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Abstract

The vacant set of random interlacements at level u > 0, introduced in [8], is a
percolation model onZ

d, d ≥ 3which arises as the set of sites avoided by a Poissonian
cloud of doubly infinite trajectories, where u is a parameter controlling the density of
the cloud. It was proved in [6, 8] that for any d ≥ 3 there exists a positive and finite
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1 Introduction

The model of random interlacements was introduced in [8]. The interlacement Iu at

level u > 0 is a random subset of Zd, d ≥ 3 that arises as the local limit as N → ∞ of the

range of the first ⌊uNd⌋ steps of a simple random walk on the discrete torus (Z/NZ)d,

d ≥ 3, see [14]. The law of Iu is characterized by

P[Iu ∩K = ∅] = e−u·cap(K), for any finite K ⊆ Z
d, (1.1)

where cap(K) denotes the discrete capacity of K, see (2.5). The vacant set of random

interlacements Vu at level u is defined as the complement of Iu at level u:

Vu = Z
d \ Iu, u > 0. (1.2)

By [8, (1.68)] the correlations of Vu decay polynomially for any u > 0:

P[x, y ∈ Vu]− P[x ∈ Vu] ·P[y ∈ Vu] ≍ (|x − y| ∨ 1)2−d , x, y ∈ Z
d. (1.3)

One is interested in the connectivity properties of the subgraphs of the nearest-neighbour

lattice Z
d spanned by the above random sets. For any u > 0, Iu is a P-a.s. connected

random subset of Zd (see [8, (2.21)]), but Vu exhibits a percolation phase transition:

there exists u∗ ∈ (0,∞) such that
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A short proof of interlacement phase transition

(i) for any u > u∗, P-a.s. all connected components of Vu are finite, and

(ii) for any u < u∗, P-a.s. Vu contains an infinite connected component.

The fact that u∗ < ∞ was proved in [8, Section 3], and the positivity of u∗ was estab-

lished in [8, Section 4] when d ≥ 7, and later in [6] for all d ≥ 3.

There is no reason to believe that an exact formula for the value of the critical

threshold u∗ = u∗(d) exists. However, it is proved in [9, 10] that

lim
d→∞

u∗(d)

ln(d)
= 1, (1.4)

in agreement with the principal asymptotic behaviour of the critical threshold of random

interlacements on 2d-regular trees, which is explicitly computed in [12, Proposition 5.2].

The aim of this paper is to give a short proof of the non-triviality of phase transition

of Vu and to provide simple explicit upper and lower bounds on the value of u∗ =

u∗(d), d ≥ 3.

For any d ≥ 3 let us denote by 0 < cg = cg(d) and Cg = Cg(d) < +∞ the best

constants such that the inequalities

cg · (|x− y| ∨ 1)2−d ≤ g(x, y) ≤ Cg · (|x − y| ∨ 1)2−d, x, y ∈ Z
d (1.5)

hold, where | · | is the ℓ∞-norm on Z
d and g(·, ·) is the Green function of simple random

walk on Z
d, see (2.3). The positivity of cg and Cg < +∞ follow from [4, Theorem 1.5.4].

Theorem 1.1. For any d ≥ 3, we have

cg
L0

1

C2
2−(d+5) ≤ u∗ ≤

5

2
Cg ln(Cd), (1.6)

where

Cd = (13d − 11d)(25d − 23d), d ≥ 2, (1.7)

and

L0 =





⌈
exp

(
48

Cg

cg
C2
)⌉

if d = 3,

⌈(
48

Cg

cg
C2
) 1

d−3

⌉
if d ≥ 4.

(1.8)

The bounds (1.6) are not at all sharp, especially if we compare them with (1.4) as

d → ∞. This shortcoming of Theorem 1.1 is counterbalanced by the fact that its proof

is very simple. In particular, our self-contained proof does not use the “sprinkling” tech-

nique and decoupling inequalities usually applied in order to overcome the long-range

correlations (1.3) present in the model. The proof of u∗(d) > 0 for d ≥ 7 in [8, Section

4] does not use “sprinkling”, but the proof of u∗(d) < +∞ for any d ≥ 3 in [8, Section

3] and the proof of u∗(d) > 0 for 3 ≤ d ≤ 7 in [6] does. Various forms of decoupling in-

equalities have been subsequently developed to study the connectivity properties of Vu

in the subcritical [5, 7, 11] and supercritical [2, 13] phases. These techniques are very

useful once they are available, but the elementary method of our paper seems to be eas-

ier to adapt to other percolation models with long-range correlations, e.g., branching

interlacements [1].

