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Abstract Artificial intelligence methods play an important role in solving an
optimization problem in well log analysis. Global optimization procedures such as
genetic algorithms and simulated annealing methods offer robust and highly
accurate solution to several problems in petroleum geosciences. According to
experience, these methods can be used effectively in the solution of well-logging
inverse problems. Traditional inversion methods are used to process the borehole
geophysical data collected at a given depth point. As having barely more types of
probes than unknowns in a given depth, a set of marginally over-determined inverse
problems has to be solved along a borehole. This single inversion scheme repre-
sents a relatively noise-sensitive interpretation procedure. For the reduction of
noise, the degree of over-determination of the inverse problem must be increased.
To fulfill this requirement, the so-called interval inversion method is developed,
which inverts all data from a greater depth interval jointly to estimate petrophysical
parameters of hydrocarbon reservoirs to the same interval. The chapter gives a
detailed description of the interval inversion problem, which is solved by a series
expansion-based discretization technique. Different types of basis functions can be
used in series expansion depending on the geological structure to treat much more
data against unknowns. The high degree of over-determination significantly
increases the accuracy of parameter estimation. The quality improvement in the
accuracy of estimated model parameters often leads to a more reliable calculation of
hydrocarbon reserves. The knowledge of formation boundaries is also required for
reserve calculation. Well logs do contain information about layer thicknesses,
which cannot be extracted by the traditional local inversion approach. The interval
inversion method is applicable to derive the layer boundary coordinates and certain
zone parameters involved in the interpretation problem automatically. In this
chapter, it is analyzed how to apply a fully automated procedure for the determi-
nation of rock interfaces and petrophysical parameters of hydrocarbon formations.
Cluster analysis of well-logging data is performed as a preliminary data processing
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step before inversion. The analysis of cluster number log allows the separation of
formations and gives an initial estimate for layer thicknesses. In the global inversion
phase, the model including petrophysical parameters and layer boundary coordi-
nates is progressively refined to achieve an optimal solution. The very fast simu-
lated re-annealing method ensures the best fit between the measured data and
theoretical data calculated on the model. The inversion methodology is demon-
strated by a hydrocarbon field example, which shows an application for shaly sand
reservoirs. The theoretical part of the chapter gives a detailed mathematical for-
mulation of the inverse problem, while the case study focuses on the practical
details of its solution by using artificial intelligence tools.

Keywords Well-logging � Interval inversion � Global optimization � Simulated
annealing � Cluster analysis � Calculation of hydrocarbon reserves � Hungary

1 Introduction

Geophysical surveying methods with their measuring and evaluation results support
the exploration of the Earth and its outer environment. Borehole geophysics is
abounding in observed information on the geological formations that are intersected
by the drill hole. Well-logging data measured by different probes are recorded along
depth in the form of well logs. The processing of open-hole logging data enables to
determine some geometrical (e.g., thickness or dip of layers) and petrophysical
properties such as porosity, water saturation, composition of rock matrix, and
permeability that form an integral part of geological interpretation. Nowadays, there
is an ever-increasing claim to the quality of well logs and interpretation results. This
is especially important in oil field applications, where a precise calculation of
hydrocarbon reserves should be made in complex geological environments.

The advent of inverse modeling (abbreviated as inversion)-based data processing
methods was facilitated by the quick evolution of well-logging interpretation sys-
tems in the 1980s. In the early years, deterministic techniques solving linear sets of
equations or using cross-plot-based graphical methods were applied. These methods
gave a solution in several consecutive steps at which the petrophysical parameters
were extracted one by one in different procedures (Serra 1984). It was the increased
storage capacity and processor speed of computers that promoted the use of
simultaneous processing of well logs. The benefit of using the data and petro-
physical parameters as statistical variables was unequivocal in the improvement of
the quality of interpretation results. Nowadays, the inversion methods are widely
used in the petrophysical practice as they give a quick, largely automatic and
reliable estimate to the vertical distributions of petrophysical parameters and their
estimation errors. The biggest service companies offer inversion-based well-logging
interpretation systems, e.g., Global by Schlumberger (Mayer and Sibbit 1980),
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Ultra by Gearhart (Alberty and Hashmy 1984), or Optima by Baker Hughes (Ball
et al. 1987). The development of these methods is strongly focused in scientific
research, too.

