
HYDROGEOPHYSICAL CHARACTERIZATION OF 

GROUNDWATER FORMATIONS BASED ON WELL LOGS: CASE 

STUDY ON CENOZOIC CLASTIC AQUIFERS IN EAST HUNGARY 

 

NORBERT PÉTER SZABÓ1,2*, ANETT KISS1, ANETT HALMÁGYI1 

 
1Department of Geophysics, University of Miskolc 

2MTA-ME Geoengineering Research Group, University of Miskolc  

*e-mail: norbert.szabo.phd@gmail.com 

 

 

1. Abstract 

Ground geophysical surveys can be effectively used for detecting and delineating shallow groundwater 

structures. For calculating the freshwater reserves, well-logging measurements need to be made in prospecting 

wells. In this paper, groundwater formations are evaluated using electric and nuclear logging data to extract the 

petrophysical and hydraulic parameters of aquifers and aquitards. To quantify the relative fractions of rock 

constituents, the effective porosity, shale content, water saturation and rock-matrix volumes should be 

estimated. The effective layer-thicknesses of permeable beds are of importance in locating the depth-intervals of 

water exploitation. The above parameters cannot be calculated reliably when the zone parameters such as 

cementation exponent, tortuosity factor, pore-water density and resistivity are not certain. With accurate 

petrophysical and zone parameters, an estimate can be given to hydraulic conductivity, which is one of the most 

important hydraulic rock properties in solving hydrogeophysical problems. First, a comprehensive interpretation 

method proposed by Professor János Csókás (1918-2000), former head of the Department of Geophysics, 

University of Miskolc, is used to give an estimate of hydraulic conductivity and critical velocity of flow without 

the need for grain-size data. Then, shale volume and hydraulic conductivity are determined separately by 

statistical factor analysis of well logs. Effective porosity, specific surface of grains and water saturation can be 

derived by well-known deterministic equations. Those of core measurements confirm the results of well log 

analysis. A set of detailed regression analyses is performed to specify the local regression relationships between 

the estimated parameters. It is also shown that there is a strong correlation between shale volume and hydraulic 

conductivity (and other quantities) and that the independent interpretation results are consistent. The advantage 

of the Csókás and factor analysis-based approaches is that instead of using a single well log, they utilize all 

types of well logs sensitive to the relevant petrophysical/hydraulic parameters for a more reliable 

hydrogeophysical characterization of aquifers. 

 

2. Introduction 

Well-logging methods are widely used in the reconnaissance of mineral and hydrocarbon 

resources, as they provide detailed in-situ information about the geometrical and 

petrophysical parameters of geological structures [1]. They are applicable also for the 

investigation of shallow formations, for instance, in water prospecting and solving 

environmental and engineering geophysical problems [2]. The main task encountered by well 

log analysts when solving hydrogeophysical problems is to estimate the layer thickness, 

effective porosity, and water (sometimes air) saturation, amount of shaliness, matrix volumes 

and hydraulic conductivity of unconsolidated beds as accurately as possible. Some 

petrophysical properties can be given with relatively high accuracy, for instance porosity is 

normally estimated with an error of 1-2 p.u. depending on the uncertainty of measured data. 

At the same time, the estimation error of hydraulic conductivity can reach an order of 

magnitude, thus, well logs can be primarily applied to detect only the variation of hydraulic 

conductivity along a borehole or between neighboring boreholes. Suitable borehole 

geophysical methods for estimating hydrogeophysical parameters with related applications 

are detailed in [3]. 
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Almost all types of well-logging suites used in hydrocarbon exploration can be 

implemented in groundwater prospecting. Natural gamma-ray intensity and spontaneous 

potential logs are applied for lithology identification and layer-thickness determination. The 

former measures the natural radioactivity of formations caused by different amounts of 

potassium, thorium and uranium content. The latter records the values of electric potential 

between a surface and a downhole electrode excited by the ion movement between the 

drilling mud and original pore fluid as well as the presence of shale. Both of them can be 

used to predict shale content quantitatively. For porosity determination, nuclear well logs 

such as formation density and neutron porosity are used. Bulk density observed by gamma-

gamma probes shows a strong inverse proportionality to porosity. Neutron-neutron 

measurements are mainly sensitive to the hydrogen index of formations and allow us to infer 

the total porosity in the absence of hydrogen atoms in the rock matrix. Several types of 

resistivity tools with different depth of investigation and vertical resolution can be applied to 

detect the invasion profile and to estimate water saturation in different zones around the 

borehole. Since freshwater has higher resistivity than brine, traditional (non-focused) 

resistivity probes are generally suitable for groundwater exploration. While shallow 

resistivity tools measure the apparent resistivity of the zone invaded by mud, the deep 

resistivity instrument observes the same quantity in the original (non-invaded) formation. The 

resistivity readings are corrected to predict the true resistivity of groundwater formations, 

which is of great importance in calculating water saturation in aquifers. Well-logging 

methods usually encompass also technical measurements that are not used directly in the 

petrophysical characterization of rocks, but that give important information on the technical 

conditions of the borehole wall and its environment, pressure, temperature, flow rate and 

composition of the original pore fluid along the borehole. 

In addition to conventional well-logging techniques, there is a possibility for using 

advanced tools in the evaluation of aquifers. In oilfield applications, the direct determination 

of permeability as a related quantity is possible by means of the nuclear magnetic resonance 

log. The ground geophysical application of this technique, known as magnetic resonance 

sounding, is an emerging method in hydrogeology. Borehole nuclear resonance magnetism 

has been lately adapted from the oilfield for hydrogeological applications, using boreholes 

typical of environmental and hydrogeological investigations [4]. Although nuclear magnetic 

resonance is a very expensive method, it has the added advantage of not only providing free-

fluid porosity, it can also be used to determine the distribution of pore sizes and fluid 

characteristics to provide a better estimate of the hydraulic properties of rocks. 

