to superoxide’ (NES521.73) and (v)

‘mitochondrial envelope’ (NES521.53) (Figure 2D).

Genes with significantly altered expression and established or

suspected involvement in the pathomechanism of depression

(i) Genes with described role in depression or in the molecular mechanism of

antidepressant therapy

From genes showed altered expression, 23 have been previously associated with

depression or antidepressant therapy in published studies (Figure 3, red arrows).

From these, 5 genes were downregulated (Ace, Cox17, Gfap, Pyy, Vdac1), while the

others were upregulated (Ascl1, Bcl2, Camk2b, Camk2g, Cd47, Gad2, Gnaq, Gria3,

Grin2b Hcn1, Negr1, Ntrk2, Ntrk3, Ppp3r1, Sv2b, Syn2, Synj2, Vamp1) (Figure 3).

(ii) Genes with suspected role in depression (candidate genes, based on

previous studies or their function in CNS)

From both the microarray data and the network analysis, 23 genes have been

selected, which, based on prior knowledge, may play role in the pathophysiology

Figure 3. List of significantly changed genes with a potential/proven role in depression or in antidepressant effect. Differentially expressed genes
were selected from network analysis based on scientific knowledge and literature (red square: upregulated; blue square: downregulated genes; red arrows:
genes have experimentally proven role in depression/antidepression; black arrows: candidate genes which based on other and this experiments have a high
probability to play a role in antidepressant response, p,0.05).

doi:10.1371/journal.pone.0113662.g003
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of depression or in the molecular mechanisms of antidepressant therapy

(Figure 3, black arrows). From these 23 candidates, 2 were downregulated (Cntn2,

Dpp4) and 21 were upregulated (Camk2b, Cdh22, Clstn2, Enpp1, Epha5a, Gas2,

Glp1r2, Grin2a, Kif1b, Kif2b, Kif5a, Lphn1, Mmp9, Myo5a, Pdpk1, Pex2, Prdx1,

Rims1, Rph3a, Slc2a4, Ucp3, Unc13b) (Figure 3).

Discussion

In this study we describe transcriptomic changes in the frontal cortex of Dark

Agouti rats after a 3-week-long VLX treatment. The dose of VLX was 40 mg/kg/

day, which is sufficient to block the reuptake of both 5-HT and NA (smaller than

40 mg/kg/day doses of VLX block exclusively the reuptake of 5-HT [41]). Our

results suggest that chronic VLX administration has its major effects on

neurotransmitter release via the regulation of genes involved in vesicular

exocytosis and receptor endocytosis. Simultaneously, VLX increases expressions of

gene sets related to neuroplasticity, axonogenesis and cognitive function.

Interestingly, VLX changes the expression of genes involved in antioxidant activity

of mitochondria and also modulates genes related to the insulin signaling

pathway. Although the networks clearly show the effect of VLX, interpretation of

changes on gene level is also important, since GSEA is a method merely based on

rank tests and misses sensitivity at the level of differential expression.

Neurotransmitter release

Our results show that VLX modulates numerous genes involved in synaptic

vesicular transport. There are some neurotransmitter release-related genes that

have been described in the pathomechanism of depression, for instance the synj2

(Synaptojanin 2), a gene involved in membrane trafficking, which has decreased

expression in the temporal cortex of patients with major depressive disorder [42].

Our results show that this gene is upregulated by a chronic VLX administration to

rats.

Some genes could be linked to antidepressant effects, e.g. Vamp1

(Synaptobrevin 1), a synaptic vesicle docking and/or fusion protein, the

expression of which is increased in rat FC after chronic imipramine or sertraline

treatment [43, 44]. Another example is Syn2 (Synapsin II), a neuronal

phosphoprotein that coats synaptic vesicles and regulates neurotransmitter

release, and has been observed to be upregulated in prefrontal cortex of patients

taking Lithium [45], or it is worth mentioning another vesicular protein, Sv2b

(Synaptic vesicle glycoprotein 2b), which is upregulated after imipramine

treatment in the frontal cortex of rats [44]. Like Syn2 and Sv2b genes, Ppp3r1

(Calcineurin B), the regulatory subunit of calcineurin, also showed increased

expression after VLX treatment in our study. Notably, calcineurin interacts with

the serotonin transporter modulating its plasma membrane expression and

serotonin uptake [46]. Moreover, calcineurin has also direct antidepressant-like

Effects of Chronic Venlafaxine Treatment on Gene Transcription in Rats

PLOS ONE | DOI:10.1371/journal.pone.0113662 November 25, 2014 11 / 24



effects. In the study of Yu and coworkers, inhibition of calcineurin in the medial

prefrontal cortex of rats induced depressive-like behaviour through mTOR

signaling pathway [10].