Local inversion is the most commonly used technique for the evaluation of
borehole geophysical data. Several implementations used in the oil and gas industry
are well-known. They have in common that a local value of any petrophysical
property is estimated to one depth point using the data measured by different probes
in the same depth. In the terminology of geophysical inversion, it is a narrow type
of over-determined inverse problem, where the total number of data is barely more
than that of the unknown model parameters. The data and the model are connected
by probe response functions that are used to calculate theoretical logs in the forward
modeling phase of the inversion procedure. By assuming a petrophysical model,
one can calculate theoretical well logs, which are then compared with real mea-
surements. The actual model is progressively refined until a proper fit is achieved
between the predictions and observations. Local data processing comprises a set of
separate inversion runs in adjacent measuring points for the logging interval. It is a
general experience that in the inversion of small number of observations, the
inversion result is strongly influenced by the uncertainty of measured data. The
noise of data highly affects the quality of parameter estimation; thus, the accuracy
and reliability of local inversion results are relatively limited. The measurement
accuracy of logging tools is prescribed that can be improved seldom with the use of
any data processing method. It is a fundamental task to reduce the amount of
estimation errors of inversion parameters. In one hand, one can develop more
realistic probe response functions. This also means that one tends to set a model
approximating the geological structure better. As a result, one can calculate such
data by the response functions that are closer to the real observations. Petrophysical
research deals with the development of these types of procedures that reduces the
model errors. By the above contexture, it is unequivocal that another alternative to
improve the quality of parameter estimation can only be facilitated by the further
development of the inversion procedures. The most important requirement of the
development is the improvement of accuracy and reliability of parameter estima-
tion. For this purpose, the most essential task is the increase of data used in one
interpretation procedure. In the framework of local inversion, it leads to the
expansion of log types, which is of course restricted and implies additional charges.
There is a more effective technique to increase the number of data without extra
cost. In the so-called interval inversion procedure, all data of a longer logging
interval are processed jointly to determine the characteristic values of petrophysical
parameters of several rock units. As a result of the formulation of the interval
inversion problem, at least one order of magnitude higher number of data than
unknowns can be processed together compared with local inversion. This bears
great influence on the accuracy and reliability of the extracted petrophysical
parameters. The interval inversion method was introduced in Dobróka (1995),
where depth-dependent probe response functions were used (instead of local ones)
in the forward problem to give an estimate to the vertical distributions of petro-
physical parameters for the entire logging interval. The interval inversion procedure
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allows to treat increasing number of inversion unknowns without significant
decrease of over-determination (data-to-unknowns) ratio. As a new feature, addi-
tional unknowns can be determined together with conventional petrophysical
parameters in the same inversion procedure. In Dobróka and Szabó (2012), the
possibilities of the determination of formation thicknesses were studied, where the
starting model for layer-boundaries was set by external procedure. In this chapter,
we suggest a fully automatic inversion strategy using a series expansion-based
parameter discretization scheme to estimate the formation boundary coordinates
and petrophysical parameters in one inversion procedure for a more objective
calculation of hydrocarbon reserves.

2 Inverse Problem of Borehole Geophysics

In well-logging inversion, the model parameters of the geological structure are
determined in the knowledge of measurement data and approximate formulae of
response functions. The aim of interpretation was the lithological separation of
formations and the estimation of layer thicknesses and petrophysical properties of
formations such as effective porosity, water and hydrocarbon saturation, shale
content, mineral volumes, and permeability to infer the quantity and quality of
mineral resources. Among them, only those parameters can be determined by
inversion, which are contained explicitly in the set of probe response functions and
to which almost all types of data are sufficiently sensitive.

The inverse problem of borehole geophysics is classically a joint inversion
problem with the particular feature that the quantities included in probe response
functions can be divided into two groups. The first group comprises the so-called
zone parameters, which are either constants or varying slowly over a longer depth
interval (e.g., pore-water resistivity and cementation exponent). The layer param-
eters form the second group that are nearly constant in a given layer (e.g., porosity
and mineral volume). In the practice of well-logging inversion, the zone parameters
are treated as external constants that are a priori given in the inversion procedure.
This simplification is compulsory in local inversion because the total number of
suitable well logs is no more than 10–12, which sets a limit to the number of
designated unknown quantities. If the zone parameters were treated as unknowns,
an underdetermined (ambiguous) inverse problem would be encountered. In the kth
local response equation

uðkÞ ¼ gðkÞ m1; . . .;mP;M1; . . .;MLð Þ ðk ¼ 1; 2; . . .; SÞ ð1Þ

the layer parameters ðm1; . . .;mPÞ are only determined by inversion, while the zone
parameters ðM1; . . .;MLÞ are fixed during the procedure. On the left side of Eq. (1),
the calculated value of the kth logging data can be found (S is the number of applied
probes). As uðkÞ normally represents a nonlinear functional relationship, thus a
nonlinear over-determined inverse problem is posed in the case of S > P.
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2.1 Theory of Local Inversion

In formulating the local inverse problem, all data measured in a given depth point
are collected in a column vector

d ¼ d1; . . .; dNf gT; ð2Þ

where ðd1; d2; d3. . .Þ represent different types of logs such as natural gamma-ray
intensity, neutron porosity, and density (T is the symbol of matrix transpose). The
theoretical values of the above data can be calculated by the response equations
defined in Eq. (1). Let the computed data be represented by vector

- ¼ u1; . . .;uNf gT; ð3Þ

where the kth response equation is as follows:

uðkÞ ¼ gðkÞðm1; . . .;mPÞ: ð4Þ

The nonlinear functional relationship gðkÞ can be approximated by its Taylor
series truncated at the first order

uðkÞ ¼ uðkÞðmoÞ þ
XP
i¼1

@uðkÞ

@mi

� �
mo
dm; ð5Þ

where the series expansion is performed around point mo, which denotes the vector
of initial model parameters. Equation (5) is expressed in vector representation

- ¼ -ðoÞ þGdm; ð6Þ

where -ðoÞ ¼ -ðmoÞ and Gki ¼ @uk=@mi

� �
mo

is the Jacobi’s (parameter sensitiv-

ity) matrix. The parameter correction vector dm is estimated by the damped least
squares method, which minimizes the Euclidean norm of the following deviation
vector

e ¼ d� -ðoÞ �Gdm ð7Þ

with a side condition that dmj j2 is minimal. The objective function of the inverse
problem is as follows:

E ¼
XN
k¼1

e2k þ k
XP
i¼1

dm2
i ; ð8Þ
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where λ is a positive damping factor. With the substitution of dd ¼ d� -ðoÞ, the
following solution is derived

dm ¼ GTGþ kI
� ��1

GTdd: ð9Þ

By solving Eq. (9), the inversion procedure is continued in a given point of the
model space

m ¼ mo þ dm ð10Þ

until a stopping criterion is met. The local inversion procedure differs from the
Levenberg–Marquardt algorithm only in the consideration of a priori knowledge.
Thence some criteria for the lower and upper bounds of the unknowns as well as for
the sum of the specific volumes of rock constituents (material balance equation)
must be fulfilled. Besides applying these constrains, another program development
question is that any parameter may be set fixed in the iteration procedure. The third
group of unknowns of the well-logging interpretation problem is formed by the
layer boundary coordinates or layer thicknesses. Their role in local inversion is
unique, because they are not contained explicitly in the probe response equations.
Thus, their estimation by local inversion is out of the question. The measurement
data set does contain information on the boundaries that are of great interest in oil
field applications, e.g., in the estimation of hydrocarbon reserves. The determina-
tion of layer-boundaries is realized commonly in well log analysis not within the
inversion procedure.