The petrophysical parameters can be calculated by deterministic, inverse or statistical 

modeling procedures. The most common deterministic approaches are based on the 

individual analysis of well logs. Estimation that is more reliable can be given by using several 

well logs simultaneously. In this study, two advanced well-logging methodologies are 

discussed and compared to each other. In shallow clastic sediments, the evaluation of 

petrophysical and hydraulic parameters generally requires the preliminary knowledge of grain 

sizes and several fluid parameters. In the absence of direct geophysical measurements, one is 

confined to measuring some related physical parameters or taking rock samples from the 

borehole to extend hydrogeological information to a local area. In order to avoid core 

sampling, CSÓKÁS [5] worked out a comprehensive interpretation method to give an estimate 

of the hydraulic conductivity of unconsolidated freshwater-bearing formations based solely 

on well-logging data. By incorporating the field experiments of ALGER [6], Hazen’s effective 

grain-size can be substituted by Archie’s formation factor, which can be measured directly 

from well logs. The derived formula, including porosity and true resistivity of aquifers, gives 

a continuous estimate of hydraulic conductivity for the entire length of a borehole. In 

addition, the Csókás method comprises the determination of critical velocity of flow, which 



can be used to estimate the highest value of sand-free yield from the technical data of the 

filtering surface. 

Factor analysis is traditionally used to reduce the dimensionality of multivariate 

statistical problems [7]. Technically, it is possible to decompose a data matrix of observed 

physical quantities of any dimension to a matrix of fewer statistical variables. This is called 

an exploratory statistical method, because it allows us to extract information on latent 

variables not directly measurable by well-logging probes. In this study, factor analysis is used 

to reveal correlation relations between well-logging data and petrophysical/hydraulic 

parameters of aquifers. An earlier study of hydrocarbon wells showed a non-linear 

relationship between one of the new variables derived by factor analysis and shale volume, 

which proved to be nearly independent of the measurement area [8].  

A Hungarian feasibility study is presented in this paper. The multivariate statistical 

method applied to the investigated water well finds a similarly strong regression relation 

between the statistical factor and shale volume (and hydraulic conductivity) as a key 

parameter in the prediction of exploitable reserves of aquifers. Those of core measurements 

validate the interpretation results obtained independently by the Csókás method and factor 

analysis. In addition, regression relations and correlation coefficients between 

petrophysical/hydraulic parameters are given for the area of Baktalórántháza, East Hungary. 

It is shown that there is a strong correlation between shale volume and hydraulic conductivity 

(and other quantities). The independent interpretation results are consistent. The advantage of 

the presented approaches is that instead of using a single well log they process 

simultaneously all suitable well logs sensitive to the relevant petrophysical parameters in 

order to support groundwater exploration with reliable petrophysical/hydrogeological 

information. 

 

3. Conventional formation evaluation 

Darcy’s equation is one of the basic relationships of hydrogeology to describe the flow of 

water through a porous formation 
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where  (m2) denotes rock permeability, Φ (volume/volume = v/v) is formation porosity, µ 

(Ns/m2) is dynamic viscosity, u (m) is the relative displacement vector of the fluid and p 

(N/m2) is the pore pressure. Hydraulic conductivity k=ρwg/µ (m/s) as a related quantity 

expresses the ease with which the water flows through the pore spaces. Quantity k is 

influenced by several properties of the rock matrix and pore fluid of primary porosity aquifers 

such as viscosity and density of pore-fluid (ρw in g/cm3), grain-size distribution, porosity, and 

water saturation (Sw in v/v). 

The Kozeny-Carman equation has achieved widespread use as a standard model for 

estimating hydraulic conductivity of aquifers. In theory, the rock with primary porosity is 

treated as an assembly of capillary channels, which satisfies the Navier-Stokes equation. The 

following form of the Kozeny-Carman equation is one of the most widely used models for 

the estimation of hydraulic conductivity [9] 
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where d (cm) is the dominant grain diameter and g (cm/s2) is the normal acceleration of 

gravity (k is given in units of cm/s). Since rock samples can be taken from boreholes, the 

dominant grain diameter can be estimated from the grain-size distribution curve [10] 

 
2/1

60

106010

2 









d

ddd
d , (3) 

 

where d10 (cm) and d60 (cm) are the grain diameters at 10% and 60% cumulative frequencies, 

respectively. The dominant grain size in Eq. (3) can be defined as the diameter of a homo-

disperse conglomerate of grains, the surface of which equals that of the real sample with 

actual grain-size distribution and the same density. The effective porosity of shaly sandy beds 

fully saturated with freshwater (Sw=1) can be derived from well logs, for instance from 

gamma-gamma measurements by neglecting the term of air saturation  
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where (m)

bρ  (g/cm3) is the bulk density measured and ρsd and ρsh denote the density of sand and 

shale components, respectively. The amount of shaliness appearing in Eq. (4) can be 

estimated by the following empirical formula generally used in young sedimentary 

formations [11] 
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where GR (cps) is the measured natural gamma-ray intensity and GRmin and GRmax are the 

extreme values of the gamma-ray log in the groundwater zone. Equation (5) does not depend 

on the water type, but caution should be used in rocks including radioactive non-clay 

minerals or fractures filled with uranium- or thorium-rich water. The correlation between 

grain size and porosity should be revealed before well logs are applied to calculate the 

continuous curve of hydraulic conductivity, which is of great importance in the determination 

of water reserves as well as in the management and protection of groundwater supply.  