Let us briefly describe the idea of the proof of Theorem 1.1. We employ multi-scale

renormalization. In order to prove u∗ < +∞ we show that if Vu crosses an annulus

at scale Ln = 6n then this vacant crossing contains a set XT of 2n well-separated ver-

tices which arises as the image of leaves under an embedding T of the dyadic tree of
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A short proof of interlacement phase transition

depth n (this method already appears in [11]). By construction, the number of possible

embeddings is less than C2n

d (c.f. (1.7)), so we only need to show that cap(XT ) ≍ 2n if

we want to use (1.1) to to show that crossing of the annulus by Vu is unlikely when u

is big enough. This is indeed the case, because by construction the embedding T is

“spread-out on all scales", thus the cardinality and the capacity of XT are comparable.

In order to prove u∗ > 0, we restrict our attention to a plane inside Z
d. By planar

duality we only need to show that a ∗-connected crossing of a planar annulus at scale

Ln = L0 · 6n by Iu is unlikely. We show that such a crossing must intersect 2n “frames”,

where each frame is the union of four “sticks” of length 2L0 − 1. Such a collection of

frames again arises from a spread-out embedding of the dyadic tree of depth n. We use

that Iu can be written as the union of the ranges of a Poissonian cloud of independent

random walks and the fact that random walks tend to avoid sticks if L0 is large enough

(c.f. (1.8)) to arrive at a large deviation estimate on the probability that the number of

frames that intersect Iu is 2n which is strong enough to beat the combinatorial com-

plexity term C2n

2 . This stick-based approach to u∗ > 0 is already present in [6, Section

3] and our large deviation estimate resembles the one in the proof of [8, Theorem 2.4].

The rest of this paper is organized as follows.

In Section 2 we introduce further notation and recall some useful facts related to

the notion of capacity and random interlacements. In Section 3 we define the notion

of a proper embedding of a dyadic tree into Z
d and derive some facts about such em-

beddings. In Sections 4 and 5 we prove the upper and lower bounds on u∗ stated in

Theorem 1.1.

2 Preliminaries

For a set K, we denote by |K| its cardinality. We denote by K ⊂⊂ Z
d the fact that

K is a finite subset of Zd. We denote by |x| the ℓ∞-norm of x ∈ Z
d and by S(x,R) the

ℓ∞-sphere of radius R about x in Z
d:

S(x,R) = {y ∈ Z
d : |y − x| = R}. (2.1)

For x ∈ Z
d, denote by Px the law of simple random walk (Xn)

∞
n=0 on Z

d starting at

X0 = x. If m is a probability measure on Z
d, we denote by

Pm =
∑

x∈Zd

m(x)Px (2.2)

the law of simple random walk with initial distribution m and by Em the corresponding

expectation. The Green function of simple random walk on Z
d is defined by

g(x, y) =

∞∑

n=0

Px[Xn = y], x, y ∈ Z
d. (2.3)

Let us denote by {X} ⊆ Z
d the range of the random walk:

{X} = ∪∞
n=0{Xn} (2.4)

2.1 Potential theory

If K ⊂⊂ Z
d, we define the equilibrium measure eK(·) of K by

eK(x) = Px[Xn /∈ K for any n ≥ 1 ], x ∈ K.

The total mass of the equilibrium measure is called the capacity of K:

cap(K) =
∑

x∈K

eK(x). (2.5)
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One defines the normalized equilibrium measure ẽK(·) of K by

ẽK(x) =
eK(x)

cap(K)
. (2.6)

Let us now collect some facts about capacity that we will use in the sequel. The

proofs of the properties (2.7)-(2.10) below can be found in, e.g., [3, Section 1.3].

