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Abstract

We prove decoupling inequalities for the Gaussian free field on Z
d,

d ≥ 3. As an application, we obtain exponential decay (with logarith-
mic correction for d = 3) of the connectivity function of excursion sets
for large values of the threshold.
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1 Correlation and decoupling inequalities

Let us denote by ‖x‖ the Euclidean norm of x ∈ Z
d. The Gaussian free

field (GFF) on Z
d, d ≥ 3, is a centered Gaussian field ϕ = (ϕx)x∈Zd ∈ R

Z
d

under the probability measure P with covariance E(ϕxϕy) = g(x, y) for all
x, y ∈ Z

d, where g(·, ·) denotes the Green function of the simple random walk
on Z

d. The random field ϕ exhibits long-range correlations, since

cg‖x− y‖2−d ≤ g(x, y) ≤ Cg‖x− y‖2−d, x 6= y (1.1)

for some 0 < cg(d) ≤ Cg(d) <∞, see [6, Theorem 1.5.4].
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The goal of this section is to quantify the dependence between configura-
tions of the GFF, supported on disjoint (and, usually, distant) sets. Decou-
pling inequalities of this kind are useful tools in the study of percolation of
the excursion sets of the GFF (see [10, Proposition 2.2] and [2, Lemma 2.6])
and the vacant set of random interlacements (see [13, Theorem 2.6]). When
starting to work on the subject of the present paper, our initial aim was to
find the GFF counterpart of the decoupling inequalities proved for random
interlacements in [8, Theorem 1.1] (see Remark 1.5 for further discussion),
but our Theorem 1.2 actually gives a stronger, conditional form of decoupling
inequalities for events defined in terms of the GFF. In Section 2 we give an
application of the decoupling inequalities stated in this section.

If K,K ′ ⊆ Z
d, we define

dist(K,K ′) = min
x∈K, y∈K ′

‖x− y‖, diam(K) = sup
x,y∈K

‖x− y‖.

With a slight abuse of notation, for K ⊂ Z
d we write ϕK := (ϕx)x∈K for

the GFF restricted to K. We say that a (measurable) function f : RZ
d

→ R

is supported on K if for any η, η′ ∈ R
Z
d

such that ηK = η′K it holds that
f(η) = f(η′). Let us also define

Cov
(
f1(ϕ), f2(ϕ)

)
= E

(
f1(ϕ)f2(ϕ)

)
− Ef1(ϕ)Ef2(ϕ).

If K is a finite subset of Zd, we define the capacity of K by the formula

cap(K) =
∑

x∈K

Px[H̃K = +∞],

where Px is the law of simple random walk X on Z
d started from x ∈ Z

d and
H̃K = min{n ≥ 1 : Xn ∈ K} is the hitting time of the set K.

First, we formulate the following result about correlations of functions
supported on disjoint finite sets, which is in the spirit of the basic correlation
inequality for random interlacements, see [12, (2.15)].

Proposition 1.1. Let d ≥ 3. There exist constants 0 < cd ≤ Cd < +∞ that
depend only on d such that if K1, K2 are disjoint finite subsets of Zd and

dist(K1, K2) ≥ max{diam(K1), diam(K2)}, (1.2)

then

cd

(
cap(K1)cap(K2)

)1/2

dist(K1, K2)d−2
≤ sup

f1,f2

Cov
(
f1(ϕ), f2(ϕ)

)
≤ Cd

(
cap(K1)cap(K2)

)1/2

dist(K1, K2)d−2
,

(1.3)
where the supremum is taken over [0, 1]-valued functions f1, f2 : R

Z
d

→ [0, 1],
and where f1 is supported on K1 and f2 is supported on K2.
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Let us remark that the assumption (1.2) is only used in the proof the
lower bound of (1.3).

While the above result does indeed give the right order of decay of corre-
lations, it is not always the right tool one looks for. The reason is that the
covariance decreases polynomially in distance, which makes renormalization
arguments more difficult. One can circumvent this problem by using the
method of sprinkling, which has been effectively applied to produce powerful
decoupling inequalities for the excursion sets of the GFF (see [10, Proposi-
tion 2.2] and [2, Lemma 2.6]) and the vacant set of random interlacements
(see [13, Section 2]).