In more advanced approaches, several well logs are processed together in one 

interpretation procedure. If the number of unknowns equal to that of the observed logs the 

modeling functions are treated as a set of linear equations, which can be solved graphically or 

numerically. If we measure more data types than unknowns some inversion method is 

generally used to extract petrophysical parameters. In the evaluation of domestic aquifers 

normally natural gamma-ray intensity (GR in cpm), spontaneous potential (SP in mV), 

neutron-neutron intensity (NN in kcpm), bulk density (ρb in g/cm3), shallow and deep 

resistivity (Rs and Rd in ohmm) logs are recorded. The petrophysical parameters can be 

related to well-logging data by means of empirical modeling equations. These mathematical 

relations, called probe response equations, can be used to predict data in a forward modeling 

procedure. The values of theoretical data would be measured along the borehole if the 

geological structure were characterized by the assumed (exactly known) model parameters. In 

general, borehole geophysical data can be expressed as a set of nonlinear equations including 

the physical properties of rock matrix and fluid components weighted by the relative volumes 



of rock constituents. The following set of response functions can be used for the solution of 

the forward problem in fully saturated shaly sandy aquifers [12] 
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where Vsd (v/v) is the volume of sand and Rmf, Rw and Rsh (ohmm) denote the resistivity of 

mud filtrate, pore-water and shale, respectively. In Eqs. (6)(11), there are some model 

parameters that do not vary (or vary just slowly) with depth, called zone parameters, which 

are practically kept constant during the forward modeling procedure. Zone parameters with 

subscripts sh, sd, mf, w refer to physical properties of shale, sand, mud-filtrate and water, 

respectively, whereas constants m, n, a represent the textural properties of rocks given from 

literature or empirical techniques. The definition, including the measurement unit of 

petrophysical and zone parameters, can be found in the section of list of symbols. Equation 

(12) is the material balance equation for the rock environment, which is used to specify the 

relative fractions of rock constituents per unit volume of rock and constrain the domain of 

volumetric parameters in the interpretation procedure. In inverse modeling, the model 

parameters (i.e. porosity, water saturation, shale content and matrix volume) are estimated 

simultaneously. Inversion procedures have the added advantage of also giving the estimation 

errors of petrophysical parameters, which characterize quantitatively the accuracy and 

reliability of inversion results. The hydraulic conductivity can be derived from the inversion 

results by using proper empirical equations [13]. The methodology of inverse modeling and 

some shallow examples can be found in DRAHOS [14] and SZABÓ and DOBRÓKA [15]. 

 

4. The Csókás method 

CSÓKAS [5] worked out a comprehensive interpretation methodology to extract petrophysical 

and hydraulic parameters of aquifers solely from well logs. The Csókás’ model is an 

empirically modified form of Eq. (2) applicable in shallow formations, based on the relation 

between the effective grain size and formation factor of freshwater-bearing unconsolidated 

sediments. The method gives a continuous estimate of hydraulic conductivity along a 

borehole by using electric and nuclear logging measurements without the need for grain-size 

data. In fully saturated aquifers the formation factor (F) is defined as the ratio of the 

resistivity of rock (R0 in ohmm) to that of the pore-water 
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ALGER [6] found a direct proportionality between the formation factor and grain size of 

freshwater saturated sediments in the laboratory that is the opposite of that experienced in 

hydrocarbon fields (i.e. in brine-saturated reservoirs). Based on these observations, Hazen’s 

effective grain diameter (d10) determined from sieve analysis was related to the formation 

factor of unconsolidated sediments 

 

FCd d lg10  ,   (14) 

 

where Cd=5.22·10-4 was proposed for not too poorly sorted sediments with a formation factor 

less than 10. This requirement is normally met in shallow clastic aquifers. An interpretation 

methodology to evaluate freshwater-bearing (shaly) sands based on Eq. (14) was proposed by 

ALGER [6] for different types of well-logging suites adapted from the oilfield. Equation (14), 

as a constraint relation, forms the bridge between well-logging measurements and hydraulic 

conductivity of aquifers. The dominant grain size can be given from the grain-size 

distribution curve. The uniformity coefficient U=d60/d10 acts as a shape parameter which 

characterizes the form of the grain-size distribution curve and quantifies the degree of 

uniformity in a granular material. KOVÁCS [16] connected the uniformity coefficient of sands 

to the dominant grain diameter as d/d10=1.919·lgU+1. For poorly sorted sediments (U>5), 

quantity U is inversely proportional to the logarithm of hydraulic conductivity. For not so 

badly sorted sands (2.0≤U≤ 2.5) the previous equation takes the form 10671.1 dd  , with 

which Eq. (14) modifies to 
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ARCHIE [17] suggested an empirical formula developed from laboratory measurements 

made on numerous samples 

 
mΦaF  , (16) 

 

where m is the cementation exponent (in poorly compacted sediments m~1.51.7) and a is 

the tortuosity coefficient (a~1). The study of ALGER [6] showed that the formation factor not 

only depends on porosity, but also on the resistivity of pore water and grain size in freshwater 

saturated sediments with primary porosity. Dispersed clay particles can considerably modify 

the resistivity of pore water, which then affects the value of the formation factor appearing in 

Eq. (15). OGBE and BASSIOUNI [18] coupled the tortuosity factor with porosity and the 

formation factor 
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To find an estimate to hydraulic conductivity from well logs, Eq. (2) should be properly 

modified [16] 
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where α0 is the average shape factor of sample particles in the range of 7 and 11 for sands 

