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Incomplete Krätzel Function Model of Leaky
Aquifer and Alike Functions

Tibor K. Pogány, Árpád Baricz, Imre Rudas

Abstract—In this note our aim is to derive certain important
properties of a general mathematical model given in the form
of an incomplete Krätzel function which contains as sub–models
the generalized leaky aquifer function, the van’t Hoff thermal
analysis temperature integral and the so–called thermonuclear
integral among others.

Index Terms—Leaky aquifer function, Krätzel function, incom-
plete Krätzel function, Laguerre–type inequality, temperature
integral, thermonuclear integral, Turán–type inequality, upper
incomplete gamma function, generalized incomplete gamma func-
tion, log–convexity, bilateral bounding inequalities.

I. INTRODUCTION

SEVERAL mathematical models possess integral represen-
tations which kernel contains exponential kernel function

of rational argument, viz.

K a,b
α,β(x) = exp

{
−axα − bx−β

}
, (1)

where a, b ≥ 0;α ∈ R+, β ∈ R and the integration domain is
inside the positive real half–axis, but instead of the massive
notation K a,b

α,β we will signify this kernel by convention as
Kα,β any time when parameters a, b are not specified. The
first of these concepts is the leaky aquifer function [1], [2]

W (a, b) =

∫ ∞
1

K1,1(x)
dx

x
,

which can be rewritten into [3]

W (a, b) =

∫ ∞
√

a
b

exp
{
−
√
ab(x+ x−1)

} dx

x
;

we point out that W (a, b) approaches 2K0(2
√
ab) when

ab−1 → 0+ (here K0 denotes the modified Bessel function
of the second kind of zero order). The denomination is
coming from hydrology, since W occurs in water levels, in
pumped aquifer systems with finite transmissivity, and leakage
modeling.

The plausible extension of the leaky aquifer function
W (a, b) reads as follows

Wν(a, b;α, β) =

∫ ∞
αβ−1

xν K a,b
α,β(x)

dx

x
, (2)
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Economics, Babeş-Bolyai University, 400591 Cluj–Napoca, Romania and
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which we call generalized leaky aquifer function; we notice
that actually W (a, b) = W0(a, b; 1, 1). The range of the newly
introduced parameters is

R? = {(α, β, ν) ∈ R3 : αβ > 0} .

The kernel K1,1(x) also builds the temperature integral
in several thermal analysis models among others the ones
introduced by Arrhenius, van’t Hoff and Kooij, compare [4,
p. 84, Table 1]. The most exhaustive from these concepts is
van’t Hoff’s model II [5], [4, p. 84, Table 1, (e)], which reads
in our setting

pB

(
E

RT

)
= A0

∫ ∞
Ts

xBK1,1(x)dx ,

where E,A0, R stand for the energy of activation, the pre–
exponential factor and the gas constant respectively, while T
and Ts = Ts(t) ≥ 0 denotes the absolute temperature and the
time–dependent initial temperature when the reaction starts.
Let us mention that the Arrhenius and Kooij equations/models
are sub–models of the van’t Hoff’s [4, p. 84 et seq.].

The next important use of the kernel (1) occurs in modeling
the reaction rates for thermal particles, having in mind the
average speed in the Maxwell–Boltzmann distribution:

〈σ〉 = M0

∫ ∞
0

Eσ(E) exp

{
− E

kT

}
dE, M0 > 0 ,

relative to the functional σ(E), where kT = 0.86 keV.
In quantum mechanics application we expect

σ(E) =
S(E)

E
exp

{
−bE− 1

2

}
,

where S(E) stands for the astrophysical S-factor, which
encodes nuclear contribution to reaction and it is slowly
varying in E. All together result in the thermonuclear rates
integral (in short thermonuclear integral):

〈σ〉 = M0

∫ ∞
0

S(x) K1, 12
(x) dx .

In the case when the S–factor behaves according to the power
law, that is S(E) ∝ EB , we have

〈σ〉B = M1

∫ ∞
0

xB K1, 12
(x) dx .

Now, we recognize the similarities with the leaky aquifer and
van’t Hoff model. Different kind thermonuclear integrals were
studied for instance in [6, p. 728] and in the important recently
issued monograph [7] by Mathai et al., we suggest to consult
the extensive references lists therein too.



However, integrals involving kernel K a,b
α,β(x) occur in the

so–called (complete) Krätzel function [8], [9], [10], which is
defined for u > 0, ρ ∈ R and ν ∈ C, being such, that <(ν) <
0 for ρ ≤ 0. This special function reads

Zνρ (u) =

∫ ∞
0

xν−1e−x
ρ−ux−1

dx. (3)

The main difference between the leaky aquifer, the temperature
and thermonuclear integrals from one, and the Krätzel integral
(3) from another side is in the integration domain, which don’t
always coincide. To cover this disadvantage we introduce the
incomplete Krätzel function concept. In this note our aim is
to study this approach.