To explain this approach, we need more definitions. Write η ≤ η′ if
ηx ≤ η′x for all x ∈ Z

d. A function f : RZ
d

→ R is called increasing if η ≤ η′

implies f(η) ≤ f(η′), and decreasing if (−f) is increasing. For η ∈ R
Z
d

and a ∈ R we use the shorthand η + a for the configuration defined by
(η + a)x = ηx + a, x ∈ Z

d.
Let us fix two disjoint sets K1, K2 ⊂ Z

d, such that K1 is finite. It is
known (see [14, Proposition 2.3] and [10, Lemma 1.2]) that P-a.s. there exists
a decomposition

ϕ = ϕ̃+ h (1.4)

into a sum of independent Gaussian fields, where ϕ̃ is a centered field such
that ϕ̃K1 ≡ 0, and

hx =
∑

y∈K1

Px[HK1 <∞, XHK1
= y] · ϕy, P-a.s., (1.5)

where HK1 = min{n ≥ 0 : Xn ∈ K1} is the entrance time of the random walk
to the set K1. Note that h is measurable with respect to the sigma-algebra
generated by ϕK1 and that one has hK1 ≡ ϕK1.

For δ > 0, define the σ(ϕK1)-measurable event

Gδ =
{

sup
x∈K2

|hx| ≤
δ

2

}
. (1.6)

Our main result is about the conditional decoupling inequalities:

Theorem 1.2. Assume that f2 : RZ
d

→ [0, 1] is increasing and supported
on K2. For all δ > 0 it P-a.s. holds that

(
E(f2(ϕ−δ))−P[G

c
δ]
)
1Gδ
≤ E

(
f2(ϕ) | ϕK1

)
1Gδ
≤

(
E(f2(ϕ+δ))+P[Gc

δ]
)
1Gδ

.
(1.7)

An (almost) immediate consequence of this result is the following
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Corollary 1.3. Assume that f2 : RZ
d

→ [0, 1] is increasing and supported
on K2, and f1 : R

Z
d

→ [0, 1] is any function supported on K1. Then for all
δ > 0 we have

Ef1(ϕ)Ef2(ϕ− δ)− 2P[Gc
δ] ≤ Ef1(ϕ)f2(ϕ) ≤ Ef1(ϕ)Ef2(ϕ+ δ) + 2P[Gc

δ].
(1.8)

It is straightforward to see that the corresponding results (with obvious
changes) also hold if f2 is a decreasing function.

We refer to the quantity δ in (1.7)–(1.8) as the amount of sprinkling. In
Proposition 1.4 below we shall see that the term P[Gc

δ] decreases quite fast
as dist(K1, K2) increases; so one can decrease the correlation term of Propo-
sition 1.1 at the cost of “changing the level” of the field for the monotone
function f2.

The next proposition tells us how to choose the amount of sprinkling δ if
we want a useful upper bound for P[Gc

δ]. Let us denote by |K| the cardinality
of K ⊂ Z

d. For any K ⊆ Z
d we define

K(≥s) = {y ∈ Z
d : dist(y,K) ≥ s}

K(=s) = {y ∈ Z
d : s ≤ dist(y,K) < s+ 1}.

Note that a nearest-neighbor walk fromK to K(≥s) must pass through K(=s).
Having fixed the disjoint subsets K1 and K2 of Z

d, let us define s =
dist(K1, K2) > 0 and the auxiliary sets H1, H2 ⊆ Z

d in the following way:

• if diam(K1) ≤ diam(K2), define H2 = K
(≥s)
1 and H1 = H

(≥s)
2 ,

• if diam(K1) > diam(K2), define H1 = K
(≥s)
2 and H2 = H

(≥s)
1 .

With these definitions we have

Ki ⊆ Hi, H3−i = H
(≥s)
i , |H

(=s)
i | <∞, i ∈ {1, 2}. (1.9)

Let us define
gs = sup

y: ‖y‖≥s

g(0, y).