(the average is 10). The kinematic viscosity of water υ=/ρw (m2/s) can be expressed in the 

function of formation temperature. The ratio of gravity acceleration and kinematic viscosity 

for water is g/υ=5.517·104·Ct (m-1s-1), where Ct is a temperature dependent coefficient 

calculated as Ct=1+3.37·10-2T+2.21·10-4T2 (where T is given in units of °C). PIRSON [19] 

published another form of the Kozeny equation used to predict permeability 
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where S (1/m) denotes the specific surface of the rock. By comparing Eqs. (18)(19) the 

following identical equation is derived 
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GÁLFI and LIEBE [20] summarized several empirical relations between the specific 

electric resistance and hydraulic conductivity for sands and gravels. In freshwater aquifers, 

the electric current is hardly conducted through the spaces between the grains, rather mainly 

on the surfaces of particles. Thus, the resistivity is inversely proportional to the specific 

surface of rock grains. By assuming that the sedimentary rock is composed of spherical 

particles the specific surface can be calculated as 
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The combination of Eqs. (15) and (21) gives 
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The Csókás model based on Eqs. (17), (18), (20), (22) can give an estimate to hydraulic 

conductivity in units of m/s 
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where Ck=855.7·CtCd 
2

 is a proportionality constant. Good aquifers are characterized by 

hydraulic conductivities k (m/s)>10-6, while aquitards are indicated by k (m/s)<3·10-8. The 

uniqueness of the Csókás formula resides in the fact that all parameters in Eq. (23) can be 

derived from well logs, and thus therewith a continuous (in-situ) estimate can be given for 

hydraulic conductivity along a borehole. 



The Csókás method gives further possibilities for the hydraulic characterization of 

aquifers. Tangential stresses are developed at the surfaces of rock grains because of the water 

flow. The critical velocity of flow at which the grains of size d10 are made to move to the 

direction of the borehole can be estimated from hydraulic conductivity [21] 
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where vc and k are both given in m/s, while d10 is given in mm. For maintaining a sand-free 

exploitation process, the above information can be used for setting an optimal pumping rate. 

Above the critical velocity, there is a risk that the water becomes of worse quality or sand 

grains invade the well. The volume capacity of the well in m3/s can be calculated as 

 

cmax vhrQ 002 , (25) 

 

where r0 (m) is the radius of filter pack and h0 (m) is its length. Well-site experience shows 

that significantly higher velocities can be applied than suggested in Eq. (24). Consequently, a 

higher value of water discharge can be produced than that of Qmax. From grain-size analysis a 

more realistic estimate to critical velocity was suggested by KASSAI and JAMBRIK [22] 
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where vc is measured in m/s, d is given in mm. Equation (26) gives a good approximation in 

the range of 0.095 mm dominant grain sizes. By combining Eqs. (25)(26), the optimal 

water discharge can be estimated by 
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which is multiplied by 6·104 to obtain the output in the unit of l/min. The Csókás procedure is 

tested and compared to statistical factor analysis using well-logging data collected in 

Baktalórántháza, East-Hungary (Section 6). 

 

5. Exploratory factor analysis 

The multivariate statistical procedure is applicable to transform numerous geophysical data 

types into smaller number of variables called factors. As a result, a few factors explain the 

determinant amount of total variance of measurement data, which can be connected to 

petrophysical/hydraulic properties of the investigated geological structure. In the first step, 

well logs are standardized 
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where (obs)'
lnd denotes the n-th scaled data of the l-th observed well log, )(obs

ld  is the average 

value of raw data of the l-th well log (L is the number of borehole geophysical tools and N is 

the number of measuring points in the processed depth-interval). All standardized data are 

gathered into data matrix D’, which is decomposed by the model of factor analysis as 

 



EFWD  T , (29) 

 

where F denotes the N-by-M matrix of factor scores, W is the L-by-M matrix of factor 

loadings, E is the N-by-L matrix of residuals, M is the number of extracted factors (T 

indicates the operator of matrix transpose). The observed variables are developed as the linear 

combination of factors. The scores of the first factor as the elements in the first column of 

matrix F give the well log of the first factor, which explains the largest part of variance of the 

well-logging data. Other subsequent factors represent a relatively lower portion of variances. 

The individual weights of each data type associated with the factors are given in the matrix of 

factor loadings W, which measures the degree of correlation between the factors and original 

data, respectively. Since the factors are assumed linearly independent  IFF /NT , the 

correlation matrix of the standardized well-logging data is 
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where Ψ  is the diagonal matrix of specific variances (I is the identity matrix). The diagonal 

elements of matrix R are equal to unity and are added up by the variances of the standardized 

observed variables. If one neglects the term Ψ in Eq. (30) the following reduced correlation 

matrix is introduced 
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where the i-th element in the main diagonal represents the communality defined as 
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From Eq. (31) it follows that matrix Ψ  represents the part of variance of the observations that 

are not explained by the common factors, which is calculated in the knowledge of 

communalities 
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If the elements of the L-by-L matrix of communalities (H2) are much smaller than unity, the 

observed variables can hardly be explained with the common factors. Otherwise, the 

information of original variables can be represented well by some factors. 