VLX significantly increases the expression of other vesicle-related genes, the role

of which in depression or antidepressant therapy has not been proven yet,

although, based on their physiological function and altered expression levels after

VLX, one can speculate on their potential involvement in these processes. Such

genes comprise the kinesin-family member proteins (Kif1b, Kif2b and Kif5a;

Kinesin family member 1B, 2b and 5a), which are involved in the neuronal

transport of organelles, synaptic vesicle precursors, neurotransmitter receptors,

cell signaling molecules, cell adhesion molecules and mRNAs in the nervous

system (Figure 3) [47–49]. VLX also increases the mRNA levels of Myo5a (Myosin

VA), a myosin V heavy-chain gene, being involved in the cytoplasmic vesicle

transport along actin filaments [50], together with Unc13b that is required for

priming synaptic vesicles for exocytosis [51]. Besides that, VLX up-regulates

Rims1 (RAB3 interacting molecule 1), Rph3a (Rabphilin 3A) and Lphn1

(Latrophilin 1), which genes play a role in the regulation of synaptic vesicle

exocytosis and neurotransmitter release in neurons [52–54].

Synaptogenesis and neuron migration

Synaptogenesis declines in MDD, thus its reversal by chronic antidepressant

treatment may provide a promising new direction in pharmacotherapy. Network

hypothesis suggests that antidepressants reactivate or promote a juvenile-like state

of brain plasticity and changes the strength of existing synapses. This facilitates the

reorganization of cortical networks for a better environmental adaptation [3]. Our

results show, that after VLX treatment, gene sets related to synaptogenesis or

neuronal rearrangement were changed such as ‘‘neuronal death (NES51.5)’’or

‘‘neuron migration (NES51.716)’’ (Figure 2B).

One upregulated gene (Negr1; Neurolnal growth regulator 1) in this group has

been found to be increased at protein level also in the cerebrospinal fluid of

depressive patients [55]. The question, whether it is part of the antidepressant

effect of VLX or not, is hard to decide regarding the contradiction between our

findings and the measurements from cerebrospinal fluid. However, there is

growing literature about compartment-selective expression of genes in the central

nervous system, which state that each brain region or even each neuron possesses

a unique transcriptomic pattern and could react to environmental influences

differently [56]. Since the major function of this gene is to promote axon

regeneration, elevation of Negr1 in the FC could be part of the effect of VLX [57].

The gene sets showing significant alterations include many upregulated genes

that could have potential role in antidepressant effect: cadherins, such as Cdh22

(Cadherin 22), which play a role during migratory and lamination processes as

well as axon guidance in temporal cortex of mice [58]; Eph5a (Ephrin 5a

receptor), which is involved in the proper assembly of local cortical columns in rat

developmental cortex [59]; Gas2 (Growth arrest-specific protein 2), which is
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assumed to be involved in the maintenance of the subventricular stem cell niche

and neuron apoptosis [60]. VLX also upregulated Pex2 (Peroxisomal biogenesis

factor 2). Mutant form of Pex2 is responsible for abnormal neuronal migration in

Zellweger syndrome (peroxisome biogenesis disorder) [61]. VLX administration

downregulates TAG-1 (Cntn2; Contactin 2), a member of the immunoglobulin

superfamily. This gene product is present on corticofugal fibers and serves as a

substrate for the migration of GABAergic interneuron. Blocking TAG-1 function

in mouse cortical slices with anti-TAG-1 antibodies results in a marked reduction

of migrating GABAergic interneurons [62, 63]. In this context, VLX acts as an

inhibitor rather than an activator of neuronal migration.

Synaptic plasticity

Synaptic pathology has received increasing interest as a key feature of mood

disorders [9]. In network B (Figure 2/B), several functional categories are

provided, which suggest the effect of VLX on synaptic plasticity in the FC, such as

‘‘Regulation of synaptic plasticity (NES51.79)’’, ‘‘Synapse organization

(NES51.59)’’, ‘‘Neuron-neuron synaptic transmission (NES51.71)’’ and

‘‘Neuron projection terminus (NES51.67)’’ (Figure 2B).

We also found increase in the expression of Trk genes after chronic VLX

administration (Figure 3). Trk genes (Ntrk2; Neurotrophic tyrosine kinase,

receptor type 2, Ntrk3; Neurotrophic tyrosine kinase, receptor type3) encode

tyrosine kinase transmembrane receptors that are stimulated by neurotrophins

such as BDNF (Brain Derived Neurotrophic Factor), NT-3 (Neurothrophin-3) or

NT-4 (Neurothorphin-4), and are responsible for the transduction of signals

controlling neuropoesis and neuron survival in the central nervous system. Their

functional polymorphism and declined expression in the FC has been associated

with depression as it was shown by previous studies [9, 64].

