
ar
X

iv
:1

50
2.

01
30

6v
1 

 [
m

at
h.

PR
] 

 4
 F

eb
 2

01
5

Percolation on the stationary distributions of the voter model
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Abstract

The voter model on Z
d is a particle system that serves as a rough model for

changes of opinions among social agents or, alternatively, competition between bio-
logical species occupying space. When d ≥ 3, the set of (extremal) stationary distri-
butions is a family of measures µα, for α between 0 and 1. A configuration sampled
from µα is a strongly correlated field of 0’s and 1’s on Z

d in which the density of 1’s is
α. We consider such a configuration as a site percolation model on Z

d. We prove that
if d ≥ 5, the probability of existence of an infinite percolation cluster of 1’s exhibits
a phase transition in α. If the voter model is allowed to have sufficiently spread-out
interactions, we prove the same result for d ≥ 3.
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AMS MSC 2010: 60K35, 82C22, 82B43

1 Introduction

1.1 Model and results

Given integers d ≥ 1 and R ≥ 1, the voter model with range R on the d-dimensional
lattice Z

d is a Markov process, denoted here by (ξt)t≥0, with configuration space {0, 1}Zd

and stochastic dynamics described informally as follows. Each vertex (or site) x of Zd

updates its current state ξt(x) ∈ {0, 1} at rate one by copying the state ξt(y) of a vertex
y that is chosen uniformly among all vertices at (ℓ1-norm) distance at most R from x.

In Section 3 we give the formal definition of the model and recall some of its relevant
properties. In this Introduction, we will only very briefly present the concepts that are
needed to state our main results.

The voter model was introduced independently by Clifford and Sudbury in [CS73] and
Holley and Liggett in [HL75]. In the interpretation of the latter pair of authors, each site
of Zd represents a voter which can have one of two possible opinions (corresponding to
the states 0 and 1). The model thus represents the evolution of the opinions among the
population. Clifford and Sudbury gave a biological interpretation for the model: there
are two competing species, denoted 0 and 1, and each site is a region of space that can be
occupied by an individual of one of the two species.

The set of stationary distributions of the voter model on Zd has been thoroughly
studied; the following is a summary of known results. For fixed d ≥ 3, R ≥ 1 and
α ∈ [0, 1], one defines a probability measure µα on {0, 1}Zd

as the distributional limit
(which is shown to exist), as time is taken to infinity, of the voter model with the random
initial configuration in which the states of all sites are independent and Bernoulli(α).
µα is then stationary for the voter model dynamics. Moreover, it is shown that the set
of stationary distributions for the voter model dynamics that are extremal – i.e., that
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cannot be expressed as non-trivial convex combinations of other stationary distributions
– is precisely the family

{µα : α ∈ [0, 1] }.
The measures µα can be obtained in a more constructive way with the aid of coalescing

random walks. A realization of a system of coalescing random walks with range R on Z
d

induces a partition of Zd into coalescence classes: we say that x and y are in the same
class if the walkers started at x and y are eventually joined. We then assign 0’s or 1’s to
the coalescence classes independently with probabilities 1−α and α, respectively, and the
resulting configuration ξ ∈ {0, 1}Zd

has law µα. (Again, the sentences in this paragraph
will be given a precise meaning in Section 3).

With the aid of this construction, it is not difficult to show that each µα is invariant
and ergodic with respect to translations of Zd and satisfies µα[ ξ(0) = 1 ] = α, so that α is
equal to the density of 1’s. Moreover, the family {µα} is stochastically increasing: in the

partial order on {0, 1}Zd
induced by the order 0 < 1 on the coordinates, we have that µα

is stochastically dominated by µα′ when α < α′.

