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We design and analyze the performance of a redundancy management mechanism for
peer-to-peer backup applications. Armed with the realization that a backup system has
peculiar requirements – namely, data is read over the network only during restore
processes caused by data loss – redundancy management targets data durability, i.e.
guaranteeing that data is not lost, rather than attempting to make each piece of informa-
tion available at any time.

In our approach each peer determines, in an on-line manner, an amount of redundancy
sufficient to counter the effects of peer deaths, while preserving acceptable data restore
times. Our experiments, based on trace-driven simulations, indicate that our mechanism
can reduce the redundancy by a factor between two and three with respect to redundancy
policies aiming for data availability. These results imply an according increase in storage
capacity and decrease in time to complete backups, at the expense of longer times required
to restore data. We believe this is a very reasonable price to pay, given the nature of the
application.

We complete our work with a discussion on practical issues, and their solutions, related
to which encoding technique is more suitable to support our scheme.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Online storage solutions are an extremely successful
way of sharing and synchronizing data between machines,
taking advantage of the ubiquity of Internet connectivity.
Dropbox, Google Drive and Microsoft SkyDrive are only a
few widely used examples within the plethora of applica-
tions that give this kind of service.

The aforementioned applications adopt a centralized
‘‘cloud’’ architecture, with all data residing on the data
centers of a single vendor. Despite its success, such an
architecture has some intrinsic shortcomings. Some of
them have already shown up in news: data loss due to
correlated failures [1], security blunders due to config-
uration errors [2]. Others, such as data theft from rogue
employees, might happen eventually. Also, we argue that
long-term storage is a case where the weaknesses of cen-
tralized storage are most important: indeed, the costs of
storing large amounts of data over long periods are high,
and services might shut down in the future as already hap-
pened to Drop.io [3], Nirvanix [4], Dell DataSafe [5], and
Canonical’s Ubuntu One [6], making data safety in the long
run essentially impossible to evaluate.

Peer-to-peer (P2P) storage could solve these problems,
providing cheap storage leveraging on excess bandwidth
and disk space at the edge of the network. However, despite
a considerable amount of research (see Section 2), P2P
storage solutions failed to reach widespread usage.
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Indeed, implementing a generic P2P storage application
requires dealing with a variety of challenging problems,
such as scalable handling of metadata, dealing efficiently
with maintenance due to disk crashes, low-latency access
and modification to individual files, and security issues
such as ensuring data confidentiality even when usage
permissions change dynamically. In this setting, keeping
data available at all times in a situation of high churn is a
daunting task [7].

We take a pragmatic approach: rather than trying to
solve all the aforementioned issues at once and come up
with a generic P2P file-system for the Internet, we design
a system exclusively for data backup. Indeed, we argue that
backup is a widely needed application that better fits the
characteristics provided by P2P architectures. Costs and
poor usability are among the main reasons why many exist-
ing backup solutions are not used: a P2P approach to data
backup can be a viable technique to overcome such issues.

For backup applications, as we discuss in Section 3, the
focus is on durability, which amounts to guaranteeing that
data is not lost. The requirements for a specialized backup
application are less stringent than those of generic storage
in several aspects. First, backups should only be readable
by their owner; this makes confidentiality requirements
easy to satisfy with standard cryptographic techniques.
Second, data backup often involves the bulk transfer of
potentially large quantities of data, both during regular
backups and, in the event of data loss, during restore
operations. Therefore, read and write latencies of hours
have to be tolerated by users. Third, owners have access
to the original copy of their data, making it easy to inject
additional redundancy in case data stored remotely is par-
tially lost. Fourth, since data is read only during restore
operations, the application does not need to guarantee that
any piece of the original data should be promptly accessi-
ble in any moment, as long as the time needed to restore
the whole backup remains under control.

In this work, we design and evaluate a new redundancy
management mechanism tailored to backup applications.
Simply stated, the problem of redundancy management
amounts to computing the necessary redundancy level to
be applied to backup data to achieve durability. The goal
of this work is to design a mechanism that achieves data
durability without requiring high redundancy levels nor
fast mechanisms to detect node failures. Our solution to
the problem stems from the particular data access workload
of backup applications: data is written once and read rarely.
The gist of our redundancy management mechanism, which
is described in Section 4, is that the redundancy level
applied to backup data is computed in an on-line manner.
Given a time window that accounts for failure detection
and data repair delays, and a system-wide statistic on peer
deaths, a peer determines the redundancy rate during the
backup phase. A byproduct of our approach is that, if the
system state changes, then peers can adapt to such dynam-
ics and modify the redundancy level on the fly.

The ability to compute the redundancy level in an on-
line manner requires solving several problems related to
coding efficiency and data management. In Section 5, we
show how our scheme can be applied in practice, exploit-
ing the properties of fountain coding.
Finally, we evaluate our redundancy management
scheme using trace-driven simulations. In Section 6, we
show that our approach drastically decreases strain on
resources, reducing the storage and bandwidth require-
ments by a factor between two and three, as compared
to redundancy schemes that use a fixed, system-wide
redundancy factor. This result yields augmented storage
capacity for the system and decreased backup times, at
the expense of increased restore times, which is a reason-
able price to pay if the specific requirements of backup
applications are taken into account.

2. Related work

A claim that data can be backed up safely on a network
of untrusted nodes may appear unintuitive and difficult to
believe. Fortunately, several problems – which are orthogo-
nal to the topic of redundancy – have been addressed in the
literature. First, we provide an overview of solutions that
can make safe backup feasible; we then conclude the sec-
tion with an overview of how redundancy has been handled
in related work.

2.1. P2P backup

Between the corpus of publications that target the
broader topic of P2P storage, we are not the first to tackle
backup. Many works provide a full system design, but
focus on innovating on a few system components. Not
unlike them, we focus on redundancy management; we
note that in the large majority of cases a dynamic
redundancy management mechanism such as ours can be
implemented in those systems.