Proposition 1.4. Denote by s = dist(K1, K2) > 0. Then

P[Gc
δ] ≤ 2|H

(=s)
1 | exp

(
−

δ2

8gs

)
. (1.10)
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Remark 1.5. Let us compare the inequality obtained from the combination
of (1.8) and (1.10) with the main decoupling result (Theorem 2.1) of [8].
Observing that gs = O(s2−d) by (1.1), one can note the similarity of the
expression in the exponent in the right-hand side of (1.10) with that in the
error term in [8, Theorem 2.1]. Also, let r be the minimum of the Euclidean

diameters of K1 and K2. Then, one can (very crudely) bound |H
(=s)
1 | by

const × (r + s)d and again observe the similarity with the error term in [8,
Theorem 2.1].

Before we prove the results stated above in Section 3, we give an appli-
cation of our decoupling inequality in Section 2.

2 Connectivity decay for percolation of ex-

cursion sets

For any h ∈ R, we define the excursion set above level h as

E≥h
ϕ = {x ∈ Z

d : ϕx ≥ h}.

We view E≥h
ϕ as a random subgraph of Zd, and, naturally, one may be in-

terested in studying its percolation properties. Let us write {x
≥h
←→ y} for

the event when x, y ∈ Z
d are connected in E≥h

ϕ . As an application of Corol-
lary 1.3, in this section we establish a result on the decay of the connectivity
function of the excursion set E≥h

ϕ .
In [1] (for d = 3) and in [10] (for all d ≥ 3) it was shown that there

exists h∗ = h∗(d) ∈ [0,+∞) such that E≥h
ϕ percolates for h < h∗ and does

not percolate for h > h∗; moreover, it was also proved that h∗(d) > 0 for
all sufficiently large d. Further developments regarding percolation of E≥h

ϕ

and its connection to interlacement percolation (based on the isomorphism
theorem [15]) can be found in [7, 11].

In [10, (0.6)] the authors define another critical parameter h∗∗ ≥ h∗ as the
threshold above which one has at least polynomial decay of the probabilities
of certain crossing events:

h∗∗(d) = inf{h ∈ R ; for some α > 0, lim
L→∞

Lα
P[B(0, L)

≥h
←→ S(0, 2L)] = 0},

where the event {B(0, L)
≥h
←→ S(0, 2L)} refers to the existence of a nearest-

neighbour path in E≥h
ϕ connecting B(0, L), the ball of radius L around 0 in

the ℓ∞-norm, to S(0, 2L), the ℓ∞-sphere of radius 2L around 0.
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In [10, Theorem 2.6] they prove that h∗∗(d) < ∞ for all d ≥ 3, and
also give a stretched exponential upper bound for the connectivity function

P[0
≥h
←→ x] as ‖x‖ → ∞ for h > h∗∗. In the next theorem, we further weaken

the definition of h∗∗ and, more importantly, we improve on the stretched
exponential bound for values of h above h∗∗.

Theorem 2.1. For d ≥ 4, given h > h∗∗(d), there exist positive constants
γ1 = γ1(d, h) and γ2 = γ2(d, h) such that

P[0
≥h
←→ x] ≤ γ1 exp{−γ2‖x‖}, for every x ∈ Z

d. (2.1)

If d = 3 and h > h∗∗(3), then for any b > 1 there exist γ′
1 = γ′

1(h, b) and
γ′
2 = γ′

2(h, b) such that

P[0
≥h
←→ x] ≤ γ′

1 exp
{
− γ′

2

‖x‖

log3b ‖x‖

}
, for every x ∈ Z

d. (2.2)

Moreover, we show that the quantity h∗∗ can be defined as

h∗∗ = inf
{
h > 0; lim inf

L→∞
P
[
[0, L]d

≥h
←→ ∂[−L, 2L]d

]
<

7

2d · 21d

}
. (2.3)

Proof of Theorem 2.1. The reader may have noticed that the above result is a
copy of the statement of [8, Theorem 3.1], with obvious notational changes.
Indeed, as observed in [8, Remark 3.4], the proof of that theorem can be
adapted to any percolation model which satisfies certain monotonicity and
decoupling properties, that the excursion sets of the GFF do possess.