The objective of this paper is to show that the measures µα exhibit non-trivial per-
colation phase transition. Loosely speaking, we want to show that if α is close to zero
then the set of 1’s only contains finite connected components and if α is close to one then
the set of 1’s contains an infinite component. Let us explain this concept more precisely.
We define the event Perc ⊆ {0, 1}Zd

which consists of those voter configurations ξ for
which the subgraph of the nearest-neighbour lattice Z

d spanned by the set of occupied
sites {x : ξ(x) = 1} has an infinite connected component. By ergodicity, µα(Perc) is either
0 or 1. If Perc occurs, we say that the set {x : ξ(x) = 1} percolates. We can then define
αc as the supremum of all the values of α for which µα(Perc) = 0. By the stochastic
ordering mentioned in the previous paragraph, µα(Perc) is non-decreasing in α. Thus for
any α < αc we have µα(Perc) = 0 and for any α > αc we have µα(Perc) = 1. Our aim
is to show that the family of measures {µα : 0 ≤ α ≤ 1} exhibits non-trivial percolation
percolation phase transition, i.e., that 0 < αc < 1. Our main results are

Theorem 1.1. If d ≥ 5 and R ≥ 1, then the family of stationary distributions of the
voter model exhibits non-trivial percolation phase transition.

Theorem 1.2. If d = 3 or 4 then there exists R0 = R0(d) ∈ N such that if R ≥ R0 then
the family of stationary distributions of the voter model exhibits non-trivial percolation
phase transition.

1.2 Context

Although it may at first seem intuitively clear that, similarly to the case of Bernoulli
percolation, ξ should be non-percolative if α is close to zero, this statement is not obvious.
As the dynamics of the voter model favours that voters synchronize their opinions, the
measures µα present long-range dependences. In fact, it follows from (3.6) below that for
any α ∈ (0, 1), the configuration ξ under law µα has covariances given by

c(α, d,R) · |x− y|2−d ≤ Covµα(ξ(x), ξ(y)) ≤ C(α, d,R) · |x− y|2−d, x 6= y ∈ Z
d. (1.1)

It is a priori possible that percolation models with strong correlations present no phase
transition. It is easy to build artificial examples, but let us recall an example that arises
“naturally”. The random interlacement set Iu at level u > 0, introduced in [Sz10] is a
random subset of Zd: (a) the law of Iu is stochastically dominated by the law of Iu′

when
u < u′, (b) the correlations of Iu decay like (1.1) (see [Sz10, (1.68)]) and (c) the density
of Iu can be taken arbitrarily small by making u small (see [Sz10, (1.58)]), yet the set Iu
is connected for any u > 0, (see [Sz10, (2.21)]).
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On the other hand, in case one attempts to prove that phase transition does occur, then
the slowly decaying correlations (1.1) pose a challenge, as many of the well-known tools
that are used for Bernoulli percolation are not applicable. Additionally, since general
criteria are lacking and (as mentioned above) phase transition may in principle fail to
occur, one needs to envisage strategies of proof that are model-specific. The proof of
non-degeneracy of the percolation threshold has been carried out recently for the vacant
set Vu = Z

d \ Iu of random interlacements in [Sz10, S10] and the excursion sets of
the Gaussian free field in [RS13]. Both of these percolation models exhibit a decay of
correlations described by (1.1).

In the case of the voter model, the question of percolation has been considered before,
in [LS86], [BLM87], [LM06] and [Ma07]. The main focus of these works is in the case
where d = 3 and R = 1. Through simulations and numerical studies, the first, third and
fourth of these references argue that there should be a non-trivial phase transition and
that the predictions of [HW83, W84] regarding the critical behaviour of percolation models
with correlations described by (1.1) should be correct. However, the problem of finding a
rigorous proof of the non-triviality of percolation phase transition of the stationary state
of the voter model remained open. This problem is (partially) settled by our Theorems
1.1 and 1.2.

Another investigation of geometric properties of the stationary distribution of the
voter model has recently been carried out in [HMN14]. The object of interest there
is the voter model on a finite rhombus of the triangular lattice; the boundary of the
rhombus, composed of four segments, is frozen so that two adjacent segments are always
in state 0 and the other two in state 1. In this finite setting, there is only one stationary
distribution, which can be constructed with the aid of coalescing random walks and the
resulting coalescence classes, similarly to the µα’s on Z

d. The authors study the volume
of the coalescing classes and the interface curve that appears as a consequence of the
opposing boundaries.

1.3 Ideas and structure of proof

Let us now explain how the paper is organized and also the contents of each section.

In Section 2, we give a notation summary and also collect some facts regarding mar-
tingales and random walks that are needed in the rest of the exposition.