Early works [8–10] are based on distributed hash tables,
and they focus on creating efficient de-duplication
mechanisms; they however to not consider erasure coding
techniques, which can drastically lower the required redun-
dancy levels. Lillibridge et al. [11] adopt erasure coding and
introduce a ‘‘symmetric storage’’ concept, where node A
stores a data block for B only if B stores data for A; while
restricting freedom in data placement, such mechanism
provides incentives to cooperation. In Section 2.3, we dis-
cuss other ways of ensuring that peers behave correctly.
Skowron and Rzadca [12] focus on the data placement prob-
lem: how to place data in order to optimize a given objective,
such as time to backup or geographical data dispersion; such
work considers the redundancy level to reach as an input to
the system; it can be produced by a mechanism such as ours.

2.2. Data handling and security

In this work we assume the system saves opaque and
immutable backup objects: these pieces of data should be
encrypted so that only their owner can read them, and
encode incremental differences between archive versions.
Various techniques have been proposed to optimize com-
putational time and size of incremental differences [13].

When more than one user back up the same piece of
data, deduplication techniques can be used to avoid storing
it more than once [14]. To protect user confidentiality, con-
vergent encryption [9,10] can be used to guarantee that a
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user who does not own the files will not be able to guess
their contents.

We consider a scenario where data maintenance is
simple, being performed by a data owner with a local copy.
When maintenance is delegated to nodes that do not have a
local copy of the backup objects, various coding schemes
can be used [15,16] to limit the amount of required data
transit.

Using cryptography for the backed up data begs the ques-
tion of where to backup the encryption key. This problem
can be solved by generating the key as a function of an easy
to remember secret: a password. Somehow contradicting
common knowledge on the theme, recent research shows
that a large portion of user-chosen passwords are resilient
to guessing attacks [17–19], if appropriate standard tech-
niques such as salting and strengthening [20] are used.

Efficient scheduling of data transfers is important to
complete backups as soon as possible. Toka et al. [21] show
that simple scheduling strategies such as least-available
first are sufficient to obtain close-to-optimal transfer times.

2.3. Peer behavior and trust

It is reasonable to doubt on the fact that user behavior
will be stable and trusted enough to guarantee that the
backup will always be retrievable. Perhaps against intui-
tion, however, it has been shown that user connectivity
patterns are stable enough in the long run to allow predict-
ing with good precision the probability that a given user
will be using an application in a given moment, even
months in advance [22].

Even if behaving in a stable way, it is conceivable that
untrusted users may cheat, by erasing the data they are
supposed to store: to avoid this problem, provable data pos-
session protocols exist [23,24]: these protocols allow to
verify whether a given peer is actually holding the data it
is claiming to store. In addition, game-theoretic incentive
models [25,26] have been devised to encourage peers to
participate to the network according to the protocol: users
who do not behave fairly will lose their backup. Another
solution that provides incentives to behave well is
segregating nodes in sub-networks with roughly homoge-
neous characteristics such as uptime and storage space
[27,28]. Virtual currency [29–31] is yet another option to
reward well-behaving peers.

An alternative approach is to store data on peers that
are trusted to begin with. Besides easy use cases (e.g.,
deploying the P2P backup application within a trusted
organization), another possibility is to perform ‘‘friend-
to-friend’’ storage [32,33], an approach where each user
independently decides which users are trusted to store
their data. More in general, trust needs not be limited to
the nodes that a node directly knows: reputation systems
can be used to build trust in networks of untrusted nodes:
for more information, we point to the survey by Marti and
Garcia-Molina [34].

2.4. Hybrid semi-decentralized systems

The episodes of cloud services shutting down we
referred to in the Introduction [3–6] lead to believe that
centralized cloud storage solutions cannot be considered
safe on the long term. Conversely, P2P applications may
be problematic on the short term, since the requirement
of redundancy and limitations in availability and
bandwidth increase the time needed to complete backups,
and therefore to make data safe. A ‘‘best of both worlds’’
solution can be obtained by employing a hybrid architec-
ture, where data is stored temporarily on data centers to
complete backups as soon as possible, and then uploaded
to peers when the backup is safe. Besides being safe both
on the short term and on the long term, this solutions
requires a fraction of the costs of centralized systems [35].
2.5. Redundancy

Redundancy rates and data repair techniques in P2P
storage systems have been investigated from various
angles. Earlier works [8–10] adopt simple replication
strategies, resulting in higher storage and bandwidth costs
for backing up and maintaining data in the system. In other
proposals, erasure coding is used in order to obtain high
durability while minimizing storage costs on nodes, but
redundancy values are fixed parameters that are chosen
by the designer independently of the system characteris-
tics [11,36]. The Wuala online storage service encodes data
on peers with a fixed redundancy level and avoids the need
for maintenance by storing a full replica of the data in cen-
tral servers [37]. More elaborate policies belong to two dif-
ferent categories: in some cases [38,39], redundancy is
determined as a function of node failure rate in order to
guarantee data durability at the expense of data availabil-
ity. Many other approaches (e.g., [40,41]) guarantee low
latency through prompt data availability, but require high
redundancy rates in typical settings. In contrast with these
approaches, our proposal strives to provide both durability
and performance at a low redundancy cost, relaxing
prompt data availability by requiring that data becomes
recoverable within a given time window. Finally, Pamies-
Juarez et al. [42] investigate the relationship between
redundancy and data retrieval times, but they center their
investigations on cases where the online session length
duration is orders of magnitude shorter than the length
of a data transfer process; this scenario is clearly not
applicable to our case of long restore processes.
3. Application scenario

Similarly to many online backup applications, we
assume users (referred to as data owners) to specify one
local folder containing important data to backup. Note that
backup data remains available locally to data owners. This
is an important trait that distinguishes backup from many
online storage applications, in which data is only stored
remotely.

We consider here the problem of long-term storage of
large, immutable, and opaque pieces of data that we term
backup objects. They consist of encrypted archives of
changes to sets of files, such that recovering them allows
reconstructing the history of data in the backup folder.
We do not take into account the short-term storage of
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small modifications to the backup folder, which can be
handled using known centralized or decentralized online
storage solutions.