The factor loadings should be estimated first, to which three types of solutions are 

normally applied. In case of  0Ψ  the problem reduces to the solution of an eigenvalue 

problem, which is equivalent to Principal Component Analysis (PCA). In this approximation 

the reduced correlation matrix R* is decomposed as 
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where Z is the L-by-M matrix of eigenvectors, Λ  is the M-by-M diagonal matrix of 

eigenvalues. From Eq. (34) the matrix of factor loadings is  
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where the matrix element 
1/21/2

lll λΛ   is computed by the l-th eigenvalue. Since the covariance 

matrix of observed variables (i.e. correlation matrix of standardized data) contains the data 

variances in its main diagonal, the factors can be classified by the eigenvalues 

(λ1≥λ2≥…≥λM≥0). The direction of the largest data variance is indicated by the eigenvector 

corresponding to the largest eigenvalue, which is called the first principal direction (first 

factor). The second largest eigenvalue and its vector represent the second principal direction 

(second factor), which is perpendicular to the first one etc. The factor scores are calculated 

from factor loadings and measured data. PCA ignores matrix E in Eq. (30), which allows for 

the unique solution of a set of linear equations. For instance, consider five different types of 

well logs (GR, SP, NN, DEN, RD) represented by standardized data at six different depth 

levels (L=5, N=6). Factor analysis gives an estimate to two uncorrelated factors 
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where Fnm represents the score of the m-th factor at the n-th depth, Llm is the load of the m-th 

factor put on the l-th observed variable. The drawback of the above method is that the portion 

of data variance unexplained by the factors is neglected, thus, the resultant principle 

components do not represent the total variance of measured data. With the second approach 

the matrices W and Ψ  are estimated in a simultaneous optimization procedure. JÖRESKOG 

[23] suggested the minimization of the following objective function 
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For solving the optimization problem the use of the maximum likelihood method is generally 

applied, which can give a robust solution [24]. The third alternative for estimating the factor 

loadings is the use of a non-iterative approximate algorithm [23]. At first the following 

matrix is calculated 
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where S denotes the sample covariance matrix of the standardized data. The eigenvalues λ 

and eigenvectors ω of matrix S* should be computed before the matrix of factor loadings is 

given 
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where Γ is the diagonal matrix of the first M number of sorted eigenvalues, Ω is a matrix of 

the first M number of eigenvectors, U is an arbitrary M-by-M orthogonal matrix. Parameter θ 

in Eq. (39) specifies the smallest number of factors when 
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Assuming that W and Ψ  are known quantities, the well logs of factor scores can be 

extracted by the maximization of the following log-likelihood function 
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After solving Eq. (40) an unbiased estimate to factor scores can be given by the hypothesis of 

linearity [25] 
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The optimal number of factors can be set by statistical tests [26] or by Eq. (40) according 

to Jöreskog’s approximate algorithm. The resultant factors are usually rotated for an easier 

interpretation. Since factor loadings are defined non-uniquely, an orthogonal transformation 
TT **

WWWW  can be applied to factor loadings, where WVW *  holds for a suitably 

chosen M-by-M orthogonal matrix V. In this study, the Varimax algorithm suggested by 

KAISER [27] is used to generate rotated factors, which are directly compared to 

petrophysical/hydraulic parameters of aquifers by regression analysis. Singular value 

decomposition of matrix R* gives the proportions of total variance explained by each factor 

 
T*

VUSR e , (43) 

 

where U and V are L-by-L orthogonal matrices and Se is a diagonal matrix including the 

positive singular values sorted in descending order. The proportions of singular values 

estimate the information represented by the factors. The total variance is given by the trace of 

matrix Se. The variance explained by the q-th factor is 
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Regression tests are performed to reveal the relations between the factors and 

petrophysical/hydraulic properties of rocks. In this study, the shale volume and hydraulic 

conductivity are estimated from the simultaneous processing of well logs. Earlier studies 

showed an exponential relation between the first factor and shale volume [8]. Hydraulic 

conductivity as a related quantity also correlates with the same statistical variable. In Section 

6, the factor-analysis-based interpretation procedure is tested and compared to the Csókás 

method in the Baktalórántháza well site. The quality of interpretation results are checked by 

numerical analysis. The degree of linear dependence between the petrophysical variables is 

measured by the classical Pearson’s correlation coefficient (R). In case of nonlinear 

relationships, the Spearman’s (rank) correlation coefficient characterizes better the strength 

of correlation 
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where δn is the difference between the ranks of the n-th data of the two investigated variables. 

When the value of the above correlation coefficient is nearly unity, a close (nonlinear) 

relationship is shown. The deviation between the well logs of petrophysical or hydraulic 

quantities is characterized by the Root-Mean-Square (RMS) error normalized to the relevant 

parameter. 

 

6. Case study 

The Csókás method and factor analysis are tested in Well Baktalórátháza-1 located in 

Szabolcs-Szatmár-Bereg County, in North-East Hungary. The original aim of the ground 

geophysical surveys was the investigation of the geological structure for the purpose of 

hydrocarbon exploration. Although neither oil nor gas was found, the borehole was still 

suitable for producing thermal water. According to VES soundings the upper 80100 m part 

of the well was drilled through Pleistocene sediments dominated by sands, in which only the 

variation of grain sizes was detectable by geoelectric methods. A well-logging survey was 

conducted to provide information on deeper formations. Borehole logs indicated that the 

underlying rock of the sandy sequence was shale. Between 100160 m sands had been 

deposited, followed by a shaly formation, and 515 m thick coarse-grained beds could be 

found. The boundary of Pleistocene and Pannonian periods was detected at the depth of 240 

m. The Pannonian shaly complex mainly consisted of clayey sand, some gravel, clayey silt, 

clayey marl and bituminous clay. 

The investigated interval for the present study is between 124.6470.5 m, where the pore 

spaces of sediments are fully saturated with freshwater. The available well logs, such as 

natural gamma-ray intensity (GR), spontaneous potential (SP), gamma-gamma (GG) and 

neutron-neutron (NN) and shallow resistivity (RS) are plotted in Figure 1. Grain-size data are 

also provided from laboratory measurements made on 176 core specimens. The values of d10 

and d60 are derived from the grain-size distribution curves, while the dominant grain size (d) 

was calculated from Eq. (3). The grain size data are plotted with dots in the last two tracks in 

Figure 1. 