Section 3 contains an introduction to the voter model on Z
d, including its graphical

construction, duality properties and the construction of the extremal stationary distribu-
tions using a family of coalescing random walks.

We begin to prove our main results in Section 4. Our goal is to show (see (4.1)) that
for sufficiently small values of α, the probability that a large annulus is crossed by a ∗-
connected path of 1’s in ξ is smaller than a stretched exponential function of the radius of
the annulus. The condition (4.1) is then shown to imply 0 < αc < 1. It is self-evident that
if (4.1) holds, then there is no percolation for small enough α. We also show, through a
classical argument using planar duality, that (4.1) implies that if α is close enough to 1,
then there is percolation.

We were able to establish (4.1) for the two sets of assumptions that appear in our main
theorems (namely: first for d ≥ 5, R ≥ 1 and second for d ≥ 3 and R large enough). We
prove both cases using a renormalization scheme inspired by [Sz12, Section 2,3], which
involves embeddings of binary trees into Z

d that are “spread-out on all scales”. In Section
4.1, we present this renormalization scheme and some of its properties.

In Section 5 we establish (4.1) for d ≥ 3 and R large, and in Section 6 we establish
it for d ≥ 5 and R ≥ 1. For simplicity of notation, Section 6 only treats explicitly d ≥ 5
and R = 1 (i.e., the case of nearest neighbour interactions), but it will be easy to see that
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the proof given there applies for any value of R. In fact, the proof of Section 6 could also
be adapted to cover the case of d ≥ 3 and R large enough, so that Section 5 is (strictly
speaking) redundant. We have nevertheless chosen to include it for three reasons: first,
because it is quite short; second, because the method might find other applications; and
third, the contents of Section 5 may be helpful for the reader to grasp the more involved
arguments of Section 6.

A common point in the proofs of Section 5 and 6 is the need to provide an upper
bound for probabilities of the form

µα [ ξ(x) = 1 for all x ∈ X ] (1.2)

for certain finite sets X ⊆ Z
d that appear at the “bottom” scale of the renormalization

construction. An immediate consequence (as we will explain in Section 3, up to equation
(3.5)) of the construction of µα through “coalescence classes” is that (1.2) is equal to
E
[
αN∞(X )

]
, where N∞(X ) is the (random) terminal number of random walkers in a

system of coalescing random walks started from the configuration in which there is one
walker in each vertex of X . Hence, in order to give a good upper bound for (1.2), one
needs to argue that N∞(X ) is comparable to |X | (the cardinality of X ). It is worth noting
that α|X | is the probability of the event in (1.2) for independent, Bernoulli(α) percolation.

Our renormalization construction ensures that the set X under consideration here is
“sparse on all scales”. Hence, one expects that walkers started from the vertices of X tend
to avoid other walkers, and the amount of loss due to coalescence, |X | − N∞(X ), is far
from |X | with overwhelming probability. In order to make this precise, we use different
strategies in Sections 5 and 6.

• (d ≥ 3, R ≫ 1) In Section 5, we replace the system of coalescing random walks
with a system of annihilating random walks and observe that annihilation events
are “negatively correlated”. This allows us to derive a useful explicit bound on (1.2)
which is particularly effective if the range R of the walkers is big enough to guarantee
that the expected number of annihilations is sufficiently small.

• (d ≥ 5, R = 1) The proof of Section 6 involves two important ideas. First, it turns
out that under some carefully constructed circumstances one can run the walkers
for some period of time independently from each other (i.e., without coalescence),
which allows them to “wander away” from each other before they start to coalesce.
Second, we reveal the paths of random walkers one by one and pre-emptively throw
away those future walks that are too likely to coalesce with the ones already revealed.
We can then control

(a) the number of walkers that we throw away and

(b) the number of coalescences occurring between the remaining walkers

in such a way that the sum of these two numbers (which is greater than or equal to
|X | − N∞(X )) is not too big compared to |X |.