For any x ∈ Z
d and any K ⊂⊂ Z

d,

Px[{X} ∩K 6= ∅] =
∑

y∈K

g(x, y)eK(y)
(2.5)

≤ cap(K)max
y∈K

g(x, y). (2.7)

For any K1,K2 ⊂⊂ Z
d,

cap(K1 ∪K2) ≤ cap(K1) + cap(K2). (2.8)

For any K ⊆ K ′ ⊂⊂ Z
d,

cap(K) ≤ cap(K ′). (2.9)

For any K ⊂⊂ Z
d,

|K|

maxx∈K

∑
y∈K g(x, y)

≤ cap(K) ≤
|K|

minx∈K

∑
y∈K g(x, y)

. (2.10)

Let us denote by F the plane

F = Z
2 × {0}d−2 ⊆ Z

d. (2.11)

For any y ∈ F and L ≥ 1 let us define the frame ✷
L
y ⊆ F by

✷
L
y

(2.1)
= S(y, L− 1) ∩ F. (2.12)

The next lemma gives an explicit upper bound on the capacity of a frame. The

bounds of (2.13) are actually sharp up to a dimension-dependent constant factor, but

we will only use the upper bounds. The stronger bound for d = 3 is crucial to showing

that random walks tend to avoid frames in Z
3. The extra ln(L0) makes the parameter p

defined in (5.6) small, which is necessary for our proof of u∗(3) > 0. Recall the notion

of cg from (1.5).

Lemma 2.1. For any L ≥ 1 we have

cap
(
✷

L
y

)
≤

{
8 L
cg

if d ≥ 4,

8 L
cg·(1+ln(L)) if d = 3.

(2.13)

Proof. Denote by Sℓ = {1, . . . , ℓ} × {0}d−1 ⊆ Z
d the stick of length ℓ. We will use (2.10)

to bound cap(Sℓ). If x ∈ Sℓ then x = {i} × {0}d−1 for some 1 ≤ i ≤ ℓ and

∑

y∈Sℓ

g(x, y)
(1.5)

≥
ℓ∑

j=1

cg · (|j − i| ∨ 1)2−d ≥
ℓ∑

j=1

cg · (|j − 1| ∨ 1)2−d =

cg ·

(
1 +

ℓ−1∑

k=1

k2−d

)
≥

{
cg if d ≥ 4,

cg ·
(
1 +

∫ ℓ

1
1
s
ds
)
= cg · (1 + ln(ℓ)) if d = 3.

Using these bounds, (2.10) and |Sℓ| = ℓ we obtain that cap (Sℓ) ≤ ℓ/cg if d ≥ 4 and

cap (Sℓ) ≤ ℓ/(cg · (1 + ln(ℓ))) if d = 3. Now the frame ✷
L
y is the union of four sticks of

length 2L− 1, thus (2.13) follows from the above bounds and (2.8), (2.9).
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2.2 Constructive definition of random interlacements

The definition of the interlacement Iu at level u by the formula (1.1) is short, but it is

not constructive. The construction of [8, Section 1] involves a Poisson point process with

intensity measure u · ν, where ν is a sigma-finite measure on the space of equivalence

classes of doubly infinite trajectories modulo time-shift. The union of the ranges of

trajectories which are contained in the support of this Poisson point process is denoted

by Iu, and this random subset of Zd indeed satisfies (1.1).

We will not use the full definition of random interlacements, only a corollary of it,

which allows one to construct a set with the same law as Iu ∩K for any K ⊂⊂ Z
d.

Recall the notion of Pm from (2.2), {X} from (2.4) and ẽK(·) from (2.6).

Claim 2.2. Let d ≥ 3, K ⊂⊂ Z
d, NK be a Poisson random variable with parameter

u·cap(K), and (Xj)j≥1 i.i.d. simple randomwalks with distribution PẽK and independent

from NK . Then K ∩ ∪NK

j=1{X
j} has the same distribution as Iu ∩K.

This explicit “local representation" of Iu follows from the very construction of the

sigma-finite measure ν, which is obtained by patching together certain explicit mea-

sures QK , K ⊂⊂ Z
d in a consistent manner in [8, Theorem 1.1]. The above repre-

sentation of Iu ∩K is obtained from the Poisson point process with intensity measure

uQK .

3 Renormalization

For n ≥ 0, let T(n) = {1, 2}n (in particular, T(0) = ∅). Denote by

Tn =

n⋃

k=0

T(k)

the dyadic tree of depth n. For 0 ≤ k < n and m ∈ T(k), m = (ξ1, . . . , ξk), we denote by

m1 = (ξ1, . . . , ξk, 1) and m2 = (ξ1, . . . , ξk, 2) (3.1)

the two children of m in T(k+1). Given some L0 ≥ 1 we define the sequence of scales

Ln := L0 · 6
n, n ≥ 0. (3.2)

For n ≥ 0, we denote by Ln = LnZ
d the lattice Z

d renormalized by Ln.