Backup objects are stored on remote peers, which are
inherently unreliable. Peers may join and leave the system
at any time, as part of their short-term online behavior: in
the literature, this is referred to as churn. Moreover, peers
may crash and possibly abandon the P2P application: this
behavior is generally referred to as peer death. As such,
the online behavior of peers must be continuously tracked,
since it cannot be determined a priori [41].

While the literature provides a vast array of solutions to
guarantee data availability when using failure-prone
machines to store data [41,43], we claim that online data
backup applications should instead target data durability.
Moreover, backup applications often involve the bulk
transfer of a large quantity of data. Therefore, such
applications should cater throughput rather than aiming
at low-latency read operations, in addition to be resilient
against peer churn and deaths.

Similarly to data availability, data durability can be
achieved by injecting a sufficient level of redundancy in
the system. One key issue to address is to determine the
redundancy level required to make sure data is not lost,
despite peer churn. This problem is called redundancy
management. A closely related problem is to deal with peer
deaths, which cause the data redundancy level to drop.
Hence, the focus of our work is to design a redundancy
management mechanism that is tailored to the peculiar
data access patterns of backup applications and that strives
for data durability.

For the sake of clarity, we now explain the operation of
a baseline P2P backup application. We gloss over the
details of how data redundancy is achieved and discuss
the salient phases of the life-time of backup data.

Using erasure coding, a backup object of size o is
encoded in n fragments of a fixed size f which are ready
to be placed on remote peers. Any k out of n fragments
are sufficient to recover the original data1; when using
optimal erasure coding techniques, k ¼ do=f e. The redun-
dancy management mechanism determines the redundancy
level r ¼ nf=o.

During the backup phase, data owners upload
fragments to some selected remote peers. We assume that
any peer can collect a list of remote peers with available
storage space: this can be achieved with known
techniques, e.g. a central coordinator or a decentralized
data structure such as a distributed hash table. The backup
phase completes when all n fragments are placed on
remote peers.

Once the backup phase is completed, the maintenance
phase begins. The purpose of this phase is to reestablish
the desired redundancy level in the system, that may
decrease due to peer deaths: new fragments must be re-
injected in the system. The crux of data maintenance is
to determine when the redundancy of the backup object
is too low to allow data recovery and to generate other
1 For non-optimal erasure-coding techniques such as fountain coding, as
described in Section 5, this guarantee is given probabilistically.
fragments to rebalance it. In the event of a peer death,
the system may trigger the maintenance phase immedi-
ately (eager repairs) or may wait for a number of fragments
to be tagged as lost before proceeding with the repairs
(lazy repairs) [41,15,16]. As such, it is important to discern
unambiguously permanent deaths from the normal online
behavior of peers: this is generally achieved by setting a
time-out value, H, for long-term peer unavailability.
Since user connectivity patterns have strong daily and
weekly periodic behavior [22], typical practical choices
for H are one or two weeks.

Note that, as peers hold a local copy of their data, main-
tenance can be executed solely by the data owner, or (as
often done in storage systems) it can be delegated. In both
cases, it is important to consider the timeframe in which
data cannot be maintained. First, fragments may be lost
before a host failure is detected using the time-out mecha-
nism outlined above. This problem is exacerbated by the
availability pattern of the entity (data owner or other
peers) in charge of the maintenance operation: indeed,
host failures cannot be detected during the offline periods.
Second, data loss can occur during the restore process. For
this reason, in Section 4, we consider a redundancy
management policy that ensures data is not lost in the
time-window w ¼ Hþ aoff , where aoff is the (largest)
transient off-line period of the entity in charge of data
maintenance. For example, if the data owner executes data
maintenance: first, it needs to be on-line to generate new
fragments and upload them, and second, the timeout H
has to be expired. Additionally, our mechanism selects a
redundancy level such that data loss does not occur before
the restore process is completed.

Discerning dead peers through time-outs may lead to
false positives, i.e. peers that are alive but considered as
dead. This may trigger unnecessary maintenance, bringing
redundancy levels to values that are higher than needed.
False positives often have the result of triggering earlier
maintenance operations that should anyway be carried
out subsequently, and as long as this phenomenon is not
extremely common, it only increases moderately the
amount of resources used by the backup application.

In the unfortunate case of a disk or host crash, the
restore phase takes place. Data owners contact the remote
machines holding their fragments, download at least k of
them, and reconstruct the original backup data.

Before proceeding, we now define the performance met-
rics we are interested in for this work. Overall, we compute
the performance of a P2P backup application in terms of the
amount of time required to complete the backup and the
restore phases, labeled time to backup (TTB) and time to
restore (TTR). Moreover, in the following sections, we use
baseline values for backup and restore operations which
bound both TTB and TTR. We compute such bounds as fol-
lows: let us assume an ideal storage system with unlimited
capacity and uninterrupted online time that backs up user
data. In this case, TTB and TTR only depend on the size of
a backup object and on uplink bandwidth and availability
of the data owner. We label these ideal values minTTB and
minTTR. Formally, we have that a peer i with upload and
download bandwidth ui and di, starting the backup of an
object of size o at time t, completes its backup at time t0,
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after having spent o
ui

time online. Analogously, i restores a

backup object with the same size at t00 after having spent
o
di

time online. Hence, we have that

minTTBði; tÞ ¼ t0 � t

and

minTTRði; tÞ ¼ t00 � t:

We use these reference values throughout the paper to
compare the relative performance of our P2P application
versus that of such an ideal system.

4. Redundancy management

We now discuss the key idea of our work: a redundancy
management mechanism to achieve data durability. In
practice, data can be considered as durable if the probabil-
ity to lose it, due to the permanent failure of hosts in the
system, is negligible. The problem of designing a system
that guarantees data durability can be approached under
different angles.

As noted in previous works [44,39], data availability
implies data durability: a system that injects sufficient
redundancy for data to be available at any time, coupled
with maintenance mechanisms, automatically achieves
data durability. These solutions are, however, too expen-
sive in our scenario: the amount of redundancy needed
to guarantee availability is much higher than what needed
to obtain durability.