2.2 Depth-Dependent Response Functions

For the calculation of layer thicknesses and zone parameters, a new inversion
strategy called interval inversion was developed. Consider the petrophysical (layer)
parameters ðm1; . . .;mPÞ as the function of depth. Based on Eq. (4), the kth depth-
dependent response function is as follows:

uðkÞðzÞ ¼ gðkÞ m1ðzÞ; . . .;mPðzÞð Þ: ð11Þ

In the general case, Eq. (11) contains also the functions of zone parameters
ðM1; . . .;MLÞ, which can be determined by the interval inversion method (Dobróka
and Szabó 2011). The discretization of model parameters m1ðzÞ; . . .;mPðzÞ can be
performed by several manners. In the case of layerwise homogeneous model, a
series expansion technique with proper basis functions including the coordinates of

boundaries answers the purpose. Let BðiÞ
1 ; . . .;BðiÞ

Qi

� �
be the series expansion coef-

ficients of the ith model parameter miðzÞ. The response function in Eq. (11) takes
the form as follows:
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uðkÞðzÞ ¼ gðkÞ Bð1Þ
1 ; . . .;Bð1Þ

Q1
; . . .;BðPÞ

1 ; . . .;BðPÞ
QP

; Z1; . . .; ZR; z
� �

; ð12Þ

where ðZ1; . . .; ZRÞ denote the coordinates of layer-boundaries (Qi is the requisite
number of expansion coefficients describing the relevant model parameter). The
above response function is valid in the entire interval, in which the series expansion
coefficients must be chosen in such a way that the values of uðkÞðzÞ in each depth fit
to measurement data dðkÞðzÞ with the highest possible accuracy. The aim of the
inversion procedure was the estimation of coefficients B, in which all data of the
observed interval are inverted. This inverse problem is highly over-determined,
because the number of data is several times higher than that of the unknown
expansion coefficients. In local inversion, the over-determination ratio is at the best
two. On the contrary, in interval inversion the same ratio may reach 50–60. Under
this circumstance, the boundary coordinates ðZ1; . . .; ZRÞ can be treated also as
inversion unknowns to determine them with the expansion coefficients without
significant reduction of the over-determination ratio. The above procedure is called
interval inversion including the depth interval where the series expansion is applied
for the model parameters (Dobróka 1995). It is assumed that dðkÞ in a given depth
represents a punctual data, i.e., the linear dimensions of the observed volume are
smaller than the thickness of layers.

3 The Theory of Interval Inversion Method

In geophysical data processing, the term of joint inversion is used when different
types of data sets are inverted together in one interpretation procedure. The data sets
are measured either by different physical principles or by the same principle but in
various measurement arrays. All data measured at different spread layouts carry
information on the same geological structure. The theoretical values of data sets
integrated into the joint inversion procedure are calculated in the knowledge of all
model parameters by a proper forward modeling algorithm, that is, the data may
depend on each model parameter. The more the parameters of the geological
structure appear in the determination of different data sets, the more successful the
solution to the inverse problem can be given. The use of such data sets that are
depending only on separated groups of model parameters is unbeneficial compared
with independent inversion. In the latter case, the solution will not be more accurate
or reliable at all. The local inversion of well-logging data utilizes several data sets
based on different physical principles (e.g., nuclear, acoustic, and electric methods),
where each datum in the inversion procedure is acquired from the same depth. The
observed datum does not depend on the parameters of outlying layers. In this case,
therefore, the term of joint inversion can be used only in a restricted sense. It can
readily be understood that in the interval inversion approach, it is easy to develop
such procedures that allow to exploit all the advantages of joint inversion.
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For approximating the depth variations of petrophysical parameters
m1ðzÞ; . . .;mPðzÞ, a series expansion technique is suggested as follows:

miðzÞ ¼
XQi

q¼1

BðiÞ
q wq z; Z1; . . .; ZRð Þ; ð13Þ

where BðiÞ
q are expansion coefficients, wqðz; Z1; . . .; ZRÞ are properly chosen (known)

depth-dependent basis functions including the layer-boundaries (Qi is the requisite
number of expansion coefficients describing the ith model parameter). Combining
Eqs. (12) and (13), the total number of unknowns is

P
Qi, while that of the data isP

Nk . Let us define the data vector of the kth well log as follows:

dðkÞ ¼ dðkÞ1 ; . . .; dðkÞNk

n oT
: ð14Þ

The kth data in the jth depth is calculated by

uðkÞ
j ¼ uðkÞðzjÞ ¼ gðkÞ Bð1Þ

1 ; . . .;Bð1Þ
Q1
; . . .;BðPÞ

1 ; . . .;BðPÞ
QP

; zj
� �

ð15Þ

and the vector of calculated data is as follows:

-ðkÞ ¼ uðkÞ
1 ; . . .;uðkÞ

j ; . . .;uðkÞ
Nj

n oT
: ð16Þ

The data vector of the joint inversion problem including S number of well logs is
as follows:

d ¼ dð1Þ1 ; . . .; dð1ÞN1
; dð2Þ1 ; . . .; dð2ÞN2

; . . .; dðSÞ1 ; . . .; dðSÞNs

n oT
; ð17Þ

and the vector of all calculated data analogously is as follows:

- ¼ uð1Þ; . . .;uðSÞ
n oT

: ð18Þ

The series expansion coefficients in Eq. (13) represent the unknowns of the joint
inversion problem, thus the combined parameter vector is as follows:

m ¼ Bð1Þ
1 ; . . .;Bð1Þ

Q1
; . . .;BðPÞ

1 ; . . .;BðPÞ
QP

n oT
; ð19Þ

with which the forward problem can be written as follows:
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- ¼ gðmÞ ¼ gð1Þ1 ðmÞ; . . .; gð1ÞN1
ðmÞ; . . .; gðSÞ1 ðmÞ; . . .; gðSÞNs

ðmÞ
n oT

: ð20Þ

The measurement data are always contaminated with some amount of noise. On
the other hand, the data calculated by Eq. (20) contain modeling errors resulting
from discretization and other physical simplifications. The overall error between the
two quantities is defined as follows:

e ¼ d� gðmÞ; ð21Þ

which is not a zero vector. Inversion methods find a solution at the minimum of
some norm of deviation vector e. The response functions are usually nonlinear,
thence the inverse problem can be solved by either global or linearized inversion
methods.

In case of using linearized inversion, the starting point mo in model space is
considered not too remote from the solution m. The vector of parameter corrections
in Eq. (10) is sought. The calculated data can be approximated by Eq. (5). The kth
element of the deviation vector defined in Eq. (21) is as follows:

ek ¼ dk � ukðoÞ �
XP
i¼1

@gk
@mi

� �
mo

dmi; ð22Þ

where ukðoÞ ¼ gkðmoÞ. By introducing the notation ddk ¼ dk � ukðoÞ and

Gki ¼ @gk=@mi

� �
mo
, the previous vector is as follows:

e ¼ dd�Gdm: ð23Þ

The determination of dm ensures to reach a closer point to the solution. The
optimal estimate can be extracted by an iterative method. The correction of the
actual model in the lth step is as follows:

mðlÞ ¼ mðl�1Þ þ dmðlÞ; ddk ¼ dk � ukðmðl�1ÞÞ; Gki ¼ @gk
@mi

� �
mðl�1Þ

: ð24Þ

If the solution is bound to the minimum of the Lp norm of the deviation vector
given in Eq. (23)

E ¼
XN
k¼1

ddk �
XP
i¼1

Gkidmi

�����
�����
p

; ð25Þ

then the undermentioned set of conditions

Well Log Analysis by Global Optimization-based Interval Inversion Method 253



@Lp
@mh

¼ 0 ðh ¼ 1; 2; . . .;PÞ ð26Þ

must be fulfilled. As a result of derivation, a nonlinear set of equations is obtained

dm ¼ GTWG
� ��1

GTWdd; ð27Þ

which can be solved by the iteratively reweighted least squares (IRLS) method that
re-calculates the diagonal elements Wks ¼ ekj jp�2dks of the weighting matrix W in
each iteration step.

3.1 Basis Functions Used in Interval Inversion

The selection of basis functions is not strictly limited, but the finding of suitable
ones may greatly improve the accuracy and reliability of the inversion result. In
case of proper basis functions, a relatively small number of additive terms are
enough to be used, because the effect of truncation in Eq. (13) is negligibly small.
One should tend to reduce the number of expansion coefficients to maintain the
numerical stability of the inversion procedure.

In geophysical inversion, there are several applications of using simple models.
In borehole geophysics, the layerwise homogeneous model is of high importance.
This situation can be described easily by substituting a combination of Heaviside
basis functions into Eq. (13)

miðzÞ ¼
XQi

q¼1

BðiÞ
q wqðzÞ ¼

XQi

q¼1

BðiÞ
q uðz� Zq�1Þ � uðz� ZqÞ
	 


; ð28Þ

where Zq is the depth coordinate of the qth layer and Q is the number of homo-
geneous layers. The basis function wq introduced in Eq. (28) is always zero except
in the qth layer, which is an element of an orthogonal sequence of functions

Zzmax

0

WqWq; dz ¼ 0;
Zq � Zq�1;

�
if
if
q 6¼ q0

q ¼ q0 : ð29Þ

It arises that the series expansion coefficient in the qth layer equals to the

petrophysical parameter in the same layer, that is, BðiÞ
q ¼ miðZq�1\z\ZqÞ. The

series in Eq. (13) can be rewritten as follows:
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miðzÞ ¼
XQi

q¼1

mðiÞ
q WqðzÞ; ð30Þ

where mðiÞ
q is the value of the ith parameter in the qth layer. It is obvious that the

inverse problem can be solved by the smallest possible number of unknowns. On
the other hand, the layer-boundaries appear in the argument of the basis function
wq, which can be extracted by the interval inversion method.