II. ON THE INCOMPLETE KRÄTZEL FUNCTION

Let us denote IA(x) the indicator function of the set A, that
is IA(x) = 1 when x ∈ A, and = 0 elsewhere.

Definition 1: The incomplete Krätzel function ζνρ (·;A) with
respect to the set A ⊆ R which possesses positive Lebesgue
measure λ(A ∩ R+) > 0, one defines as the convolution type
integral

ζνρ (u;A) =

∫ ∞
0

xν−1K 1,u
ρ,1 (x) IA(x) dx

=

∫
A∩R+

xν−1K 1,u
ρ,1 (x) dx . (4)

Obviously A ⊇ R+ implies ζνρ (u;A) ≡ Zνρ (u), moreover
when λ(A ∩ R+) = 0, the function ζνρ (u;A) terminates.
In turn, for our purposes we should discuss all parameter
constraints in (4) separately.

Baricz et al. [9, p. 718, Theorem 1] established a set
of results for Zνρ (u), among others three–term recurrence
relation, complete monotonicity of u 7→ Zνρ (u) and log–
convexity of ν 7→ Zνρ (u). It immediately arises the question
whether the same results hold for ζνρ (u;A).

Theorem 1: For all ν, ρ ∈ R, u > 0; and for all measurable
A ⊆ R with the positive Lebesque measure λ(A ∩ R+) > 0
we have:

(i) The incomplete Krätzel function ζνρ (u;A) satisfies the
three–term recurrence relation

νζνρ (u;A)− ρζν+ρρ (u;A) + uζν−1ρ (u;A) = 0.

(ii) The function u 7→ ζνρ (u;A) is log–convex on R+.
(iii) The function ν 7→ ζνρ (u;A) is log–convex on R.

Proof: As to the proof of (i) by integration by parts we
immediately have

νζνρ (u;A) =

∫
A∩R+

νxν−1 exp
{
−xρ − ux−1

}
dx

=

∫
A∩R+

xν
(
ρxρ−1 − u

2

)
exp

{
−xρ − ux−1

}
dx

= ρζν+ρρ (u;A)− uζν−1ρ (u;A).

We note that (ii) can be verified by using Hölder’s inequality,
repeating completely the proof of the same fact for the
complete Krätzel function in [9, p. 719], that is that

ζαν1+(1−α)ν2
ρ (u;A) ≤

[
ζν1ρ (u;A)

]α [
ζν2ρ (u;A)

]1−α

holds for all α ∈ [0, 1]; ν1, ν2, ρ ∈ R and u > 0, i.e. the
function ν 7→ Zνρ (u) is log-convex on R.

Next as to (iii), we deduce also by the Hölder inequality
applied for the linear combination inside argument that

ζνρ (αu1 + (1− α)u2;A) ≤
[
ζνρ (u1;A)

]α [
ζνρ (u2;A)

]1−α
is valid for all

α ∈ [0, 1], ν, ρ ∈ R; u1, u2 > 0,

so ζνρ (u;A) is log-convex on R+ with respect to u.

Theorem 2: For all a, b > 0; (α, β, ν) ∈ R?;B ∈ R we
have

Wν(a, b;α, β) =
1

β a
ν
α
ζ
ν
β
α
β

(
a
β
α b; ([a

1
α αβ−1]β ,∞)

)
(5)

pB

(
E

RT

)
=

A0

aB+1
ζB+1

1

(
ab; (aTs,∞)

)
. (6)

Moreover, for all a, b ≥ 0;B > −1 there holds

〈σ〉B =
2M1

aB+1
Z2B+2

2 (b
√
a) , (7)

while for B ≤ −1 the Krätzel integral has to be in the
Cauchy’s principal value sense used.

Proof: Setting the substitution a
1
αx 7→ x in (4) we clearly

get (5). The parameter space regarding β has been reduced
since according to (3) ν = 1 excludes non–positive β–values.

Next, as to (6), the same substitution applies with α = 1.
Because aTs > 0, the temperature integral converges for all
real B.

Finally, as to (7), the positive expression b
√
a controls the

behavior of the integrand at zero. The rest is clear.