Instead of using high redundancy, data durability can
also be achieved with efficient maintenance techniques.
For example, in a datacenter, each host is continuously
monitored: based on statistics such as the mean time to
failure of machines and their components, it is possible
to store data with very little redundancy and rely on
system monitoring to detect and react immediately to host
failures. Failed machines are replaced and data is rapidly
repaired due to the dedicated and over-dimensioned nat-
ure of datacenter networks. Unfortunately, this approach
is not feasible in a P2P setting. First, the interplay of
transient and permanent failures makes failure detection
a difficult task. Since it is difficult to discern deaths from
the ordinary online behavior of peers, the detection of per-
manent failures requires a delay during which data may be
lost. Furthermore, data maintenance is not immediate: in a
P2P application deployed on the Internet, bandwidth
scarceness and peer churn make the repair operation slow.

In summary: on the one hand durability could be
achieved with high data redundancy, but the cost in terms
of resources required by peers would be overwhelming. On
the other hand, with little redundancy, durability could be
achieved with timely detection of host failures and fast
repairs, which are not realistic in a P2P setting.

The goal of this work is to design a redundancy manage-
ment mechanism that achieves data durability without
requiring high redundancy levels nor fast failure detection
and repair mechanisms. Our solution to the problem stems
from the particular data access workload of backup appli-
cations: data is written once, during backup, and read
(hopefully) rarely, during restores. Hence, we design a
mechanism that injects only the data redundancy level
required to compensate failure detection and data repair
delays.

When any lost piece of data is immediately repaired,
data is never lost. In real systems, though, there are delays
between data losses and repairs: we therefore define dura-
bility in function of a delay t accounting for such delays.

Definition 1. Data durability d is the probability to be able
to access data after a time window t, during which no
maintenance operations are executed.
Definition 2. The time window t is defined as t ¼ wþ TTR,
where w accounts for failure detection delays and TTR is
the time required to download a number of fragments suf-
ficient to recover the original data.

As discussed in Section 3, w depends on whether the
maintenance is executed by the data owner or is delegated,
and can be thought of a parameter of our scheme.

The goal of our redundancy management mechanism is
to determine the data redundancy that achieves a target
data durability: we proceed as follows. A peer with n frag-
ments placed on remote peers could lose its data if more
than n� k of them would get lost as well within the time
window t. The data redundancy required to avoid this
event is r ¼ n=k.

Peer deaths can be determined by disks and host
crashes, or by human events such as users uninstalling
the application and leaving the network. Disk drives in
practical settings have a lifetime of several years on aver-
age [45]; in the evaluation section, we will evaluate our
strategies in challenging situations where peer lifetime
ranges between a few months and a few years. Let us con-
sider the probability of a node to be alive after a time t to
be AðtÞ. Assuming death events are independent, data
durability writes as:

d ¼
Xn

i¼k

n

i

� �
AðtÞð Þi 1� AðtÞð Þn�i

: ð1Þ

Eq. (1) depends on t which, in turn, is a function of TTR.
However, peers cannot readily compute their TTR, as this
quantity depends on the characteristics of remote peers
hosting their fragments. We thus propose to use the fol-
lowing heuristic as a method to estimate the TTR.
Suppose peer p0 is computing an estimate of its TTR. In
the event of a crash, we assume p0 to remain online during
the whole restore process. In such a case, assuming no net-
work bottlenecks, its TTR can be bounded for two reasons:

1. the download bandwidth D0 of peer p0 is the
bottleneck;

2. the upload rate of remote peers holding p0’s data is the
bottleneck.

Let us focus on the second case: we define the expected
upload rate li of a generic remote peer pi holding a backup
fragment of p0 as the product of the availability of peer pi

and its upload bandwidth, that is li ¼ uiai.
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Peer p0 needs to download at least k fragments to fully
recover a backup object. Let us assume these k fragments
are served by the k remote peers with the highest expected
upload rate li. In this case, the ‘‘bottleneck’’ is the kth peer
with the lowest expected upload rate lk. Then, an estima-
tion of TTR, that we label eTTR, can be obtained as follows:

eTTR ¼max
o

D0
;

o
klk

� �
: ð2Þ

While TTR is the real time to restore that can only be
measured a posteriori, eTTR is an estimation for TTR, and
it computed a priori according to Eq. (2). The availability
of the downloading peer is assumed equal to 1, since we
consider that a node performing a restore will remain
online until the restore is completed, to obtain a working
system as soon as possible, and to minimize the risk of data
loss due to other peer deaths during the restore period.

We now set off to describe how our redundancy man-
agement scheme works in practice: the redundancy level
applied to backup data is computed by the combination
of Eqs. (1) and (2). Let us assume, for the sake of simplicity,
the presence of a central coordinator that performs mem-
bership management of the P2P network: the coordinator
keeps track of users subscribed to the application, along
with short-term measurements of their availability, their
(application-level) uplink capacity and the average death
rate T in the system. While a decentralized approach to
membership management and system monitoring is an
appealing research subject, it is common practice (e.g.,
Wuala [37] to rely on a centralized infrastructure and a
simple heartbeat mechanism.

During a backup operation, peers query the coordinator
to obtain remote hosts that can be used to store fragments,
along with their availability. A peer constructs a backup
object, and subsequently uploads k fragments to distinct,
randomly selected available remote hosts. Then the peer
continues to inject redundancy in the system, by sending
additional fragments to randomly selected available peers,
until a stop condition is met. Every time one (or more) new
fragment is uploaded, the peer computes d and eTTR: the
stop condition is met if d P r1 and eTTR 6 r2. r1 and r2

are configuration parameters that tune the system accord-
ing to the performance metrics that we target in this work:
durability and time to restore. Selecting an appropriate
durability target r1 should be easy, according to the guar-
antees required by the user; in the following we define r2

as r2 ¼ a �minTTR, where a is a parameter that specifies
the degradation of TTR with respect to an ideal system,
tolerated by users.