Depressed patients often show abnormalities in glutamatergic neurotransmis-

sion [65], and in some cases, this is due to a polymorphism of the GRIA3 gene

(Glutamate receptor, AMPA 3) [66]. VLX treatment upregulated GRIA3, which

suggests glutamate-based effects in the mechanism of the drug and supports

previous findings regarding the influence of SSRIs on the glutamatergic-system

[67, 68]. Also, NMDA (N-methyl-D-Aspartate) receptors Grin2a (Glutamate

receptor ionotropic, NMDA 2A) and Grin2b (Glutamate receptor ionotropic,

NMDA 2B) play key role in the pathology of mood disorders and their

polymorphisms could be associated with depression [69]. In our samples VLX

upregulated both Grin2a and Grin2b. Overexpression of these genes could have

beneficial function in depression, as these receptors have major role in the

regulation of synaptic plasticity [70, 71].

Cunha and coworkers suggested that the Camk2 genes (Calcium/calmodulin-

dependent protein kinase II b/c) may have important beneficial effects in the

treatment of depressive disorders, since the activation of these genes has

antidepressant-like effects [72]. Our results also show induction of Camk2b and

Camk2g after VLX treatment providing additional evidence for this finding.
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Gnaq (Guanine nucleotide binding protein, q polypeptide) proteins represent a

family of heterotrimeric proteins that couple cell surface 7-transmembrane

domain receptors to intracellular signaling pathways. As behavioural studies of

Frederick and co-workers have indicated, signaling through Gnaq is necessary for

spatial memory [73]. VLX also has memory improving effects in rats [74].

Additionally to the findings above, we found an elevated mRNA expression of

Gnaq in the frontal cortex of rats, which suggests, that a G-protein-coupled

second messenger signaling pathways may play an important role in memory

related action of this drug.

Cd 47 (CD47 antigen) protein is involved in the regulation of neuronal

networks in complex with other proteins. Mice lacking Cd47 protein manifested

prolonged immobility (depression like behaviour) in the forced swim test [75, 76].

Our results show that VLX increased the activity of this gene in the FC of Dark

Agouti rats.

There is growing evidence that Mmp9 (Matrix metallopeptidase 9) gene, which

is induced by VLX in our experiments, is involved in synaptic plasticity and

cognitive processes. Studies with transgenic animals show that mice over-

expressing Mmp9 display enhanced performance in both the non-spatial novel

object recognition and the spatial water-maze task [77]. Their enhanced

performance could be explained by an increased dendritic spine density observed

in the hippocampus and cortex following behavioural testing [77].

Gfap (Glial fibrillary peptide 1 receptor) gene codes the glial fibrillary acidic

protein, an intermedier filament maintaining the shape and movement of

astroglial cells [78] It is also postulated, based on post-mortem human studies,

that reduction of Gfap expression in astrocytes of fronto-limbic brain regions is

part of MDD pathology [79–81]. Unexpectedly, our results also show reduction in

Gfap levels after VLX, which points to the need of further experiments to clarify

the role of this gene in mood-related disorders.

Behaviour, learning and memory

In our study there were many memory-associated networks showing significant

upregulation, such as ‘‘Long-term synaptic potentiation (NES51.4)’’, ‘‘Long-term

memory (NES51.65)’’ or ‘‘Glutamate signaling pathway (NES51.699)’’

(Figure 2B).

Considering gene level, we found many genes, which were modulated by

chronic VLX treatment in the FC (Figure 3). For example, it elevates Gad2

(Glutamic acid decarboxilase 2), the rate limiting enzyme for the conversion of

glutamic acid to gamma-aminobutyric acid (GABA). There are no previous

studies on Gad2 expression in FC in depression, but in the cingulate cortex of

postmortem human subjects with MDD, a significant reduction in Gad2

expression leading to GABA depletion has been demonstrated [82].

Since Grin2b is involved in long-term potentiation and there is an association

between Grin2b single nucleotide polymorphisms (SNPs) and MDD [69], it may

provide evidences for the role of this gene in memory loss of patients with
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depression. Upregulation of this gene by chronic VLX treatment underlines the

positive effects of this antidepressant on memory loss during depression.