 



 
Figure 1 

Observed well logs and grain-size data in Baktalórántháza-1 

 

First, the result of factor analysis is presented. The factor loadings and scores are 

estimated by the solution of Eqs. (37) and (42). Singular value decomposition of the data 

covariance matrix shows that the total variance of input data can be explained by two 

lithological factors. The first factor is responsible for 82 % of data variance, while the second 

factor explains 18 % of observed information. The greatest loads go to the resistivity and 

natural gamma-ray logs: 0.77 (RS), 0.80 (GR). The average correlation between the 

measured variables is weak (R=0.16), where the highest coefficient is indicated between the 

resistivity and natural gamma-ray log (R=0.62). The information of these two well logs is 

culminated mainly in the first factor. For comparing the results of different interpretation 

methods, the scores of the first factor are scaled into the interval of 0 and 1. Regression tests 

show that the exponential relation between the first factor and shale volume suggested earlier 

by SZABÓ [8] is valid in the area of Baktalórántháza (Figure 2). The general formula between 

the first scaled factor ( 1F ) and shale volume calculated by Eq. (5) is 

 

γeαV 1Fβ

sh 


, (46) 

 

where the local regression coefficients are given with 95 % confidence bounds: =0.0412 

[0.0373, 0.0452], =3.204 [3.102, 3.306], =0.0285 [0.0196, 0.0374]. The rank correlation 



coefficient (=0.95) shows a strong correlation between the statistical variable and the shale 

content (the linear correlation is also strong at R=0.88). 

 

 
Figure 2 

Regression relation between the first factor and shale volume in Baktalórántháza-1 

 

Hydraulic conductivity as a related quantity to shale volume can be directly derived by 

factor analysis of well-logging data. The first statistical factor can be compared to the values 

of hydraulic conductivity calculated by the Kozeny-Carman model using dominant grain-

sizes measured on the core samples and porosity by Eq. (2). The neutron-neutron readings are 

used to calculate the total porosity by using Eq. (9), where the constants of the response 

function of the neutron probe can be read from the NNGG crossplot (NNsh=4 kcpm, 

NNsd=7.5 kcpm, NNf=1 kcpm). The general regression model is 

 

  211lg cFcK  , (47) 

 

where K is the dimensionless hydraulic conductivity (K=k/k0, where k0=1 cm/s), c1 and c2 are 

site specific constants estimated with 95 % level of significance as c1=4.353 [4.956, 

3.75], c2=3.46 [3.795, 3.125]. The Pearson’s correlation coefficient (R=0.74) shows a 

strong inverse proportionality between the first scaled factor and the decimal logarithm of 

hydraulic conductivity (Figure 3). 

 



 
Figure 3 

Regression relation between the first factor and hydraulic conductivity 

in Baktalórántháza-1 

 

The use of the Csókás method requires the preliminary knowledge of effective porosity 

and the formation factor. The effective porosity and sand volume can be calculated from 

neutron (total) porosity and shale volume by Eq. (12). The amount of shaliness can be 

calculated by factor analysis or independently by using Eq. (5), where the natural gamma-ray 

intensities of sands and shales are derived from the deflections of the gamma-ray log 

(GRmin=188 cpm, GRmax=685 cpm). The formation factor is normally derived from SP and R0 

logs. In the lack of some related quantities, the Humble formula is used to calculate the 

formation factor (F=0.62/Φ2.15). With the formation factor and porosity, the Csókás method 

based on Eq. (23) gives an estimate of hydraulic conductivity without having to use grain-

size data along the entire length of the borehole. Equation (2) is applied to validate the 

resultant hydraulic conductivity log, where the dynamic viscosity is set to 0.019 Pa·s and the 

acceleration of gravity is 981 cm/s2. Since the Kozeny-Carman model cannot discard the 

measurement of grain sizes, the hydraulic conductivity is estimated only to that depth level 

where rock samples have been previously taken from the borehole. The numerical results 

show that the result of the Csókás method is in close agreement with that of the Kozeny-

Carman procedure, because the RMS error is 3.4% averaged for the places of recovered rock 

samples. The hydraulic conductivity estimated by multivariate factor analysis fits acceptably 

to that of the Csókás procedure, where the RMS is 8.8% for the processed interval. The 

estimation results of the Csókás’ formula and factor analysis are represented in Figure 4. The 

critical velocity of water flow (VC_CS) can be derived from the hydraulic conductivity log 

(k_CS) by Eq. (24), moreover an estimate can be given for the specific surface of grains by 

Eq. (21). The latter is applicable to separate permeable and impervious intervals, i.e. aquifers 

appear at lower values of specific surfaces, while aquitards are represented by suddenly 

increased values of the interpolated well log of quantity S. The results of factor analysis are 

also included in the figure. Shale volume (VSH_FA) estimated by Eq. (46) is in track 4, 

which shows a close agreement with core data (VSH_CORE). The well log of VSH_LAR 



represents the shale volume based on the Larionov formula. Hydraulic conductivity estimated 

by factor analysis (k_FA) is validated by core derived hydraulic conductivity data (k_CORE). 

Both methods gives acceptable estimates, although perhaps factor analysis works better in the 

higher range of hydraulic conductivities (e.g. in the aquifer at the depth 225240 m). The 

volumetric rock composition is illustrated in the last track in the figure for reference. 

 

 

 
Figure 4 

Well logs of estimated petrophysical and hydraulic parameters  

in Baktalórántháza-1 

 

A comparative study is made between the interpretation results of independent well log 

analyses. Figure 5 shows a strong linear correlation between the shale volumes estimated by 

the Larionov formula, factor and core analyses. The regression functions including the 

expected values of regression coefficients and their estimation errors are listed in Table 1. 