More specifically, let us denote by Ph the law of the excursion set E≥h
ϕ .

Then (1.8) and (1.10) imply that for any increasing events A1, A2 that depend
on disjoint boxes of size r within distance at least s from each other, we have

Ph[A1 ∩ A2] ≤ Ph−δ[A1]Ph−δ[A2] + C(r + s)d exp(−C ′δ2sd−2). (2.4)

This decoupling inequality is a special case of the one in [8, Remark 3.4], the
proof of this result is also practically a copy of the proof of [8, Theorem 3.1].

It is important to observe that (2.4) may be seen as a partial replacement
of the BK inequality, which is very useful for proving exponential decay of
crossing probabilities in the subcritical phase of classical (Bernoulli) percola-
tion, see e.g. Section 5.2 of [4]. While the “pure” BK inequality generally does
not hold in the dependent percolation models we mentioned here, inequal-
ities similar to (2.4) are still very useful, even though they usually involve
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sprinkling and the additive “error” term. It turns out that, for renormaliza-
tion arguments, this additive term is pivotal, in the sense that the smaller it
is, the better results one obtains for the decay of the probabilities of cross-
ing events. In fact one can even achieve exponential decay (if d ≥ 4) in
polynomially correlated percolation models without the BK inequality.

Another important observation is that the question whether h∗ = h∗∗

is still open (as well as the corresponding question for random interlace-
ments). In our opinion, the conditional decoupling result of our Theorem
1.2 might help in proving it; in fact, it did help in the proof of the fact that
h∗(d)/h∗∗(d)→ 1 as d→∞, see [3].

3 Proofs of the decoupling results

We start by deducing the correlation bounds with no sprinkling from the
corresponding general results of [5, Chapter 10].

Proof of Proposition 1.1. First note that a function f : RZ
d

→ R is supported
on K if and only if f is σ(ϕK)-measurable.

Denote by G the Gaussian Hilbert space that arises as the closure of
vector space of linear combinations of ϕx, x ∈ Z

d under the norm ‖X‖ =√
〈X,X〉 given by the inner product 〈X, Y 〉 = Cov(X, Y ).
Denote by H and K the subspaces of G spanned by linear combinations

of ϕx, x ∈ K1 and ϕx, x ∈ K2, respectively. Let us introduce the sigma-
algebras F = σ(H) = σ(ϕK1) and G = σ(K) = σ(ϕK2).

Recall from [5, Definitions 10.5, 10.6] the notion of the strong mixing
coefficient α(·, ·) and the maximal correlation coefficient ρ(·, ·):

α(H,K) = α(F ,G) = sup
A∈F ,B∈G

|P[A ∩B]− P[A]P[B]|,

ρ(H,K) = ρ(F ,G) = sup
X∈L2(F), Y ∈L2(G)

Cov(X, Y )√
Var(X)Var(Y )

.

With this notation we have

α(H,K)
(∗)

≤ sup
f1,f2

Cov
(
f1(ϕ), f2(ϕ)

) (∗∗)

≤ ρ(H,K), (3.1)

where the supremum is taken over [0, 1]-valued functions f1, f2 : R
Z
d

→ [0, 1],
and where f1 is supported on K1 and f2 is supported on K2. Indeed, (∗)
follows if we choose f1 = 1A and f2 = 1B (or f2 = 1Bc if Cov

(
1A,1B

)
< 0)

and (∗∗) follows because Var(f1),Var(f2) ≤ 1.
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Denote by PK : G→ K the orthogonal projection to the subspace K and
by PHK : H → K the restriction of PK to H. Similarly, let PH denote the
projection to H and PKH its restriction to K. Denote by ‖ · ‖ the operator
norm of linear operators on (subspaces of) G.