To state the obvious, Theorems 1.1 and 1.2 leave open the cases of dimension 3 and
4 and range R small, even though, as mentioned above, simulations and numerical work
suggest that non-trivial phase transition should also occur in these cases. In our final and
brief Section 7, we give an heuristic explanation to the ineffectiveness of the method of
Section 6 in treating d = 3, 4 and R = 1. We also explain there why the method of Section
5 is insufficient to prove Theorem 1.1, so that we could not do without the more involved
method of Section 6.
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2 Notation and preliminary facts on martingales and ran-

dom walks

2.1 Summary of notation

Given a set or event A, we denote by 1A its indicator function and by |A| its cardinality.
Given a vertex x ∈ Z

d, we denote by |x| its ℓ∞ norm and by |x|1 its ℓ1 norm. We then
write

B(L) = {x ∈ Z
d : |x| ≤ L}, B(x,L) = x+B(L);

B1(L) = {x ∈ Z
d : |x|1 ≤ L}, B1(x,L) = x+B1(L);

S(L) = {x ∈ Z
d : |x| = L}, S(x,L) = x+ S(L).

(2.1)

If for x, y ∈ Z
d we have |x − y|1 = 1, then these points are said to be neighbors, and

we abbreviate this by x ∼ y. They are ∗-neighbors if |x − y| = 1. For sets A,B ⊂ Z
d,

dist(A,B) = min{|x− y| : x ∈ A, y ∈ B}. The expression A ⊂⊂ Z
d indicates that A is a

finite subset of Zd.
A nearest-neighbor path in Z

d is a (finite or infinite) sequence γ(0), γ(1), . . . so that
γ(i+1) ∼ γ(i) for each i. A ∗-connected path is a sequence γ(0), γ(1), . . . so that γ(i+1)
and γ(i) are ∗-neighbors for each i.

Let ξ ∈ {0, 1}Zd
. Given two disjoint sets A,B ⊂ Z

d, we say A and B are connected by

an open path in ξ (and write A
ξ↔ B) if there exists a nearest-neighbor path γ(0), . . . , γ(n)

such that γ(0) is the neighbor of a point of A, γ(n) is a neighbor of a point of B and

ξ(γ(i)) = 1 for each i. Similarly, we write A
∗ξ←→ B if there exists a ∗-connected path

γ(0), . . . , γ(n) so that γ(0) is the ∗-neighbor of a point of A, γ(n) is the ∗-neighbor of a
point of B and ξ(γ(i)) = 1 for each i.

2.2 Martingale facts

We will need a concentration inequality involving continuous-time martingales. We start
recalling two definitions. Consider a probability space with a filtration (Ft)t≥0.

Definition 2.1. A process (Xt)t≥0 is predictable with respect to (Ft) if

Xt ∈ Ft− = σ (∪s<tFs) for all t.

Note that if (Xt) is continuous and adapted to (Ft), then it is predictable with respect
to (Ft).

Definition 2.2. Let (Nt)t≥0 be a square-integrable càdlàg martingale with respect to
(Ft)t≥0. The predictable quadratic variation of (Nt) is the predictable process (〈N〉t)t≥0

such that (N2
t − 〈N〉t)t≥0 is a martingale with respect to (Ft).

The almost sure uniqueness of the predictable quadratic variation follows from Doob-
Meyer-Doléans decomposition ([Kal, Theorem 25.5]) applied to the submartingale (N2

t ).
Note that 〈N〉t is a non-decreasing function of t. We refer the reader to [Kal, Proposition
26.1] for elementary properties of 〈N〉. The result we will need, which follows from [Kal,
Theorem 26.17], is:

Theorem 2.3. Let S ∈ [0,+∞]. Let (Nt) be a càdlàg martingale with 〈N〉S ≤ σ2 almost
surely for some σ2 ∈ (0,+∞). Assume that the jumps of N are almost surely bounded by
∆ ∈ (0, σ]. Then we have

P

(
max
t∈[0,S]

Nt −N0 ≥ r
)
≤ exp

(
−1

2

r

∆
ln

(
1 +

r∆

σ2

))
, r ≥ 0. (2.2)

Note that [Kal, Theorem 26.17] is only stated for the σ = 1 case; however, our version
(2.2) follows from an application of that theorem to the martingale Nt/σ.
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2.3 Random walk facts

Definition 2.4. Given R ∈ N+, we say that (Xz
t )t≥0 is an R-spread-out random walk on

Z
d starting at z ∈ Z

d if Xz
0 = z and (Xz

t )t≥0 is a continuous-time càdlàg Markov process
on Z

d with infinitesimal generator

(Lf)(x) =
∑

y∈Zd:
0<|x−y|1≤R

f(y)− f(x)
|B1(R)| − 1

,

where f : Zd → R. When R = 1, then we call (Xz
t ) a (continuous-time) nearest-neighbour

simple random walk on Z
d.