The variation of petrophysical parameters within the layer can be approximated
by polynomial series expansion

miðzÞ ¼
XQi

q¼1

BðiÞ
q PqðzÞ; ð31Þ

where PqðzÞ represents some polynomial, for instance Legendre polynomials. The
meaning of expansion is not demonstrative than in Eq. (30). Similarly, the selection
of parameter Q is less unequivocal. The number of unknowns can be much higher
than in the homogeneous case. A trade-off must be taken between the vertical
resolution of model parameters and the stability of the inversion procedure. To
relieve the task, in some practical cases the combination of Eqs. (30) and (31) is
used to get an adequate solution. If the layerwise homogeneous model contains an
inhomogeneous layer, the following series expansion can be used

miðzÞ ¼
XQi

q ¼ 1
q 6¼ q0

mðiÞ
q WqðzÞ þ

XU
u¼1

BuPu z� Zq0�1
� �

; ð32Þ

where U is the number of additive terms used in the approximation of variation in
the q0th layer. The above problem was solved by Dobróka and Szabó (2005) using a
combined inversion algorithm based on the subsequent use of global and linearized
optimization methods.

3.2 Layer-Thickness Determination by Interval Inversion

The greatly over-determined interval inversion method allows to treat increasing
number of inversion unknowns without significant decrease of accuracy in
parameter estimation. Some groups of the inversion unknowns are contained in
local response functions (e.g., zone parameters); some are not included (layer
thicknesses). The latter can be determined by the interval inversion of the combined
data set defined in Eq. (17). Consider the model vector of the inverse problem
including the layer boundary coordinates
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m ¼ Bð1Þ
1 ; . . .;Bð1Þ

Q1
; . . .;BðPÞ

1 ; . . .;BðPÞ
QP

; Z1; . . .; ZR
n oT

: ð33Þ

The number of unknowns is RþPQi that are substituted into Eq. (12) to calculate
theoretical well logs in the forward problem. The number of data is specified in
Eqs. (17) and (18). The connection between model and data - ¼ gðmÞ contains the
layer boundary coordinates; therefore, Eq. (5) modifies as follows:

uk ¼ gkðmoÞ þ
XP
i¼1

@gk
@mi

� �
mo
dmi þ

XR
r¼1

@gk
@Zr

� �
mo
dZr; ð34Þ

where dZr ¼ Zr � Zð0Þ
r is an element of the model correction vector dm. In Eq. (23),

the following Jacobi’s matrix is used

Gki ¼
@gk
@mi

� �
mo
; if i ¼ 1; 2; . . .;P

@gk
@Zi

� �
mo
; if i ¼ Pþ 1; . . .;Pþ R

:

8><
>: ð35Þ

The minimization of the Lp norm of the deviation vector leads to the solution of
the inverse problem given by Eq. (27). The iterative method gives an estimate for
the series expansion coefficients and layer boundary coordinates. The determination
of layer-boundaries can be made easily by using a series expansion based on
Eq. (28). However, if it is required, the method can be combined with the scheme of
polynomial discretization. The estimation of layer-boundaries can be performed
most efficiently by using a global optimization method.

4 Global Inversion by Simulated Annealing Method

The performance of inversion methods highly depends on how successfully the
optimum of the objective function defined in Eq. (25) is found. Conventional
interpretation systems offer linear optimization tools that give quick and satisfactory
results in case of having a suitable initial model. The weakness of these gradient-
based searching methods is that they tend to find a solution at a local optimum of
the objective function. This problem can be avoided by using a global optimization
method, which finds the absolute optimum of the same function. There is another
typical problem of linear interval inversion. In case of linear optimization, the
partial derivatives with respect to depth in the Jacobi’s matrix can only be deter-
mined in a rough approximation, because the difference quotient with a depth
difference being equal to the distance between two measuring points. This may lead
to a numerically instable inversion procedure. Global optimization does not require
the computation of derivatives. For the solution of global inverse problems,
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artificial intelligence tools can be used effectively. Szabó and Dobróka (2013)
published previously a float-encoded genetic algorithm-based interval inversion
algorithm for oil field and hydrogeological applications. In this study, a fast sim-
ulated annealing (SA) method is suggested for the determination of layer param-
eters and formation thicknesses.

The conventional SA method was developed by Metropolis et al. (1953). In
metallurgy, the removal of work-hardening is realized by a slow cooling manipu-
lation from the temperature of liquid alloy state. This process reduces progressively
the kinetic energy of a large number of atoms with high thermal mobility, which is
followed by the starting of crystallization. Theoretically, the perfect crystal with
minimal overall atomic energy can be produced by an infinitely slow cooling
schedule. This is analogous with the stabilization of the inversion procedure at the
global optimum of the objective function. A quick cooling process causes grating
defects and the solid freezes in imperfect grid at a relatively higher energy state. It is
similar to the trapping of the inversion procedure in a local minimum. However, the
atoms may escape from the high-energy state owing to a special process called
annealing to achieve the optimal crystal grating by a slower cooling process. The
SA algorithm employs this technology to search the global optimum of the
objective (in the terminology energy) function such as E defined in Eq. (25). At
first, the components of the model vector defined in Eq. (33) are modified properly.
The modification of the ith model parameter in the lth iteration step is as follows:

mðlþ1Þ
i ¼ mðlÞ

i þ b; ð36Þ

where b < bmax is a perturbation term (bmax is decreased appropriately as the
iteration procedure progresses). During the random seeking, the energy function E
(m) is calculated and compared with the previous one in every iteration step. The
acceptance probability of the new model depends on the Metropolis criteria

PðDE; TÞ ¼ 1; if DE� 0
e�DE=T ; otherwise

;

�
ð37Þ

where the model is always accepted when the value of energy function is lower in
the new state than that of the previous one. If the energy of the new model
increased, there is also some probability of acceptance depending on the values of
energy E and control temperature T. If P(ΔE) ≥ α fulfills, the new model is
accepted, else it is rejected (α is a random number generated with uniform prob-
ability from the interval of 0 and 1). These criteria assure the escape from the local
minima. Geman and Geman (1984) proved that the following cooling schedule is
the necessary condition to find the global optimum