Definition 3.1. T : Tn → Z
d is a proper embedding of Tn with root at x ∈ Ln if

1. T (∅) = x;

2. for all 0 ≤ k ≤ n and m ∈ T(k) we have T (m) ∈ Ln−k;

3. for all 0 ≤ k < n and m ∈ T(k) we have

|T (m1)− T (m)| = Ln−k, |T (m2)− T (m)| = 2Ln−k. (3.3)

We denote by Λn,x the set of proper embeddings of Tn into Z
d with root at x.

Lemma 3.2. For any L0 ≥ 1, n ≥ 0 and x ∈ Ln the number of proper embeddings of Tn

into Z
d with root at x is equal to

|Λn,x|
(1.7)
= C2n−1

d . (3.4)
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Proof. The claim is trivially true for n = 0. If n ≥ 1, x ∈ Ln and T ∈ Λn,x, we denote

by T1 and T2 the two embeddings of Tn−1 which arise from T as the embeddings of

the descendants of the two children of the root, i.e., for any 0 ≤ k ≤ n − 1 and m =

(ξ1, . . . , ξk) ∈ T(k) let Tξ(m) = T (ξ, ξ1, ξ2, . . . , ξk) for ξ ∈ {1, 2}. By Definition 3.1 we have

Tξ ∈ Λn−1,T (ξ) for ξ ∈ {1, 2}, thus we obtain (3.4) by induction on n:

|Λn,x|
(3.3)
= |S(x, Ln) ∩ Ln−1| · |S(x, 2Ln) ∩ Ln−1| · |Λn−1,T (1)| · |Λn−1,T (2)|

(3.2)
=

|S(0, 6)| · |S(0, 12)| · |Λn−1,T (1)| · |Λn−1,T (2)|
(∗)
= Cd · C

2n−1−1
d · C2n−1−1

d = C2n−1
d ,

where in (∗) we used the induction hypothesis.

We say that γ : {0, . . . , l} → Z
d is a ∗-connected path if |γ(i) − γ(i − 1)| = 1 for any

1 ≤ i ≤ l. For such a path we denote by {γ} = {γ(1), . . . , γ(l)} the range of γ.

Recall the notion of S(x,R) from (2.1) and note that S(x, 0) = {x}.

Lemma 3.3. If γ is a ∗-connected path in Z
d, d ≥ 2 and x ∈ Ln such that

{γ} ∩ S(x, Ln − 1) 6= ∅ and {γ} ∩ S(x, 2Ln) 6= ∅ (3.5)

then there exists T ∈ Λn,x such that

{γ} ∩ S(T (m), L0 − 1) 6= ∅ for all m ∈ T(n). (3.6)

Proof. We will prove that (3.5) implies that there exists T ∈ Λn,x such that for all

0 ≤ k ≤ n we have

{γ} ∩ S(T (m), Ln−k − 1) 6= ∅
{γ} ∩ S(T (m), 2Ln−k) 6= ∅

for all m ∈ T(k). (3.7)

We will construct such a T ∈ Λn,x by induction on k. By T (∅) = x we see that the case

k = 0 of (3.7) is just (3.5). Assuming that (3.7) holds for some 0 ≤ k ≤ n − 1 we now

show that it also holds for k + 1. If m ∈ T(k) then our induction hypothesis (3.7) and the

fact that γ is a ∗-connected path imply

{γ} ∩ S(T (m), Ln−k + Ln−k−1 − 1) 6= ∅,
{γ} ∩ S(T (m), 2Ln−k − Ln−k−1 + 1) 6= ∅.

We also have

S(T (m), Ln−k + Ln−k−1 − 1) ⊆
⋃

y∈S(T (m),Ln−k)∩Ln−k−1

S(y, Ln−k−1 − 1),

S(T (m), 2Ln−k − Ln−k−1 + 1) ⊆
⋃

z∈S(T (m),2Ln−k)∩Ln−k−1

S(z, Ln−k−1 − 1),

thus we can choose

T (m1) ∈ S(T (m), Ln−k) ∩ Ln−k−1 and T (m2) ∈ S(T (m), 2Ln−k) ∩ Ln−k−1

such that

{γ} ∩ S(T (m1), Ln−(k+1) − 1) 6= ∅, {γ} ∩ S(T (m2), Ln−(k+1) − 1) 6= ∅.