The observation that captopril induced an antidepressant effect in hypertensive

patients [83] led to the suggestion that the brain renin-angiotensin system (RAS)

may be involved in depression, and inhibition of the RAS may have antidepressant

effect. On the other hand, the angiotensin-converting enzyme (Ace) besides

converting angiotensin I to angiotensin II, is also involved in the degradation of

neuropeptides, such as substance P, and elevation of this neuropeptide in the

brain causes depression-like symptoms [84]. These contradictory findings, with

our results demonstrating diminished Ace levels after VLX treatment, at least in

part, support the fact that antidepressants exert their positive effects by inhibiting

the brain RAS.

Studies indicate that various SNPs which are associated with lower expression

of Clstn2 gene (calsyntenin 2; cadherin type protein) can worsen episodic memory

performance [85]. VLX treatment increased the expression of Clstn2, supporting

its possible beneficial effects on memory.

HCN1 (Hyperpolarisation-activated cyclic nucleotide gated potassium channel

1) protein, which controls the way how neurons respond to synaptic input, is also

called ‘‘pacemaker protein’’, as it has oscillatory activity [86]. It is assumed, that

this gene is important in memory, since its deletion causes profound motor

learning and memory deficits in swimming and rotarod tasks [87]. In our

experiment, chronic VLX upregulated Hcn1 in the FC, that could also have

importance in memory performance.

Although Hcn1 upregulation in FC could be associated with a better memory

performance, it is also known, that reduction of Hcn1 in the dorsal hippocampal

CA1 region produces antidepressant-like effects in mice [88]. This could be

another evidence for the fact why it is important to study gene expression in

different brain areas separately.

There are many genes involved in synaptogenesis, synaptic plasticity and

transmission, which change their expression levels after learning. One of them is

Ascl1 (Achaete-scute complex like 1) [89, 90], which shows an increased

expression in prefrontal cortex and hippocampus (HC) as it has been studied in

water maze spatial memory performance test. This gene is also increased in our

experiments after chronic VLX treatment.

Another gene, with significantly altered expression is Glp1r2 (Glucagone-like

peptide 1 receptor), which binds to GLP1 and plays a significant role in the

regulation of both appetite and the gut-brain-pancreatic axis [91]. Glp1r2-

deficient mice have a phenotype characterized by a learning deficit, which is

restored after hippocampal Glp1r2 gene transfer. In addition, rats over-

expressing Glp1r2 in the HC show improved learning and memory [91].

Although we studied changes in FC and not in the HC, increased expression of

Glp1r2 in this brain region after VLX could also be important in memory

related processes.
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Mitochondrial antioxidant activity

Mitochondrial function has an important role in the pathomechanism of

depression. Studies on post-mortem tissues from human subjects have shown that

the activity of mitochondrial complex I is decreased, while the oxidative damage is

increased in the prefrontal cortex of patients with MDD [92]. Unexpectedly, VLX

treatment decreased the expression of one member of the terminal mitochondrial

respiratory chain complex IV, the copper chaperone (Cox17) and also Vdac1

(Voltage-dependent anion channel 1), a mitochondrial outer membrane protein

[93], which does not support the hypothesis, that VLX has beneficial effects on

mitochondrial respiratory function (Figure 3). On the contrary, VLX induced

antiapoptotic (Bcl-2; B-cell CLL/lymphoma 2) and antioxidant (Prdx1;

Peroxiredoxin 1 [94]) mitochondrial genes, which underlines its stimulating

effects on some mitochondrial functions. Studies on post-mortem FC tissues from

patients with bipolar disorder show that Bcl-2 is downregulated in depression

[95], and also a rat study suggests that in chronic mild stress, VLX reverses the

activated pro-apoptotic pathways [96]. A previous study also shows that in

mononuclear cells of lithium responder depressive patients, lithium treatment

increases the expression of the anti-apoptotic gene Bcl-2 [9]. Bcl-2 overexpression

could be related to the lithium protection against neuronal apoptosis and

oxidative stress.

Interestingly, analyzing functional gene sets, all of them were downregulated

while none of them showed upregulation after VLX (Figure 2/D).

Insulin signaling

Individuals with depression have a higher risk of developing type II diabetes.

Conversely, individuals with diabetes are at an elevated risk of developing

depression. It is also known that there is a higher risk for cognitive impairment

when insulin regulation is disrupted [97]. In our experiments, VLX increased gene

sets related to insulin, such as ‘‘insulin receptor binding (NES51.55)’’or ‘‘G1 S

transition mitotic cell cycle (NES51.49)’’ (Figure 2C). Also on gene level, the

mRNA levels of several genes related to insulin signaling are reduced after VLX

treatment (Figure 3). For instance, a high-fat diet leads to insulin resistance

causing the reduced level of serine exopeptidase (Dpp4, Dipeptidyl-peptidase 4),

which is known to leaven neuronal insulin receptor function, brain mitochondrial

function and cognitive function in rats [98].