The correlation between the results of Larionov method and core analysis is somewhat 

weaker than that between results of factor and core analyses. The RMS error between the 

factor and core analyses also shows some 4 % relative decrease. 



 
Figure 5 

Regression relations between shale volumes estimated from different sources in 

Baktalórántháza-1 

 

The Csókás formula-derived hydraulic conductivity log can also be compared to the 

result of factor analysis in the entire logging interval (Figure 6). The hydraulic conductivity 

estimated by multivariate factor analysis fits acceptably to that of the Csókás procedure, 

where the correlation coefficient is R=0.79 and the RMS error is 5.3 %. In the places of core 

sampling the correlation coefficient between the Csókás and Kozeny-Carman model-based 

hydraulic conductivity is R=0.75, while it is R=0.74 between the results of factor and core 

analyses. Even so, the RMS errors in Table 1 show that the factor analysis-derived hydraulic 

conductivities are closer to those of core measurements. This seems to be caused by the larger 

discrepancies between the Csókás and Kozeny-Carman methods compared to factor analysis 

and Kozeny-Carman procedure in the higher range of hydraulic conductivities. 

The regression connections between different petrophysical/hydraulic quantities are 

examined below. It is found that there is a slight nonlinear relation between the shale volume 

and hydraulic conductivity, both estimated by factor analysis. The suggested regression 

function is 
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where the regression coefficients are obtained with 95 % level of confidence: c1
*=6.168 

[6.264, 6.072], c2
*=2.148 [2.27, 2.026], c3

*=0.4849 [0.467, 0.5028]. The rank 

correlation coefficient (=0.97) shows a strong correlation between the above variables. The 

strength of correlation between shale volume estimated by the Larionov formula and factor 

analysis-based hydraulic conductivity is also strong (=0.94); this can be approximated also 

by Eq. (48). The regression coefficients are modified a little as c1
*=6.339 [6.556, 6.122], 

c2
*=1.696 [1.947, 1.446], c3

*=0.398 [0.3719, 0.424]. Both regression functions can be 

seen in Figure 7. Other linear regression relations between shale volume and hydraulic 

conductivity are listed in Table 1, where the independent estimation results agree with each 

other. In Figure 8, the specific surface calculated by Eq. (21) can be compared to porosity, 



and dimensionless hydraulic conductivity and critical velocity of flow, whose linear 

connections are quantified in Table 1. 

 

 
Figure 6 

Regression relations between hydraulic conductivity estimation results 

in Baktalórántháza-1 

 

 
Figure 7 

Regression relations between shale volume and hydraulic conductivity 

in Baktalórántháza-1 

 



Table 1 

Regression relations between petrophysical/hydraulic parameters of groundwater formations 

estimated from different methods in Baktalórántháza-1 

Regression function amin a amax bmin b bmax RMS R 

bVaV CORE
sh

FA
sh  )()(

 0.8875 0.9657 1.044 0.0038 0.0307 0.0577 4.89 % 0.88 

bVaV LAR
sh

FA
sh  )()(

 0.9669 1.010 1.053 0.0018 0.0165 0.0313 3.25 % 0.96 

bVaV LAR
sh

CORE
sh  )()(

 0.7177 0.7964 0.8752 0.0411 0.0683 0.0955 5.08 % 0.83 

bKaK CORECS  )()( lglg  0.5886 0.6811 0.7735 -2.65 -2.107 -1.564 6.10 % 0.75 

bKaK COREFA  )()( lglg  0.4587 0.5322 0.6057 -3.158 -2.726 -2.294 5.82 % 0.74 

bKaK
CSFA


)()(

lglg  0.7432 0.7632 0.7833 -1.26 -1.139 -1.018 5.31 % 0.79 

bVaK FA
sh

CS  )()(lg  -5.733 -5.567 -5.401 -4.413 -4.355 -4.297 - -0.75 

bVaK LAR
sh

CS  )()(lg  -5.627 -5.482 -5.337 -4.443 -4.392 -4.341 - -0.78 

bVaK CORE
sh

FA  )()(lg  -5.122 -4.676 -4.229 -4.373 -4.219 -4.065 - -0.84 

bVaK CORE
sh

CS  )()(lg  -4.313 -3.371 -2.428 -5.297 -4.974 -4.651 - -0.67 

bSaV CSFA
sh  )()(

 8·10-4 9·10-4 9·10-4 6.884 7.697 8.51 - 0.74 

bSaK CSFA  )()(lg  -5·10-5 -5·10-5 -5·10-5 -4.36 -4.313 -4.267 - -0.73 

bSaΦ CSNN  )()(
 -4·10-6 -4·10-6 -4·10-6 0.3063 0.3123 0.3183 - -0.58 

bSav CSFA
c  )()(lg  -2·10-5 -2·10-5 -2·10-5 -2.356 -2.333 -2.309 - -0.73 

 

 
Figure 8 

Regression relations between specific surface and petrophysical/hydraulic quantities in 

Baktalórántháza-1 



7. Conclusions 

The feasibility of the Csókás method and statistical factor analysis have been demonstrated in 

a shallow hydrogeological environment. Both methods using only well-logging information 

give a continuous (in-situ) estimate of petrophysical/hydraulic parameters in the form of well 

logs. The Csókás method is applicable to estimate hydraulic conductivity, critical velocity of 

flow, and specific surface of grains in typical unconsolidated aquifers, which are of high 

importance in extending the information of aquifer tests. The interpretation results are 

confirmed by the Kozeny-Carman procedure using core measurements. Factor analysis of the 

same well logs gives a reliable estimate of the amount of shaliness and hydraulic 

conductivity. The independent estimation for shaliness helps us to refine the lithology of 

formations and improve the aquifer storage model. Factor analysis uses all available well logs 

sensitive to lithology and water content (including caliper and temperature logs that cannot be 

used in inverse modeling without probe response functions), integrated into one statistical 

procedure to maximize the accuracy and reliability of the interpretation results. The 

petrophysical/hydrogeophysical information can be given also to a larger investigation area 

by using a special factor analysis algorithm extended to multidimensional model geometries. 