It follows from this, |T (m1) − T (m2)| ≥ Ln−k = 6Ln−(k+1) and the fact that γ is a

∗-connected path that we also have

{γ} ∩ S(T (m1), 2Ln−(k+1)) 6= ∅, {γ} ∩ S(T (m2), 2Ln−(k+1)) 6= ∅.

We have thus constructed the embedding T up to depth k + 1 so that Definition 3.1 is

satisfied up to depth k+1 and (3.7) also holds for k+1. Therefore by induction we have

constructed T ∈ Λn,x such that (3.7) holds for all 0 ≤ k ≤ n, which implies (3.6). The

proof of Lemma 3.3 is complete.
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For 0 ≤ k ≤ n and m = (ξ1, . . . , ξn) ∈ T(n) we denote m|k = (ξ1, . . . , ξk) ∈ T(k). Let us

denote the lexicographic distance of m,m′ ∈ T(n) by

ρ(m,m′) = min{k ≥ 0 : m|n−k = m′|n−k}.

For any m ∈ T(n) and 0 ≤ k ≤ n we define

Tm,k

(n) = {m′ ∈ T(n) : ρ(m,m′) = k}, (3.8)

see Figure 1 for an illustration. Note that

|Tm,k

(n) | = 2k−1, 1 ≤ k ≤ n. (3.9)

m T
m,1
(n) T

m,2
(n) T

m,3
(n)

∅

1 2

11 12 21 22

Figure 1: An illustration of the subsets Tm,k

(n) of leaves of Tn defined in (3.8). The dyadic

tree on the picture is of depth n = 3 and the leaf denoted by m is 111 ∈ T(n).

The next lemma shows that a proper embedding is “spread-out on all scales."

Lemma 3.4.

∀ n ≥ 1, x ∈ Ln, T ∈ Λn,x, m ∈ T(n), k ≥ 1,

∀ m′ ∈ Tm,k

(n) , y ∈ S(T (m), L0 − 1), z ∈ S(T (m′), L0 − 1) :

|y − z| ≥ Lk−1.

(3.10)

Proof. Let m′′ = m|n−k = m′|n−k ∈ T(n−k). Recalling (3.1) we may assume w.l.o.g. that

m|n−k+1 = m′′
1 ∈ T(n−k+1) and m′|n−k+1 = m′′

2 ∈ T(n−k+1). We have

|T (m′′
1 )− T (m′′

2 )|
(3.3)

≥ Lk
(3.2)
= 6Lk−1,

moreover

|T (m′′
1 )− y| ≤ |T (m)− y|+

k−1∑

j=1

∣∣∣T (m|n−j)− T (m|n−j+1)
∣∣∣
(3.3)

≤

L0 − 1 +

k−1∑

j=1

2Lj

(3.2)

≤ 2Lk−1

∞∑

i=0

6−i =
12

5
Lk−1,

and similarly |T (m′′
2 )− z| ≤ 12

5 Lk−1. Putting these bounds together we obtain (3.10).
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4 Upper bound on u∗

Let us choose L0 = 1 in (3.2). For n ≥ 1 let us denote by Au
n the event

Au
n =

{
there exists a nearest-neighbour path in Vu

that connects S(0, Ln − 1) to S(0, 2Ln)

}
.

Recall the definitions of Cg from (1.5) and Cd from (1.7).

Proposition 4.1. For any d ≥ 3 and

u >
5

2
Cg ln(Cd) (4.1)

there exists q = q(d, u) ∈ (0, 1) such that for any n ≥ 1 we have

P[Au
n] ≤ q2

n

. (4.2)

Corollary 4.2. Proposition 4.1 implies the upper bound of Theorem 1.1, as we now

explain. Let us denote by Ãu
n the event that there exists a nearest-neighbour path in

Vu that connects S(0, Ln − 1) to infinity and by Ãu
∞ the event that Vu has an infinite

connected component. If (4.1) holds, then

P[Ãu
∞]

(∗)
= lim

n→∞
P[Ãu

n] ≤ lim
n→∞

P[Au
n]

(4.2)
= 0,

where (∗) holds by monotone convergence. Therefore we have u∗ ≤ 5
2Cg ln(Cd).