Insulin treatment increases the synthesis of Pdpk1 (3-phosphoinositide

dependent protein kinase 1) [99] an inducer of PSD-95 protein, which is an

adapter molecule of ion channel and neurotransmitter receptor clusters at the

postsynaptic membrane of hippocampal neurons resulting in a long-lasting

enhancement of receptor-mediated synaptic transmission [100]. Since the

expression of Pdpk1 is increased after VLX treatment, similar functional

enhancement could be assumed.

Other insulin signaling-related genes were also up-regulated by VLX, such as (i)

Enpp1 (Ectonucleotide pyrophosphatase/phosphodiesterase1) [101], which
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modulates insulin sensitivity; (ii) Slc2a4 (Facilitaded glucose transporter, GLUT4),

which has cytoplasmic expression in the neurons, but hormones (insulin or leptin)

could translocate it to the plasma membrane [102, 103]; (iii) Ucp3 (Uncoupling

protein 3), which prevents glucose-induced transient mitochondrial membrane

hyperpolarisation, reactive oxygen species formation, and induction of apoptosis as

it has been proven in dorsal root ganglion neurons [104]; (iv) Glp1r2 (Glucagone-

like peptide 1 receptor), which delays gastric emptying and regulate appetite [105].

Comparison of different antidepressants and limitations of

available data

SSRIs are widely studied in gene expression studies [106], but SNRI data are

scarce, and are completely missing at a time point relevant for clinical studies or

Figure 4. Summary of the transcriptomic changes in frontal cortex caused by three weeks long venlafaxine administration. Chronic VLX
administration had major effect on neurotransmitter release, neurotrophic signaling, glutamatergic transmission, and also it influenced mitochondrial function
and insulin signaling. These primary molecular mechanisms influence synaptogenesis, synaptic plasticity and finally lead to alteration in memory/cognition
processes and eating behaviour.

doi:10.1371/journal.pone.0113662.g004
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our data. For SSRIs the identified genes harbouring SNPs interacting with SSRI

effects (or those showing changes in mRNA expression after SSRI treatment) show

a wide variety from one SSRI to the other [106]. For example, 18 neuroplasticity

genes were identified that interact with fluoxetine, but only 4 in the case of

sertraline [106]. Some discrepancies could be explained by differences in receptor

binding profile of the drugs. For example, fluoxetine is able to block GluN1/

GluN2B receptors, and this effect may well have an action on excitotoxicity [107].

Our VLX data identify several new genes and pathways that were not depicted

after any of the SSRIs. Furthermore, gene-gene interactions at the receptor level,

e.g., SLC6A4 and CNR1, or at the signal transduction level, e.g., Gi and Gq

coupled pathways, may even strengthen the otherwise weak genetic effects in

certain patient groups leading to the concept of personalized medicine, but these

interactions could not be identified by simple approaches [108, 109]. The use of

different parts of the cortex in transcriptomic studies could be another source of

discrepancies. One week treatment with VLX causes activation in the frontal

cortex, but opposite effects in the parietal cortex in an MRI study [17]. Thus,

further complex human and clinically relevant rodent studies and review papers

focusing on specific questions are needed [106, 108].

Conclusions

In summary, considering expression patterns of genes and groups of genes

following chronic VLX treatment in the FC of Dark Agouti rats, we identified

several individual genes or gene networks that may contribute to changes in brain

function and antidepressant properties of VLX (Figure 4). We demonstrated

altered expression of genes involved in neurotransmitter release, neurotrophic

signaling, glutamatergic transmission, as well as mitochondrial function and

insulin signaling. The latter has not been investigated in depression so far.

Upregulation of gene sets and genes relating to synaptic plasticity, cognition and

memory after chronic VLX treatment is in correspondence with the synaptic

(network) hypothesis of depression [9]. Since the mentioned, transcriptomic

changes affect the frontal cortex and this brain region is known to be involved in

the initiation of movements and motor coordination we assume that these

changes could also explain the fact that venlafaxine improves cortical motor

excitability. For example, Li and co-workers reported that VLX improved motor

tasks and increased reaction speed in non-depressed persons [17]. Also, other

studies show that SNRIs in rats or mice could affect locomotion and they have

potential for ameliorating motor abnormalities [110, 111]. All these changes after

3 week long VLX treatment could be part of an adaptive response of frontal

cortical neuronal networks.
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