[5, Theorem 10.11] states that ρ(H,K) = ‖PHK‖ and [5, Remark 10.1(ii),
Theorem 10.13] imply that 1

2π
‖PHK‖ ≤ α(H,K). Combining these results

with (3.1) we see that in order to prove Proposition 1.1 we only need to show
that there exist constants 0 < c′d ≤ C ′

d < +∞ that depend only on d such
that if K1, K2 satisfy (1.2) then we have

c′d

(
cap(K1)cap(K2)

)1/2

dist(K1, K2)d−2
≤ ‖PHK‖ ≤ C ′

d

(
cap(K1)cap(K2)

)1/2

dist(K1, K2)d−2
. (3.2)

First note that the adjoint of PHK is PKH (see [5, Remark 10.1]), thus if we
define A : H→ H by A = PKHPHK, then A is self-adjoint and we have (see,
for example, [5, Appendix H])

‖PKH‖ = ‖PHK‖ =
√
‖A‖. (3.3)

Note that we have

‖PHK‖ = sup
X∈H,Y ∈K

〈PK(X), Y 〉

‖X‖‖Y ‖
= sup

X∈H,Y ∈K

〈X, Y 〉

‖X‖‖Y ‖
. (3.4)

Now X ∈ H if and only if X =
∑

x∈K1
αxϕx for some α ∈ R

K1 and Y ∈ K

if and only if Y =
∑

y∈K2
βyϕy for some β ∈ R

K2 , thus we can use this
coordinatization and Cov[ϕxϕy] = g(x, y) to write

〈X, Y 〉 = Cov(X, Y ) =
∑

x∈K1, y∈K2

αxβyg(x, y), (3.5)

‖X‖2 = Var(X) =
∑

x∈K1, y∈K1

αxαyg(x, y). (3.6)

Also note that PH(ϕx)
(1.5)
= hx, x ∈ Z

d and that an analogous formula holds
for PK(ϕx). In particular, the entries of the matrices of PKH, PHK and
A = PKHPHK (expressed in the basis ϕx, x ∈ Z

d) are all non-negative,
thus we can use the Perron-Frobenius theorem to infer that the self-adjoint
matrix A has an eigenvector X∗ ∈ H, ‖X∗‖ = 1 such that 〈X∗, AX∗〉 = ‖A‖
and X∗ has non-negative coordinates in the basis ϕx, x ∈ K1. We claim that
if we define Y∗ = PHKX∗, then the pair (X∗, Y∗) maximizes the correlation
functional on the right-hand side of (3.4):

‖Y∗‖ =
√
〈PHKX∗, PHKX∗〉 =

√
〈X∗, PKHPHKX∗〉 =

√
‖A‖

(3.3)
= ‖PHK‖,
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〈X∗, Y∗〉

‖X∗‖‖Y∗‖
=
〈X∗, PHKX∗〉

‖PHK‖
=
〈PHKX∗, PHKX∗〉

‖PHK‖
=
‖A‖

‖PHK‖

(3.3)
= ‖PHK‖.

We can thus infer that the maximum in (3.4) remains unchanged if we assume

αx ≥ 0, x ∈ K1, βy ≥ 0, y ∈ K2,
∑

x∈K1

αx = 1 and
∑

y∈K2

βy = 1. (3.7)

Using these assumptions we can bound

c′d dist(K1, K2)
2−d

(1.1),(1.2)

≤ min
x∈K1, y∈K2

g(x, y)
(3.5),(3.7)

≤ 〈X, Y 〉

(3.5),(3.7)

≤ max
x∈K1, y∈K2

g(x, y)
(1.1)

≤ C ′
d dist(K1, K2)

2−d. (3.8)

A combination of (3.6) and the variational characterization [9, Lemma 2.3]
of capacity gives

sup
α

1

‖X‖2
= cap(K1), sup

β

1

‖Y ‖2
= cap(K2), (3.9)

where the maximum is taken over all α ∈ R
K1 and β ∈ R

K1 satisfying (3.7).
Putting together (3.4), (3.8) and (3.9) we arrive at (3.2). The proof of Propo-
sition 1.1 is complete.

Now we prove the conditional decoupling result:

Proof of Theorem 1.2. Recall the decomposition ϕ = ϕ̃ + h from (1.4). Let
us assume without loss of generality that our probability space is rich enough
to carry an independent copy ĥ of the field h. Denote

ϕ̂ = ϕ̃+ ĥ.