Proof of Proposition 4.1. For any n ≥ 1 and T ∈ Λn,0 we denote XT =
⋃

m∈T(n)
T (m).

Noting that S(T (m), L0 − 1) = S(T (m), 0) = {T (m)} for any m ∈ T(n) and that every

nearest-neighbour path is also a ∗-connected path we can apply Lemma 3.3 to infer

P [Au
n]

(3.6)

≤ P


 ⋃

T ∈Λn,0

{XT ⊆ Vu}


 (1.1),(1.2)

≤

∑

T ∈Λn,0

exp (−u · cap(XT ))
(3.4)

≤ C2n

d · max
T ∈Λn,0

exp (−u · cap(XT )) . (4.3)

In order to finish the proof of Proposition 4.1 we only need to show that for any T ∈ Λn,0

we have

cap(XT ) ≥
2

5

1

Cg

2n, (4.4)

because then we indeed obtain

P [Au
n]

(4.3),(4.4)

≤ C2n

d exp

(
−u

2

5

1

Cg

2n
)

=

(
Cd exp

(
−u

2

5

1

Cg

))2n

= q2
n

, q
(4.1)
< 1.

We will show (4.4) using (2.10). For any T ∈ Λn,0 and any m ∈ T(n) we have

∑

m′∈T(n)

g(T (m), T (m′))
(3.8)
=

n∑

k=0

∑

m′∈T
m,k

(n)

g(T (m), T (m′))
(1.5),(3.10)

≤

Cg +

n∑

k=1

CgL
2−d
k−1

∣∣∣Tm,k

(n)

∣∣∣ (3.2),(3.9)= Cg ·

(
1 +

n∑

k=1

6(k−1)(2−d)2(k−1)

)
d≥3

≤

Cg ·

(
1 +

∞∑

k=1

31−k

)
=

5

2
Cg. (4.5)

Now (4.4) follows from (2.10), (4.5) and the fact that |XT | = 2n. The proof of Proposition

4.1 is complete.
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5 Lower bound on u∗

Let us choose L0 according to (1.8) in (3.2). Recall the notion of the plane F from

(2.11). For n ≥ 1 and x ∈ Ln ∩ F let us denote by Bu
n,x the event

Bu
n,x =

{
there exists a ∗-connected path in Iu ∩ F

that connects S(x, Ln − 1) to S(x, 2Ln)

}
.

Recall the definitions of cg, Cg from (1.5) and Cd from (1.7).

Proposition 5.1. For any d ≥ 3 and

u <
cg
L0

1

C2
2−(d+5), (5.1)

for any n ≥ 1 and x ∈ Ln ∩ F we have

P[Bu
n,x] ≤

(
3

4

)2n

. (5.2)

Corollary 5.2. Proposition 5.1 implies the lower bound of Theorem 1.1, as we now

explain. Let us denote by Âu
n the event that there exists a nearest-neighbour path in

Vu ∩F that connects S(0, Ln) to infinity and by Âu
∞ the event that Vu ∩F has an infinite

connected component. By planar duality the event (Âu
n)

c is equal to the event that there

exists a ∗-connected path in Iu ∩F that surrounds S(0, Ln − 1), thus if (5.1) holds, then

P[Âu
n] ≥ 1− P




∞⋃

k=n

⋃

x∈Lk, |x|≤2Lk+1

Bu
k,x


 (3.2),(5.2)

≥ 1−
∞∑

k=n

25d ·

(
3

4

)2k

,

which in turn implies P[Âu
∞] = limn→∞ P[Âu

n] = 1. Therefore we have u∗ ≥ cg
L0

1
C2
2−(d+5).

Proof of Proposition 5.1. We say that T : Tn → F is a proper embedding of the dyadic

tree Tn with root at x ∈ Ln∩F into F if T ∈ Λn,x (see Definition 3.1). We denote by ΛF
n,x

the set of proper embeddings of Tn into F .

For any y ∈ L0 ∩ F let us define the frame ✷y ⊆ F by

✷y
(2.12)
= ✷

L0
y = S(y, L0 − 1) ∩ F.