TðlÞ ¼ T0
lnðlÞ ðl[ 1Þ; ð38Þ
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where T0 is a properly chosen initial temperature. The SA algorithm is very
effective, but the logarithmic reduction of temperature in Eq. (38) is rather time-
consuming. Several attempts were made to shorten the CPU time. Ingber (1989)
proposed a modified SA algorithm called very fast simulated re-annealing (VFSR).
Consider different ranges of variation for each model parameter

mðminÞ
i �mðlÞ

i �mðmaxÞ
i : ð39Þ

The perturbation of the ith model parameter at iteration (l + 1) is as follows:

mðlþ1Þ
i ¼ mðlÞ

i þ yi mðmaxÞ
i � mðminÞ

i

� �
; ð40Þ

where yi is a random number between −1 and 1 generated from a specified non-
uniform probability distribution function. The global optimum is guaranteed when
the decrease of the ith individual temperature follows

T ðlÞ
i ¼ T0;ie

�ci
ffi
lP

pð Þ ð41Þ

Equation (41) specifies different temperature to each model parameter, where T0,i
is the initial temperature of the ith model parameter, ci is the ith control parameter,
and P is the number of model parameters. The acceptance rule of the VFSR
algorithm is the same as that used in Metropolis SA method, but the exponential
cooling schedule assures much faster convergence to the global optimum than the
logarithmic one suggested in Eq. (38).

5 Selection of Initial Model by Cluster Analysis

Multivariate statistical methods such as regression, factor, and cluster analyses help
to find similarities between petrophysical properties of rocks, reduce problem
dimensionality or explore non-measurable (latent) information from the observa-
tions, and arrange data into groups to reveal different lithological characteristics of
the investigated formations. This a priori information can be useful in petrophysical
modeling, facies, or trend analysis and in geophysical inversion to set an initial
model as input for the inversion procedure. Clustering methods are applicable to
sort data into groups in such a way that the S dimensional objects specified by well
logs measured from given depths are more similar than other ones observed from
different depths. From the point of the interval inversion method, it is of great
importance that objects connected to the same cluster define approximately the
same lithological character, while other clusters represent dissimilar ones.

Agglomerative cluster analysis builds a hierarchy from the observations by
progressively merging clusters. At the beginning, we have as many clusters as
individual elements. In the first step, the closest points are coupled together to form
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a new cluster. In each following step, the distances between objects are re-calcu-
lated and the procedure is continued until all elements are grouped into one cluster.
Several distance definitions can be used as a measure of dissimilarity between the
pairs of observed objects such as Euclidean (L2 norm based), Manhattan (L1 norm
based), or Mahalanobis (sample covariance based). During the procedure, the
distances between the elements of the same group are minimized, while they are
maximized between the clusters simultaneously. For the reconnection of clusters,
the Ward’s linkage criterion is followed that minimizes the deviances of (xi − C),
where xi is the ith object and C is the centroid (average of elements) of the given
cluster (Ward 1963). The result of cluster analysis is a dendrogram that shows the
hierarchy of clusters and the connections between them at different distances.

In this study, cluster analysis is used as a preliminary data processing step before
inverse modeling. It is shown in Fig. 1 that clustering makes use of the complete
wellbore data set originated from the entire logging interval. By finding the simi-
larities between the well logs, the objects are grouped into clusters. The log of
clusters correlates well with the lithology variation along a borehole. The change in
the group number of clusters appearing on the log gives the positions of layer-
boundaries, which can be read automatically by computer processing. The esti-
mated layer boundary coordinates as important a priori information for constructing
the initial model serve as input for the interval inversion procedure. In an earlier
study, the layer-boundaries extracted by cluster analysis were fixed during the
interval inversion procedure (Szabó et al. 2013). However, similar to the layer
parameters, the layer boundary coordinates may be treated as unknowns in the
interval inversion procedure.

Fig. 1 Scheme of cluster analysis-assisted global inversion procedure
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6 Oil field Application

6.1 Results of Cluster Analysis

In a Hungarian hydrocarbon borehole (Well No. 1), nine well logs were used for
testing the interval inversion method. The following log types formed the input of
clustering such as caliper (CAL), compensated neutron porosity (CN), gamma–
gamma density (DEN), acoustic (primary wave) interval time (AT), natural gamma-
ray intensity (GR), deep resistivity (RD), microlaterolog resistivity (RMLL), shallow
resistivity (RS), and spontaneous potential (SP). In the first step of the procedure,
hierarchical cluster analysis was applied to find a proper initial model for inversion
processing (Fig. 1). In the processed interval, a sedimentary complex made up of
seven unconsolidated shaly sandy beds were deposited. Three lithological categories
were specified, namely shale, shaly sand, and sand. At this stage of interpretation, this
lithological resolution was enough for finding the layer-boundaries, because the rel-
ative volumes of rock matrix and shale could be estimated in the inversion phase. The
standardized Euclidean distance evaluating each datum in the sum of squares inver-
sely weighted by the sample variance was used for measuring the distance between
data objects. A hierarchical cluster tree was created by using the Ward’s linkage
algorithm (Fig. 2a). In Fig. 2b, the ordinal numbers of leaf nodes can be seen that were
assigned to each object. Since some leaf nodes corresponded to multiple objects, the
total number of nodes was 30. Three clusters can be separated if the tree is cut at
centroid distance 1. The layer-boundaries can be traced out in the well log of cluster
numbers. According to traditional interpretation, the inflection points of high ampli-
tudes in the GR log indicate rock interfaces. The layer boundary coordinates can be
well approximated by the steps between the clusters of sand and shale, i.e., cluster 2
and cluster 3. The depth coordinates indicated by black arrows in Fig. 2c were chosen
as initial model parameters for the subsequent interval inversion procedure.