We now discuss in details the influence of the two stop
conditions on the behavior of our mechanism. AðtÞ is the
survival function (or complementary cumulative dis-
tribution function) of peer mortality, therefore the average
peer lifetime can be computed as T ¼

R
�xA0ðxÞdx. Given

Eq. (1), we study the impact of the ratio wþeTTR
T :

� T � wþ eTTR: this case is representative of a ‘‘mature’’
P2P application in which the dominant factor that
characterizes peer deaths are permanent host failures,
rather than users abandoning the system. Hence, AðtÞ
in Eq. (1) is close to 1 since t is estimated as wþ eTTR,
which implies that the target durability r1 can be
achieved with a small n.
As such, the condition on eTTR 6 r2 prevails on d P r1

in determining the redundancy level to apply to backup
data. This means that the accuracy of the estimate eTTR
plays an important role in guaranteeing acceptable
restore times; instead, errors on eTTR have no impact
on data durability.
� T � wþ eTTR: this case (including also the case when

T < wþ eTTR, i.e., the average offline time of the data
owner plus the estimated time it takes to fetch back
its data can be greater then the average lifetime of
peers) is representative of a P2P application in the early
stages of its deployment, where the abandon rate of
users is crucial in determining the death rate. In this
case, the exponential in Eq. (1) can be arbitrarily small,
which implies that n� k, i.e., the target durability d
requires higher data redundancy.
In this case, the condition d P r1 prevails on eTTR 6 r2.
Hence, estimation errors on the restore times may have
an impact on data durability: e.g., underestimating the
TTR may cause n to be too small to guarantee the target
r1. In Section 6, we study this scenario.

In summary, the key idea of our redundancy manage-
ment mechanism is that the redundancy level applied to
backup data is computed in an on-line manner, during
the backup phase. This comes in sharp contrast to comput-
ing the redundancy level in an off-line manner, solely based
on system-wide statistics, that characterize previous
approaches to redundancy management.

A by-product of our approach is that our mechanism
can adapt the redundancy rate r each peer applies to its
data based on system dynamics. Now, we must prove that
the system reaches a stable state: system dynamics must
not bring the redundancy mechanism to oscillate around
r. Based on Eqs. (1) and (2), we face a retroactive system
in which a feedback loop exists on the durability d. Given
a target durability d, a system-wide average death rate T
and a time window t ¼ wþ eTTR, we can derive r. The
problem is that eTTR depends on the short-term behavior
of peers as well as the redundancy rate r.

First, we study how eTTR and d vary as a function of the
redundancy rate r.

Proposition 1. eTTR is a non-increasing function in r.

Sketch of the proof: Recall that r ¼ nf
o . Let us assume a

peer p0 has the following ranked list of remote peers:

fl1;l2;l3; . . . ;lkg;

where without loss of generality, li < lj 8i < j. If r
increases, then n increases: new fragments must be stored
on new remote peers. For simplicity, assume a single
fragment is to be placed on peer pq.

Two cases can happen:

1. lq < lk; in this case, eTTR remains unvaried, since pq is
‘‘slower’’ than the kth peer used to compute eTTR.



2 In this work, code rate and redundancy rate are used as synonyms.
3 In the context of Fountain Codes, the encoding block is defined

exclusively by the number of fragments k;n not being defined a priori.
4 This information can be transmitted together with the encoded

fragment, or the choice of the degree distribution and the random
generator can be shared.
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2. lq > lk; in this case, pq ‘‘ejects’’ the current kth peer
from the ranked list defined above.

As such, eTTR can only decrease. Note that eTTR may
not reach the stop condition r2 if the parameter a is not
appropriately chosen: simply stated, a plateau value of
eTTR exists when placing fragments on all peers in the
network.

Proposition 2. d is an increasing function in r.

Sketch of the proof: Eq. (1) is a composite function of
eTTR. Hence, by increasing r, new fragments have to be
placed on remote peers and it is not guaranteed, in general,
that this contributes to decrease d. However, thanks to
Proposition 1, eTTR is non-decreasing in r, hence
t ¼ wþ eTTR is non decreasing in r. As a consequence, d
is an increasing function in r.

We can now state the following proposition:

Proposition 3. The redundancy management mechanism
presented in this section is stable.

Sketch of the proof: By design, our redundancy mecha-
nism shall only increase r. Now, Proposition 1 states that
increasing r yields lower values of eTTR, hence, eventually,
the system either arrives at the stop condition eTTR 6 r2,
when a is chosen appropriately, or it reaches the plateau
defined above. Similarly, by Proposition 2, increasing the
redundancy in the system implies that d grows asymptoti-
cally to 1, hence the system eventually reaches the stop
condition d P r1.

It is natural to ask why in Proposition 3 we omit the
possibility of removing fragments from remote peers if r
is too high. Let us consider such an operation: one possibil-
ity would be to drop a remote fragment at random. This
operation would be unstable: indeed, for example, deleting
a fragment from the ‘‘fastest’’ peer in the ranked list
defined above would increase eTTR, decrease d, which as
a consequence might require to re-inject a fragment.
Instead, we could delete fragments starting from the
‘‘slowest’’ peer: in this case, the drop operation would be
stable, but the storage load in the system may eventually
become concentrated on fast peers only. Moreover, avoid-
ing deletions can spare maintenance operations in the
future should one or more of the remaining fragments on
remote peers be lost. Due to these reasons, in this work
we do not allow fragments to be dropped.

5. Coding and data management

With the redundancy management mechanism
described in Section 4, the redundancy level applied to
backup data is computed in an on-line manner. Instead,
the redundancy rate used in most related work is usually
computed off-line, given sufficiently representative statis-
tics on the system, including transient and non-transient
failures. These system-wide statistics are used to compute
a unique redundancy rate that every peer will use. Instead,
our approach requires each peer to compute an individual
redundancy level: the time window t is a function of
eTTR, which is different for every peer.
Erasure coding [46] introduces data redundancy by
transforming an original file composed of fragments into
a longer file such that the original file can be recovered
from a subset of the encoded fragments. More formally,
assuming the backup object to be segmented in blocks of
k fragments each, each portion of the original data will
be recovered if a sufficient number of the n encoded
fragments will be successfully received. An erasure code
is optimal if any k out of the n encoded fragments are suf-
ficient to recover the original block. The code rate2 is
defined as r ¼ n=k and represents the number of ‘‘redun-
dant’’ fragments per ‘‘useful’’ fragments generated by the
encoder. Note that optimal codes are often costly when n
is large: practical solutions usually have quadratic encoding
and decoding complexity.