For any n ≥ 1, x ∈ Ln ∩ F and T ∈ ΛF
n,x let us denote by

X✷

T =
⋃

m∈T(n)

✷T (m). (5.3)

We start the proof of Proposition 5.1 by an application of Lemma 3.3 with d = 2:

P
[
Bu

n,x

] (3.6)

≤ P



⋃

T ∈ΛF
n,x

⋂

m∈T(n)

{✷T (m) ∩ Iu 6= ∅}


 (∗)

≤

C2n

2 · max
T ∈ΛF

n,x

P



⋂

m∈T(n)

{✷T (m) ∩ Iu 6= ∅}


 , (5.4)

where in (∗) we used Lemma 3.2 to infer |ΛF
n,x| ≤ C2n

2 .

In order to bound the probability on the right-hand side of (5.4) let us fix some T ∈
ΛF
n,x, recall the constructive definition of random interlacements from Claim 2.2 and

ECP 20 (2015), paper 3.
Page 9/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3734
http://ecp.ejpecp.org/


A short proof of interlacement phase transition

denote the probability underlying the random objects (i.e., NK and (Xj)j≥1) introduced

in that claim by P when K = X✷

T . For a simple random walk X let us denote by

N (X) =
∑

m∈T(n)

1[{X} ∩ ✷T (m) 6= ∅]

the number of frames of form ✷T (m), m ∈ T(n) that X visits. We can bound

P



⋂

m∈T(n)

{✷T (m) ∩ Iu 6= ∅}


 ≤ P




NK∑

j=1

N (Xj) ≥ 2n


 . (5.5)

Our next goal is to stochastically bound N (X). Recall the definitions of cg, Cg from (1.5)

and L0 from (1.8). Let us define

p =

{
12Cg/cg · L

3−d
0 if d ≥ 4,

12Cg/cg ·
1

1+ln(L0)
if d = 3.

(5.6)

For any m ∈ T(n), y ∈ ✷T (m) we have

Py[{X} ∩ X✷

T \✷T (m) 6= ∅]
(3.8),(5.3)

≤
n∑

k=1

∑

m′∈T
m,k

(n)

Py[{X} ∩ ✷T (m′) 6= ∅]
(1.5),(2.7),(3.10)

≤

n∑

k=1

∑

m′∈T
m,k

(n)

CgL
2−d
k−1cap(✷T (m′))

(3.2),(3.9)
=

n∑

k=1

2k−1CgL
2−d
0 6(k−1)(2−d)cap(✷0)

d≥3

≤

CgL
2−d
0 cap(✷0)

∞∑

k=1

31−k
(2.13),(5.6)

≤ p. (5.7)

The bound (5.7) together with the strong Markov property of simple random walk

imply that PẽK [N (X) ≥ k] ≤ pk−1 for any k ≥ 1. In other words, N (X) is stochasti-

cally dominated by a geometric random variable with parameter 1 − p, which implies

EẽK

[
zN (X)

]
≤ (1−p)z

1−pz
for any 1 ≤ z < 1

p
. Recalling from Claim 2.2 that NK is Poisson

with parameter u · cap(K) = u · cap(X✷

T ), for any 1 ≤ z < 1
p
we obtain

E
[
z
∑NK

j=1 N (Xj)
]
= exp

(
u · cap(X✷

T )
(
EẽK

[
zN (X)

]
− 1
))

≤

exp

(
u · cap(X✷

T )

(
z − 1

1− pz

))
.

We can thus apply the exponential Chebyshev inequality with z = 1
2p to bound

P
[
Bu

n,x

] (5.4),(5.5)

≤ C2n

2 E



(

1

2p

)∑NK
j=1 N (Xj)


 (2p)2

n

≤

exp

(
u · cap(X✷

T )

(
1
2p − 1

1/2

))
(2pC2)

2n
(2.8)

≤ exp

(
u ·

cap(✷0)

p

)2n

(2pC2)
2n

(1.8),(5.6)

≤

exp
(
u · cap(✷0)2

dC2
)2n

2−2n
(2.13)

≤ exp

(
u
L0

cg
2d+3C2

)2n

2−2n
(5.1)

≤

(
3

4

)2n

.

This completes the proof of Proposition 5.1.
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