The comparative regression study shows that the results of factor analysis are close to 

that of core analysis. Factor analysis uses five types of well logs and larger statistical sample 

in a joint statistical procedure for the estimation of hydraulic conductivity in Baktalórántháza-

1. On the contrary, the Csókás method utilizes two types (i.e. resistivity and porosity logs) in 

estimating the relevant parameter. The Csókás method can give an estimate to a larger 

number of petrophysical/hydraulic parameters, which are connected to well-logging data 

deterministically. Factor analysis has been tested earlier in deep-seated (hydrocarbon-bearing 

structures), while the Csókás formula was developed specifically for shallow sediments. 

According to field experience, an optimal solution can be obtained with the Csókás procedure 

in medium or coarse-grained (well-sorted) unconsolidated sediments with a formation factor 

of less than 10. In the case of highly cemented aquifers, the estimation results show 

considerable deviations from the Kozeny-Carman model. Also in very fine-grained rocks, the 

hydraulic conductivities show sometimes a difference of more than one order of magnitude, 

which may require the revision of the Alger formula. Taking one thing with another, the 

independent estimation results agree with each other, which is proven by the regression 

connections revealed at the well site. The well-logging techniques presented in this paper is 

hereby recommended to the community of hydrogeophysicists; the techniques can be 

complemented with new types of measurements or advanced techniques used for the 

observation of input parameters to increase the efficiency of the evaluation of groundwater 

formations. 
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9. List of symbols 

Symbol Description Unit 

a Tortuosity factor in Archie’s equation - 

c1, c2 Regression coefficients for K vs. F’1 relation - 



*

3

*

2

*

1 c,c,c  Regression coefficients for K vs. Vsh relation - 

C Temperature coefficient for calculating SP response - 

Cd Regression coefficient for d10 vs. F relation - 

Ct Temperature coefficient of ratio g/υ - 

d, D Dominant grain size m 

d10, D10 Hazen’s effective grain diameter  

d60, D60 
Grain diameter derived from the grain-size 

distribution curve at 60 % cumulative frequency  
m 

D’ Matrix of standardized well-logging data  - 

E Matrix of residuals in the decomposition of D’ - 

F Archie’s formation factor - 

F Matrix of factor scores - 

F1
’ First (scaled) factor - 

g Normal acceleration of gravity cm/s2 

GG Gamma-gamma log reading cps 

GR Natural gamma-ray intensity log reading cps 

GRsd, GRmin Natural gamma-ray intensity of sand cps 

GRsh, GRmax Natural gamma-ray intensity of shale cps 

h0 Length of filter pack m 

h Communality in the main diagonal of R*  - 

H2 Matrix of communalities - 

I Identity matrix - 

k Hydraulic conductivity m/s 

K Dimensionless hydraulic conductivity - 

L Number of applied well log types - 

m Cementation exponent in Archie’s equation - 

M Number of extracted statistical factors - 

N Number of measuring points along a borehole - 

NN Neutron-neutron intensity log reading cpm 

NNf Neutron-neutron intensity of pore-fluid cpm 

NNsh Neutron-neutron intensity of shale cpm 

NNsd Neutron-neutron intensity of sand cpm 

p Pore pressure Pa 

P Likelihood function used for the estimation of F - 

Qmax Maximal theoretical water discharge m3/s 

r0 Radius of filter pack m 

R Pearson’s correlation coefficient - 

R Correlation matrix of well-logging data - 

R* Reduced correlation matrix of well-logging data - 

RMS Root-mean-square error % 

S Specific surface of rock grains 1/m 

S Sample covariance matrix of standardized data - 

Sw Water saturation in the undisturbed formation v/v 

SP Spontaneous potential log reading mV 

SPsh Spontaneous potential of shale mV 

t   Time s 

T Temperature °C 

Rd, RD Deep resistivity log reading ohmm 

Rmf Resistivity of mud filtrate ohmm 

Rs, RS Shallow resistivity log reading ohmm 



Rw Resistivity of pore water ohmm 

R0 Resistivity of rock fully saturated with water ohmm 

Se Matrix of singular values - 

u Relative displacement vector m 

U Uniformity coefficient - 

U, V Orthogonal matrices - 

vc Critical flow velocity  m/s 

Vsh, VSH Shale volume v/v 

Vsd, VSD Sand volume v/v 

W Matrix of factor loadings - 

z Measured depth along a borehole  m 

Z Matrix of eigenvectors of R*  - 

α0 Shape factor of sample particles - 

, ,  Regression coefficients for Vsh vs. F’1 relation - 

Γ Matrix of sorted eigenvalues - 

θ Constant for testing the number of statistical factors - 

 Matrix of eigenvalues () of R* - 

  Intrinsic permeability m2 

µ Dynamic viscosity of water Ns/m2 

υ Kinematic viscosity of water m2/s 

ρ Spearman’s rank correlation coefficient - 

ρb, DEN Bulk density log reading gcm-3 

ρmf Density of mud filtrate gcm-3 

ρsd Density of sand gcm-3 

ρsh Density of shale gcm-3 

ρw Density of pore water gcm-3 

σ Data variance explained by a statistical factor - 

Φ, POR Formation porosity v/v 

 Matrix of specific variances - 

Ω Objective function used for estimating W - 

Ω Matrix of eigenvectors - 
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