Among the optimal erasure coding techniques, Reed–
Solomon (RS) codes are the most widely used in a number
of applications [47]. Nevertheless, these codes lack of
flexibility as the encoding is determined by the couple of
parameters k and n, which are fixed a priori.

Another family which has been vastly studied in the
literature are the Fountain Codes. These codes have found
applications to digital communications [48], content deliv-
ery [49], storage [50] and P2P [51]. Because of their unique
characteristics, they are particularly suitable to our goals
too. In fact, the generation of an encoded fragment is
independent from the others (on-the-fly property) and
the number of encoded fragments that can be generated
from the original data is potentially infinite (rateless
property).

Fountain Codes are not optimal, in the sense that the
number of encoded fragments necessary to recover the
original data is slightly larger than the original number of
fragments. This inefficiency depends on the parameters
of the coding technique and on the block size3 and is
negligible for large data blocks. In practice, the loss of
efficiency is acceptable, if one considers the increased com-
putational efficiency (even linear with the block size) of this
family of codes with respect to RS codes (typically
quadratic).

In the context of this work, Fountain Codes are very
simple to use in practice. Indeed, the information about
the fragment generation should be shared between the
encoder and the decoder.4 Instead, in our application, the
encoder and the decoder coexist in the same entity: the data
owner. Hence, such information needs not a complex infras-
tructure to be set up between separate communicating
parties, but can be simply treated as ‘‘metadata’’ information
to be stored locally (and eventually backed up).

Fountain Codes make the mechanism described in
Section 4 trivial to achieve: as long as the conditions on
the eTTR and d are not met, the encoder continues to gen-
erate new unique encoded fragments on the fly. When the
stop condition is reached, the encoding process terminates.
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In case system dynamics trigger the generation of new
encoded fragments (e.g. because host availability
decreases), these can be simply generated as needed, with
the same procedure described above.

Fountain encoded fragments are statistically ‘‘inter-
changeable’’: any encoded fragment can be used to
reconstruct the original data and any encoded fragment
can be replaced by any newly generated encoded frag-
ments. As a consequence, also maintenance operations
are simplified as peers need not track of the exact encoded
fragment to replace.

Another appealing characteristic of Fountain Codes is
that, unlike RS codes, the block size is not mathematically
constrained. Nevertheless, a solution based on Fountain
Codes is not exempt from data management problems.
While these codes allow maximum flexibility, the def-
inition of the block size is a tradeoff between the coding
inefficiency (which suggests to use large blocks) and the
number of operations required for either encoding or
decoding (even if linear-time implementations exist, mem-
ory and delay considerations suggest to use shorter
blocks). This means that given a potentially large backup
object, what is the best strategy, encoding the whole data
thus minimizing the coding inefficiency, or segmenting
into smaller blocks decreasing the complexity?

We argue that the data object should be partitioned in
several blocks whose size should depend not only on cod-
ing complexity and inefficiency, but also on the user data
generation rate. One of the coding strategies that can
increase the performance of the code whilst maintaining
shorter block size is the sliding-windowing approach
[52,53]. This approach virtually increases the encoding
block by allowing the overlap of two or more subsequent
coding blocks (referred as ‘‘windows’’). The block overlap
is a design parameter that impacts the performance of
the code and its value can be decided a priori or according
to customized coding strategies. The typical drawback of
using the sliding-windowing approach is an increase in
the decoding delay and memory consumption, as shown
by Bogino et al. [52]. However, for the considered applica-
tion, if the block size is moderate, their impacts are
acceptable.

The optimal design of the codes for this application goes
beyond the scope of this paper as the coding parameters
depend on the system and its characteristics. To give an
example, for unreliable IP networks, such as mobile net-
works, it is advisable to fit one encoded fragment (and its
associated metadata, if required) per IP packet; in this
way, the loss of a packet corresponds to the erasure of a
single fragment, which is preferable than having several
fragments per packet. This choice impacts the design of
the code and its performance: given a fixed size of the data,
one fragment per IP packet means that either the data will
be segmented in a larger number of blocks, or that the
blocks will contain a higher number of fragments.

Nevertheless, in our context where we can assume the
TCP protocol to work well, there is no need to constraint
the size of the fragment to the IP packet size. In fact, the
fragment size can be significantly larger, thus having
blocks composed by fewer fragments and therefore
decreasing the encoding/decoding computation time. As
we will see in Section 6.2, this is the encoding strategy that
we used in our system evaluation.
6. Performance evaluation

In the following, we proceed with a trace-driven system
simulation, and focus on the performance metrics outlined
in Section 3. That is, we are interested in studying the time
required to backup and restore user data: we perform a
comparative study of the results achieved by a system
using our redundancy management scheme and the
traditional approach used for storage applications. For
the latter case, we implement a technique in which the
coding rate is set once and for all based on a system-wide
average of host availability.

Note that, for the purpose of our study, it is not
necessary to implement in detail the coding mechanisms
described in Section 5. All we need to know for the evalua-
tion of transfer times is the number of fragments each peer
has to upload during the backup operation.

We use traces as input to our simulator that cover both
the online behavior of peers and their uplink and downlink
capacities. Instead, long-term failures and the events of
peers abandoning the applications, which constitute the
peer deaths, are generated synthetically as described in
Section 6.2. Due to the lack of traces that represent the
realistic ‘‘data production rate’’ of Internet users, in this
simulation study we confine our attention to a homoge-
neous setting: each user has an individual backup object
of the same size.
6.1. Datasets

6.1.1. Availability trace
The online behavior of users, i.e., their patterns of

connection and disconnection over time, is difficult to
capture analytically. In this work we simulate a backup
application using a real application trace that exhibits both
heterogeneity and correlated user behavior. Our traces cap-
ture user availability, in terms of login/logoff events, from
an instant messaging (IM) server for a duration of roughly
3 months [22]. We argue that the behavior of regular IM
users constitutes a representative case study. Indeed, for
both an IM and an online backup application, users are gen-
erally signed in for as long as their machine is connected to
the Internet; as it can be gleaned from Fig. 1, in this dataset
it is possible to observe strong diurnal and weekly patterns.
Moreover, users have heterogeneous behavior – for exam-
ple, some users often stay connected during workdays
while others have a less predictable uptime.