Remark 1: Obviously, the leaky aquifer function’s incom-
plete Krätzel function description becomes

W (a, b) = ζ 0
1 (a b; (a,∞)) . �

The compilation of Theorem 1 and Theorem 2 results in

Theorem 3: For all (α, β, ν) ∈ R?, a, b > 0 we have:
(iv) The generalized leaky aquiver function satisfies the

three–term recurrence relation

νa
ν
αWν − αa

ν
α+1Wν+α + a

ν+β
α −1b βWν−α = 0 ,

when ν ≥ min{0, |α|}, where

Wν = Wν(a, b;α, β) .

(v) The function u = a
β
α b 7→ Wν(a, b;α, β) = ϕ1(u) is

log–convex on R+.
(vi) The function v = νβ−1 7→ Wν(a, b;α, β) = ϕ2(v) is

log–convex on R+
0 .

Proof: As to the proof of these claims it is enough to
compare Theorem 1 and (5) from Theorem 2.

Remark 2: It is clear that for leaky aquifer function W (a, b)
no such recurrence identity exists, since ν has to be different
of zero. However there are no obstacles for the log–convexity
of W (a, b) with respect to the argument ab on R+. �



Theorem 4: For all a, b > 0, and B > 0 we have:
(vii) The van’t Hoff temperature integral pB(·) satisfies the

three–term recurrence relation

a(B + 1) pB − a2 pB+1 + ab pB = 0 .

(viii) The function ab 7→ pB = ψ1(ab) is log–convex on R+.
(ix) The function B 7→ pB is log–convex on (−1,∞).

Proof: Infer by Theorem 1 and (6).

Remark 3: To close this section, we remark that being the
thermonuclear function up to a constant equal to a Krätzel
function (compare (7)), we refer to the direct use of the
Theorem 1 in establishing its adequate recurrence and log–
convexity properties. �

III. BILATERAL BOUNDING INEQUALITIES

It is known that there exist bounds for the complete Krätzel
function, see [9, p. 718, Theorem 1 (f)]. So it is worth to
establish bilateral bounding inequalities for its incomplete
counterpart ζνρ (u;A). First we introduce the generalized in-
complete gamma function in the form of the integral [11]

Γ(a, z, w) =

∫ w

z

xa−1 e−x dx ,

which is an entire function of a for all fixed z, w ∈ C. We
remark that this function is in-built having the Mathematica
code Gamma(a, z, w). For w =∞, Γ(a, z, w) reduces to
the upper incomplete gamma function in notation Γ(a, z); the
associated code is Gamma(a, z), while when additionally
z = 0, we get the ‘classical’ Euler gamma function Γ(a).

Theorem 5: Denote Sα = {xα : x ∈ S, α > 0}. Then for
all ρ > 0,<(ν) > 0, u > 0, and A ⊆ R+

0 we have

exp

{
− u

inf(A)

}
<∗

ρζνρ (u;A)

Γ

(
ν

ρ
,m,M

) <∗ exp

{
− u

sup(A)

}
,

where
m = inf(Aρ), M = sup(Aρ) .

If A is open <∗ means <, when it is closed, <∗ denotes the
relation ≤.

Proof: Let us minimize and maximize the exponential
kernel K 1,u

ρ,1 (x) when x ∈ A. For the sake of simplicity
assume that A is an open set. It follows that

exp

{
−xρ − u

inf(A)

}
<K 1,u

ρ,1 (x)<exp

{
−xρ − u

sup(A)

}
.

Applying the upper bound estimate to the incomplete Krätzel
function ζνρ (u;A) via (4), we get

e
u

sup(A) ζνρ (u;A)<

∫
A

xν−1e−x
ρ

dx=
1

ρ

∫
Aρ
x
ν
ρ−1e−x dx,

which proves the claimed upper bound.

Applying the two–sided bounding inequality to the rep-
resentations of leaky aquifer function and the temperature
integral exposed in Theorem 2 we arrive at

Corollary 5.1: For all a, b ≥ 0; α, β > 0; and B + 1 > 0
we have

exp

{
−b
(
β

α

)β}
<
αa

ν
α Wν(a, b;α, β)

Γ

(
ν

α
, a

(
β

α

)α) < 1 ;

Γ(0, a)

α eb
< W (a, b) <

Γ(0, a)

α
;

exp

{
− b

Ts

}
<

aB+1 pB

(
E

RT

)
A0 Γ(B + 1, aTs)

< 1 .