The combination of well logs usually gives useful information on lithology,
petrophysical, and zone parameters. In Fig. 3, the three-dimensional cross-plots of
clustered well-logging data can be seen which specify several site-specific constants
for calculating data in forward modeling. These constants can be used directly in the
probe response functions. For instance in Fig. 3a, the neutron porosity of sand
(13 %) and shale (25 %) and the natural gamma-ray intensity of sand (45 API) and
shale (140 API) can be chosen for the given hydrocarbon zone. Several observed
data types show strong correlation with each other. In Fig. 3c, d, the nonlinear
connection between natural gamma-ray intensity and resistivity is eye-catching. The
detailed list of correlation relationships between the data is contained by the cor-
relation matrix including the Pearson’s correlation coefficients (Table 1). The
highest correlations are between lithology logs (GR and CAL, SP and GR) and
saturation logs (RS and RD). Porosity-sensitive logs also show strong correlations
with lithology logs (DEN and CAL, SP and CAL, SP and CN, GR and DEN, CN
and GR). The negative elements of the correlation matrix show inverse propor-
tionality between the data variables (GR and SP).
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6.2 Forward Problem of Well-Logging

Themathematical relationships between the petrophysical properties andwell-logging
data are dominantly empirical. In the case study, the parameters of the initial model are
effective porosity (POR), shale volume (VSH), water saturation of the invaded zone
flooded by drilling mud (SX0), water saturation of the virgin zone occupied by
original pore fluid (SW), and sand volume (VSD = 1 – POR − VSH). These
parameters and other derived ones underlie the calculation of hydrocarbon reserves.
The following set of response functions was used to approximate observable data

DENTH ¼ POR SX0 � DEMFð Þ þ ð1� SX0)DEHC½ �
þ VSH � DESHþ VSD � DESD; ð42Þ

GRTH ¼ GRSD þ 1
DENTH

VSH � GRSH � DESH
þ VSD � GRSD � DESD

 !
; ð43Þ

Fig. 2 Results of cluster analysis in Well No. 1. a Dendrogram. b Well log of leaf node numbers.
c Initial layer-thicknesses
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Fig. 3 Clustered data represented in the form of cross-plots in Well No. 1

Table 1 Correlation matrix of well logs measured in Well No. 1

CAL CN DEN AT GR RD RMLL RS SP

CAL 1.0 0.67 0.89 −0.34 0.83 −0.53 0.82 −0.52 −0.74

CN 0.67 1.0 0.68 0.16 0.88 −0.59 0.47 −0.56 −0.76

DEN 0.89 0.68 1.0 −0.51 0.84 −0.58 0.82 −0.59 −0.73

AT −0.34 0.16 −0.51 1.0 −0.01 0.16 −0.51 0.19 0.10

GR 0.83 0.88 0.84 −0.01 1.0 −0.59 0.68 −0.61 −0.81

RD −0.53 −0.59 −0.58 0.16 −0.59 1.0 −0.41 0.92 0.68

RMLL 0.82 0.47 0.82 −0.51 0.68 −0.41 1.0 −0.41 −0.59

RS −0.52 −0.56 −0.59 0.19 −0.61 0.92 −0.41 1.0 0.71

SP −0.74 −0.76 −0.73 0.10 −0.81 0.68 −0.59 0.71 1.0
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CNTH ¼ POR SX0 � CNMFð Þ þ ð1� SX0)CNHC½ �
þ VSH � CNSH þ VSD � CNSD; ð44Þ

ATTH ¼ POR SX0 � ATMFð Þ þ ð1� SX0)ATHC½ �
þ VSH � ATSHþ VSD � ATSD; ð45Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RDTH

p ¼ VSH 1�VSH=2ð Þffiffiffiffiffiffiffiffiffiffi
RSH

p þ
ffiffiffiffiffiffiffiffiffiffi
POR

p� �BMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BA � RWp

" # ffiffiffiffiffiffiffiffi
SW

p� �BN
; ð46Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
RSTH

p ¼ VSH 1�VSH=2ð Þffiffiffiffiffiffiffiffiffiffi
RSH

p þ
ffiffiffiffiffiffiffiffiffiffi
POR

p� �BMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BA � RMF

p
" # ffiffiffiffiffiffiffiffiffi

SX0
p� �BN

: ð47Þ

On the left side of Eqs. (42)–(47), the theoretical (TH) values of the well-logging
data stand, while on the right, the layer parameters (POR, VSH, SX0, SW, and
VSD) and zone parameters can be found. The latter represent the physical prop-
erties of mud filtrate (MF), water (W), hydrocarbon (HC), shale (SH), and sand
(SD). They are treated as unvarying quantities known from cluster analysis (Fig. 3)
or other a priori information (laboratory and well-site reports). The textural con-
stants, such as cementation exponent (BM), saturation exponent (BN), and tortu-
osity factor (BA), can be estimated from the literature, laboratory data, or the
interval inversion method (Dobróka and Szabó 2011). In complex reservoirs, the
rock matrix may be composed of several mineral components. Depending on the
interpretation problem, the relative volumes of rock constituents can also be
extracted within the interval inversion procedure (Dobróka et al. 2012). By using
the response Eqs. (42)–(47), an estimate for the model (layer) parameters can be
given by the inversion procedure.