In this work we only consider users that are online for
an average of at least four hours per day, as done in
Wuala [37]. Once this filter is applied, we obtain the trace
of 376 users. Since in P2P storage systems the number of
neighbors each node interacts with is very often limited
by design and scalability issues [21], we believe this trace
size is acceptable. As shown in Fig. 2, most users are online
for less than 40% of the trace length, while some of them
are almost always connected.
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6.1.2. Bandwidth distribution
Uplink capacities of peers are obtained by sampling a

real bandwidth distribution measured at more than
300,000 unique Internet hosts for a 48 h period from
roughly 3500 distinct ASes across 160 countries [54].
These values have a highly skewed distribution, with a
median of 77 KBps and a mean of 428 KBps. To represent
typical asymmetric residential Internet lines, we assign to
each peer a downlink speed equal to four times its uplink.

6.2. Simulation settings

The trace-driven online behavior of a peer is overridden
only during the restore phase: in this work we make the
assumption that in such case, a peer remains online for
the whole duration of the restore process.

In our study, each peer has o ¼ 10 GB of data to backup
(as soon as the simulation begins), and dedicates 50 GB of
storage space to the application. The high ratio between
these two values lets us disregard issues due to insufficient
storage capacity and focus on the subjects of our investiga-
tion. The fragment size is set to 160 MB, implying a
minimum of k ¼ 64 fragments needed for restores. In this
simulation we do not consider the (negligible) inefficiency
of fountain coding and we assume that 64 fragments will
always be sufficient to recover the original data; in practi-
cal settings, a solution based on fountain coding will pay
for added flexibility and efficiency with a slightly higher
redundancy [55].

We define peers’ lifetimes to be exponentially
distributed random variables with an expected value
T ¼ f90 days;1 year;4 yearsg, resulting in AðtÞ ¼ e�t=T .
These conservative values are noticeably lower than the
disk failure rates measured in real-world scenarios [45]
(see Section 4). Besides peer deaths, we study the impact
of the w parameter, which contributes to the duration of
the time-window for which our redundancy management
policy guarantees data durability, without maintenance
(see Section 4). As a reminder (see Section 3), w accounts
for failure detection delays. In our experiments w takes
values from 0 to 4 weeks.

Our adaptive redundancy policy uses the following
parameters: we set the thresholds r1 ¼ 0:9999, so that
the durability d P r1 and r2 6 max 1 day;2 �minTTRð Þ so
that eTTR 6 r2. In this work, we compare against a baseline
redundancy policy that aims to guarantee data availability
[41], labeled here as ‘‘availability-based’’: in this case data
availability is computed as

�a ¼
Xn

i¼k

akð1� aÞn�k
;

where a is the average availability of nodes in the system.
The value chosen for n is the lowest that satisfies �a P â,
where â is a target value set by the user. Here we set a
target data availability of â ¼ 0:99, and use the system-
wide average availability a ¼ 0:36 as computed from our
availability traces. Hence, we obtain a value n ¼ 228 and
a redundancy rate n=k ¼ 3:56.

For each set of parameters, the simulation results are
obtained by combining those of ten simulation runs.
6.3. Results

We begin our discussion by showing the bounds on TTB
and TTR, as defined in Section 3. Fig. 3 shows the cumula-
tive distribution functions (CDF) of minTTB and minTTR
obtained using the input traces discussed above. Our work-
ing assumption is that peers stay online during restore
operations: as such, only the (ordinary) backup phase suf-
fers from peer unavailability, and the distribution of
minTTR depends only on the bandwidth distribution, while
minTTB also depends on the availability traces. We notice
that, for a large majority of users, even these ideal values
for time to backup and to restore are of the order of hours;
this result is in line with what is reported in other works
[33,56,12].

While backup operations generally take days to
complete, for a file size of 10 GB, restore operations are
several times faster. This can be simply explained by the
asymmetric bandwidth setup we use in our simulations,
and – as discussed above – by unavailability of peers when
data needs to be backed up. Since node bandwidth dis-
tribution is skewed, a few nodes with very large bandwidth
experience a much lower value for both minTTR and
minTTB; the tails with a very long minTTB value are
instead due to peers that remained disconnected for very
long time spans in our traces.
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We now proceed to a detailed comparative study of our
scheme to the traditional fixed-redundancy scheme. First,
we focus on the data redundancy level (that is, the code
rate r) imposed by each approach.

In Fig. 4, we show the average redundancy factor for our
mechanism and the one computed for the availability-
based scheme (which is fixed), as a function of the parame-
ter w and for different values of T. We omit error bars from
the plot as the variance around the mean is negligible.
Clearly, for increasing values of w the redundancy rate
increases, as it is possible to evince from Eq. (1). Note that
our simulations account for a realistic bandwidth dis-
tribution and for some real on-line user behavior, which
influence the eTTR computation. Fig. 4 also illustrates the
impact of T: when the dominant effect of non-transient
failures is the reliability of Internet hosts, that is T is large,
our mechanism achieves data durability (and a controlled
TTR) with a small redundancy factor. Instead, when peer
deaths are dominated by peers abandoning the system,
that is T is small, our mechanism compensates with a lar-
ger redundancy rate. In summary, our redundancy man-
agement scheme obtains a redundancy factor ranging
roughly between half and a third of the availability-based
scheme, increasing the storage capacity of the system by
a corresponding factor between two and three. Since the
amount of data to upload in case of a disk crash is propor-
tional to the redundancy level, the impact of maintenance
of system bandwidth decreases accordingly.