Remark 4: Being m = 0,M = ∞ in the case of the
thermonuclear integral, Theorem 5 gives uniform two–sided
bounds

0 < 〈σ〉B <
aB+1

2M1
Γ(B + 1) ,

restricting B > −1. �

IV. FURTHER INEQUALITY RESULTS

The complete Krätzel function is log–convex, completely
monotone and it satisfies a Laguerre–type inequality [9, p. 718,
Theorem 1]. The latter results we can translate pro primo to
the incomplete Krätzel function introduced here by Definition
1, regarding to the domain A. Indeed, since for all ν, ρ ∈ R,
and u > 0 we have

dn

dun
ζνρ (u;A) = (−1)n ζν−nρ (u;A), n ∈ N0 ,

and this differentiation property implies the inequality{[
ζνρ (u;A)

](n)}2

−
[
ζνρ (u;A)

](n−1) [
ζνρ (u;A)

](n+1)

=
[
ζν−nρ (u;A)

]2 − ζν−1ρ (u;A)ζν+1
ρ (u;A) ≤ 0 ,

which holds true by the log–convexity of ζνρ (u;A) (compare
Theorem 2, (ii)), the Laguerre–type inequality{[

ζνρ (u;A)
](n)}2

≤
[
ζνρ (u;A)

](n−1) [
ζνρ (u;A)

](n+1)

is proved.
Pro secundo, as to the same result for the leaky aquifer

function, we only need to connect ζνρ (u;A) and Wν by
Theorem 2, (5). Thus, having in mind that for all n ∈ N0

and for all (α, β, ν) ∈ R? and a, b > 0 there holds

dn Wν

d
(
a
β
α b
)n = (−1)n Wν−n , (8)

denoting Wν = Wν(a, b;α, β). This implies the validity of the
next result.

Theorem 6: For all n ∈ N0 and for all (α, β, ν) ∈ R?,
a, b > 0 we have the Laguerre–type inequality

W (n)
ν ≤

√
W

(n−1)
ν W

(n+1)
ν .

Moreover, Wν(a, b;α, β) is completely monotonic function
with respect to u = a

β
α b on u ∈ R+.

Proof: The complete monotonicity issue is the conse-
quence of (8) and Wν > 0.



A Turán–type inequality for the incomplete Krätzel function
reads as follows:[

ζνρ (u;A)
]2 ≤ ζν−hρ (u;A) ζν+hρ (u;A) ;

we skip the proving procedure since it follows the same
lines that the one exposed in [9]. However, also by the key
relationship (5) of Theorem 2 we deduce the following result.

Theorem 7: For all h ≥ 0; (α, β, ν) ∈ R?, a, b > 0 we
have the Turán–type inequality

Wν ≤
√

Wν−h Wν+h .

Proof: By a direct calculation we have

W 2
ν −Wν−h Wν+h =

1

2

∫
(αβ ,∞)2

(xy)ν−1 K a,b
α,β(x)

×K a,b
α,β(y)

{
2−

(
x

y

)h
−
(y
x

)h}
dxdy .

Based on the elementary inequality a + a−1 ≥ 2, a > 0, the
expression in the curly brackets is non–positive. Therefore, so
does the double integral and the left–hand side expression. The
proof is complete.

V. FINAL REMARKS, APPLICATIONS. DISCUSSION

A. The connection between the leaky aquifer function W (a, b)
and the upper incomplete gamma function is evident, as it
was pointed out by Harris [2], [6], [12], and [13]. However,
Temme [13] worked out an exhaustive procedure for covering
the calculation problems by proposing a numerical quadrature
method.

The leaky aquifer area and applications are well organized.
Namely Bruce Hunt with University of Canterbury, New
Zealand developed computer programs, and in-built routines
connecting pipe networks, groundwater analysis tools, fluid
mechanics approach and/or additional teaching materials [14]
for the underlying mathematics from one side, and further
research papers from the other side, consult e.g. [15], [16],
[17], [18], the references therein and his homepage [14]. For
further specific information about leakage and different kind
aquifers we are referred to Jacob Bear’s homepages [19], [20]
who is with the Faculty of Civil Engineering, Technion–Israel
Institute of Technology, Haifa.

B. Further generalizations are prospective in the sense that the
double–exponential kernel K a,b

α,β(x) can be replaced with the
so–called pathway kernel [7, Section 5], [21] that is

e−ax
α (

1 + (1− q)x−β
)− b

1−q −→
q→1

K a,b
α,β(x)

point-wise with respect to x on the tacitly unified integration
domain (

α(1− q)
β

,
β

α(1− q)

)
,

frequently used in the Fourier transform studies in the L2

functions class, see for instance [22, p. 50 et seq.]. By these

transformations we arrive at the pathway generalized leaky
aquifer integral:

W q
ν (a, b;α, β) =

∫ β
α(1−q)

α(1−q)
β

xν−1 e−ax
2

dx[
1 + (1− q)x−β

] b
1−q

,

which obviously restores the generalized leaky aquifer func-
tion (2) as q → 1. Whereas this kind appearance will be
exploited in some future work.
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