6.3 Results of Interval Inversion

The interval inversion procedure was performed on suitable well logs (CN, DEN,
AT, GR, RD, and RS) of Well No. 1. Based on the results of cluster analysis, the
following depth coordinates were chosen as initial model parameters for interval
inversion: 1871, 1880, 1882, 1888, 1890, and 1898 m. The last (seventh) coordinate
was the depth at the bottom of the logging interval. As a result, seven shaly sandy
layers were traced out. Within three permeable intervals, the separation between
DEN and CN logs confirmed the presence of hydrocarbons. In the model
approximation, constant layer parameters (POR, VSH, SX0, and SW) were
assumed (VSD was calculated deterministically in every iteration steps), which
represented a high over-determination ratio (62 with 2100 data, 28 layer parameters,
and 6 boundary coordinates) and very stable inversion procedure.
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The unknowns of the inverse problem were the series expansion coefficients
given in Eq. (28) and the layer boundary coordinates. The VFSR algorithm was
used to give a quick estimate to the global optimum of the L2-norm-based energy
function. The maximal number of iteration steps was set to 10,000. The logarithmic
cooling process based on Eq. (38) was applied with an initial temperature of 0.01.
The lower and upper limits of layer parameters were 0 and 1, respectively. The
layer-boundaries were allowed to vary within 0 and 10 m. The rate of convergence
of the inversion procedure was smooth and progressive as it is seen in Fig. 4, where
the root mean squared errors of the relative differences between the measured and
calculated data were plotted. The data distance of the final result is influenced by
the data noise and the model approximation. In Fig. 5, the change of layer thick-
nesses calculated from the boundary coordinates can be followed. Until the 7000th
iteration step, all thicknesses had attained to their optima. Then, only the layer
parameters showed considerable variation.

In the depth scale of Fig. 6, the boundary coordinates estimated by the interval
inversion procedure are marked. The method distinguished the permeable and non-
permeable intervals within the hydrocarbon zone and gave a proper estimate to rock
interfaces as they correlate well with the layer-boundaries inferred from the GR log.
The well logs of estimated layer parameters are in tracks 6–8. The pore space was
divided into two separate parts filled with salty water and hydrocarbons. The
movable and irreducible hydrocarbon saturation were derived from the inversion
results by basic equations (Movable HC = SX0 − SW, Irreducible HC = 1 − SX0).
The hydrocarbon reserves are estimated from the movable hydrocarbon saturation,
porosity, and the total volume of the reservoir rock. The latter can be estimated

Fig. 4 The convergence of the interval inversion procedure
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Fig. 6 The well logs of observed data and interval inversion results

Fig. 5 The variation of layer-thicknesses during the interval inversion procedure
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from ground geophysical surveys (e.g., seismic) and multi-borehole data. A model
reliable estimate of oil and gas reserves is supported by the results of the interval
inversion procedure. Szabó and Dobróka (2013) made a comparison between the
local and interval inversion methods. It was shown that the estimation error of
porosity and water saturation can be reduced significantly by the interval inversion
method. This improvement bears influence on the calculation of hydrocarbon
reserves. The unit volume of rock was composed of porosity, shale content, and
sand volume in different proportions along the interval (track 7). The absolute
permeability shown in track 8 for each formation was calculated by the knowledge
of porosity and bound water saturation (chosen as 0.1) in the hydrocarbon reser-
voirs (Timur 1968).

7 Conclusions

Advanced data processing methods are essential to extract reliable petrophysical
information from geophysical data sets. An intensive research of inversion methods
is being made worldwide in all fields of geophysics. In oilfield applications, the
proper interpretation of in situ borehole logging data is especially important,
because these methods lay the foundations to hydrocarbon reserve calculations. In
this chapter, a new inversion methodology was presented, which is now fully
automatized by giving an estimate to petrophysical parameters and layer-boundaries
in a joint inversion procedure. The cluster analysis-assisted interval inversion
method assures a greatly over-determined inverse problem to give accurate and
reliable solution along the entire borehole. The specialty of the method is that the
basis functions of series expansion can be chosen arbitrarily. The optimal set of
basis functions to be in use depends on the variation of lithology and pore fluid
types along a borehole. In this study, a layerwise homogeneous model was chosen
to reduce the number of inversion unknowns as far as possible. This approach keeps
the numerical stability of the inversion procedure in view. However, there is
nothing to prevent from the improvement of the vertical resolution of the interval
inversion method, but it goes with the relative increase of the number of series
expansion coefficients. As the problem is highly over-determined, it can be allowed
to some extent. Practically, a trade-off must be taken between the number of
unknowns (resolution) and stability of the inversion (unique solution) procedure as
they are inversely proportional. An adequate solution is to choose orthogonal basis
functions such as Legendre polynomials in the development of series, in which case
the correlation between the estimated model parameters and the parameter esti-
mation errors is relatively the lowest. It is suggested to apply preliminary cluster
analysis to find lithological similarities in the data set, which separates such
intervals where the polynomial discretization can be performed most effectively.
This technical solution leads to the reduction of data and model distances. The
inverse problem also affected by the quality of forward problem solution. In the
probe response equations, there are several zone parameters that could be chosen
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properly for the given well-site. An objective solution can be given by the interval
inversion procedure as the zone parameters most sensitive to data can be treated as
inversion unknowns. Another strength of the method is the possibility to extend the
inverse modeling to multi-borehole applications by expanding the model parame-
ters into series of bivariate basis functions. All of the above properties confirm the
feasibility of the interval inversion methods and the use of global optimization
techniques preferably very fast simulated re-annealing and float-encoded genetic
algorithm in petroleum geoscience applications.
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