In addition to improving the aggregate storage capacity
of the system, our redundancy management scheme
impacts both backup and restore operations. Figs. 5 and 6
report the CDF of the ratio of TTB and TTR over their
respective ideal counterparts, minTTB and minTTR. These
plots are obtained with different values of w, for a fixed
T ¼ 3 months,5 and illustrate the results of our mechanism
and that achieved by the availability-based scheme. Fig. 5
indicates that, due to a lower redundancy factor, the median
of the distribution of TTB is roughly reduced by a factor of
four. Moreover, increasing values of w have essentially little
impact on TTB. Fast backups are counterbalanced by longer
restores: as shown in Fig. 6, restore operations take more
time to complete w.r.t. a traditional approach to redundancy
management. Here the parameter w plays an important role:
for small w values, little redundancy is applied to backup
data. As such, the opportunity to retrieve enough encoded
fragments to restore data is largely affected by peer avail-
ability. Instead, when w is large, restore operations are more
efficient and less sensitive to peer availability.

In summary, our results support the rationale underly-
ing the design of our redundancy management scheme:
TTB is generally several times larger than TTR, even in an
ideal case (as shown in Fig. 3). Because of this unbalance,
we argue that it is reasonable to use a redundancy man-
agement scheme that trades longer TTR (which affects only
users that suffer a crash) for shorter TTB (which affects all
users).
5 We present results for T ¼ 3 months because the effects of w are more
marked. We obtain similar qualitative results for larger values of T. Also, for
clarity of presentation, we omit the CDF for w ¼ 4 weeks.
Now, we dive into the details of our scheme and study
its sensitivity to errors due to the heuristic we use to esti-
mate TTR. The main reason for errors on eTTR are due to
the fact that the heuristic defined in Eq. (2) assumes k
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Table 1
Categorization of data loss events.

Avg. lifetime
(T)

Total events
(%)

Incompl. backup Failed
restore

Total
(%)

Unav.
(%)

3 months 13 10.4 8.4 2.6
1 year 2.6 2.6 2.3 None
4 years 0.5 0.5 0.25 None
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encoded fragments to be downloaded from the k fastest
peers that hold backup data. In practice, however, the k
encoded fragments are downloaded from the peers that
are available when a restore operation is executed.
Depending on the bandwidth distribution of the peers in
the system, such difference can cause the estimated TTR
value to be different from what achieved in practice.

Now, if eTTR is larger than TTR, more redundant data is
injected in the system, which has no negative impact on
data durability. What is the impact on durability if peers
underestimate the TTR? Using Eq. (1), we compute the
redundancy factor r, as a function of eTTR, that meets the
traget durability r1. Then, using TTR and r, we compute
the data durability d. Fig. 7 shows the impact of the relative
estimation error on the relative durability error using the
procedure described above, for different values of T and
for w ¼ 2 weeks.

When T is large, we have that wþ eTTR� T: as such,
even large estimation errors have little impact on the dura-
bility d. Instead, when T is small, we have that wþ eTTR ’ T:
in this case, data durability is more sensitive to estimation
errors. As a consequence, data redundancy may not be
sufficient and data loss events may occur.

In Table 1, we illustrate the effects discussed by
quantifying data loss events for w ¼ 2 weeks. Here we
count the percentage of peers that have not been able to
restore their data after a local disk crash, averaged over
ten simulation runs. We break down the data loss cases
between incomplete backup and failed restore: the latter
case encompasses all cases where peers lose data after
completing their backup. Furthermore, we also specify
the percentage of unavoidable cases in which peers fail
before minTTB: in this case, not even an ideal system could
have guaranteed a safe backup.

A lesson we can draw from Table 1 is that most data loss
episodes are simply due to node failure before the backup is
completed; this result confirms that it is sensible to
optimize time to backup by reducing redundancy and
hence also network load. We remark that a further
possibility is to use a hybrid architecture, as we discussed
in Section 2.4, to store data temporarily on a centralized
‘‘cloud’’ service to decrease time to backup [35]. In
addition, it can be noted that a large majority of data loss
episodes are unavoidable with any online storage solution:
nodes with low bandwidth risk crashing before completing
uploads even if saving data to a reliable server with 100%
uptime and unlimited bandwidth.

‘‘Failed restore’’ events can be seen as validations for the
durability computed in Eq. (1): since backup is considered
complete, the system has reached the condition where
d P r1 ¼ 0:9999: this should imply that failed restores
are less than 0.01%. This happens for T P 1 year; the prob-
lematic case of T ¼ 3 months is imputable to the impact of
estimation error on durability as discussed above.
However, we remark that the impact of this effect even
in such a situation is outnumbered by the unavoidable data
loss episodes; this leads us to conclude that nodes with
very low lifetime are intrinsically unsuited to any kind of
online storage solution, and not only to P2P backup.
7. Conclusion

In this work we focused on P2P backup systems, and
designed a redundancy management mechanism tailored
to the specific data access patterns that characterize data
backup. The goal of our mechanism was to achieve data
durability without requiring large redundancy factors
(typical of storage applications) nor fast failure detection
mechanisms.
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Our experiments showed that, in a realistic setting, a
redundancy that caters to data durability can be less than
half of what is needed to guarantee availability. This
results in a system with a storage capacity that is more
than doubled, and backup operations that are much faster
(up to a factor of 4) than on a backup system based on
traditional redundancy management. This latter property
is particularly desirable since, in most of the cases, peers
suffering data loss were those that could not complete
the backup before crashing.

We also showed that the price to pay for efficient
backup operations was a decreased (but controlled) perfor-
mance of restore operations. We argued that this was a
reasonable penalty, considering that all peers in the system
would benefit from backup efficiency, while only those
peers suffering from a failure would have to bear longer
restore times.

Finally, we studied data loss events: our results
indicated that such events are practically negligible for a
mature P2P application in which permanent host failures
dominate peer deaths. We also showed the limitations of
our technique for a system characterized by a high applica-
tion-level churn, which is typical of new P2P applications
that must conquer user trust.
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