Clearly, ϕ and ϕ̂ have the same law. Let Ĝδ be the event defined as in (1.6),

but with ĥ replacing h. Then, write

E
(
f2(ϕ) | ϕK1

)
1Gδ

= E
(
f2(ϕ̃+ h) | ϕK1

)
1Gδ

= E
(
f2(ϕ̂+ h− ĥ) | ϕK1

)
1Gδ

= E
(
f2(ϕ̂+ h− ĥ)1Gδ∩Ĝδ

| ϕK1

)

+ E
(
f2(ϕ̂+ h− ĥ)1Gδ∩Ĝ

c

δ

| ϕK1

)

=: T1 + T2. (3.10)
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Clearly, we have
0 ≤ T2 ≤ P[Ĝc

δ]1Gδ
. (3.11)

Since, by construction, ϕ̂ is independent of ϕK1, moreover |h − ĥ| ≤ δ on

Gδ ∩ Ĝδ and f2 is increasing, we can write

T1 ≤ E
(
f2(ϕ̂+ δ)1Gδ∩Ĝδ

| ϕK1

)

≤ E
(
f2(ϕ̂+ δ) | ϕK1

)
1Gδ

= E
(
f2(ϕ̂+ δ)

)
1Gδ

. (3.12)

Also, we have

T1 ≥ E
(
f2(ϕ̂− δ)1Ĝδ

| ϕK1

)
1Gδ

= E
(
f2(ϕ̂− δ)(1− 1Ĝc

δ

)
)
1Gδ

≥ E
(
f2(ϕ̂− δ)

)
1Gδ
− P[Ĝc

δ]1Gδ
. (3.13)

Inserting (3.11)–(3.13) into (3.10) and using the fact that ϕ̂ and ϕ are equally

distributed and P[Ĝc
δ] = P[Gc

δ], we conclude the proof of Theorem 1.2.

Proof of Corollary 1.3. Now, let f1 : RZ
d

→ [0, 1] be a function supported
on K1. Since

Ef1(ϕ)− P[Gc
δ] ≤ E

(
f1(ϕ)1Gδ

)
≤ Ef1(ϕ),

it is then straightforward to obtain (1.8) by multiplying (1.7) by f1(ϕ) and
integrating.

Proof of Proposition 1.4. Define the events

Λδ,x = {|hx| ≤ δ/2}, x ∈ H
(=s)
1 .

Clearly, hx is a centered Gaussian random variable, thus we can use (1.5)

and E[ϕxϕy] = g(x, y) to bound the variance of hx, x ∈ H
(=s)
1 :

Varhx =
∑

y∈K1

Px[HK1 <∞, XHK1
= y]

∑

z∈K1

Px[HK1 <∞, XHK1
= z]g(z, y)

(∗)
=

∑

y∈K1

Px[HK1 <∞, XHK1
= y]g(x, y) ≤ sup

y∈K1

g(x, y)
(1.9)

≤ gs,

where (∗) holds by the strong Markov property of simple random walk:
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g(x, y) = Ex

[
∞∑

n=0

1[Xn=y]

]
= Ex




∞∑

n=HK1

1[Xn=y]


 =

Ex

(
g(XHK1

, y); HK1 <∞
)
=

∑

z∈K1

Px[HK1 <∞, XHK1
= z]g(z, y).

Thus we can use the exponential Chebyshev’s inequality to bound

P[Λc
δ,x] ≤ 2 exp

(
−

δ2

8gs

)
.

Observe that by (1.9) any nearest-neighbor walk from K2 to K1 must pass

through H
(=s)
1 , so by the strong Markov property of the simple random walk

on Z
d and (1.5), for any y ∈ K2, the value of hy is a weighted sum of the

values
(
hx, x ∈ H

(=s)
1

)
, with total weight at most 1. In particular, we have

Gc
δ ⊆

⋃

x∈H
(=s)
1

Λc
δ,x.

Using the union bound we conclude the proof of Proposition 1.4.
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