In words: the holding times between jumps are i.i.d. with Exp(1) distribution and if
a jump occurs at time t and Xz

t− = x then Xz
t is uniformly distributed on B1(x,R) \ {x}.

If R = 1, then Xz
t is uniformly distributed on the set of nearest neighbours of x.

Let us formulate a useful corollary of Theorem 2.3 about random walks:

Corollary 2.5. Let Xt denote a d-dimensional continuous-time nearest-neighbour simple
random walk with jump rate 1 starting at the origin. Then for any S, r ≥ 0 we have

P

[
max
0≤t≤S

|Xt| > r

]
≤ 2d exp

(
−1

2
r ln

(
1 +

d · r
S

))
. (2.3)

Proof. The d coordinates of Xt are 1-dimensional simple random walks with jump rate
1/d, hence after a union bound we only need to apply (2.2) with σ2 = S/d and ∆ = 1 to
achieve (2.3).

Let us define the transition kernel and the Green function of R-spread-out random
walk on Z

d by

pR,t(x, y) = P
[
Xz

s+t = y |Xz
s = x

]
, gR(x, y) =

∫ ∞

0
pR,t(x, y) dt.

If R = 1 then we drop the R from the subscript and simply denote pt(x, y) and g(x, y).
We have

pR,t(x, y) = pR,t(y, x), pR,t(x, y) = pR,t(y − x, 0),
gR(x, y) = gR(y, x), gR(x, y) = gR(y − x, 0), gR(x, x) ≥ 1.

(2.4)

It follows from the Chapman-Kolmogorov equations for pR,t(·, ·) that we have

∑

y∈Zd

pR,T (x, y) · gR(y, z) =
∫ ∞

T
pR,t(x, z) dt. (2.5)

It follows from the Local Central Limit Theorem (see [L96, Section 1.2]) that for any
d ≥ 3 there exist constants c = c(d,R) > 0 and C = C(d,R) < +∞ such that

∫∞
T pR,t(x, y) dt

(|x− y| ∨
√
T + 1)2−d

∈ [c, C], x, y ∈ Z
d, T ≥ 0. (2.6)

It follows from the strong Markov property of random walks that we have

P [ ∃ t ≥ 0 : Xx
t = y ] =

gR(x, y)

gR(y, y)

(2.4)

≤ gR(x, y). (2.7)
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The distributions of the increments of our random walks are symmetric, therefore if the
random walks (Xx

t ) and (Xy
t ) are independent, then

(Xy
t −Xx

t )t≥0 has the same law as
(
Xy−x

2t

)
t≥0

. (2.8)

Let us define

hR(x, y) = P [ ∃ t ≥ 0 : Xx
t = Xy

t ], x, y ∈ Z
d (2.9)

the probability that two independent R-spread-out random walks started from x and y
ever meet. We have

hR(x, y)
(2.8),(2.7),(2.4)

=
gR(x, y)

gR(0, 0)
≤ gR(x, y). (2.10)

We will make use of the following claim about spread-out random walks:

Claim 2.6. Given d ≥ 3, there exists C < +∞ and f : N→ R+ such that

∀ R ∈ N, x 6= y ∈ Z
d : hR(x, y) ≤ f(R) ∧C|x− y|2−d, lim

R→∞
f(R) = 0. (2.11)

The proof of this claim follows from (2.10), [HvdHS03, Proposition 1.6] and the ob-
servation that the Green function of a continuous-time random walk with jump rate 1 is
identical to the Green function of the corresponding discrete-time random walk.

We will also make use of the following bound on the difference of Green function values
of nearest neighbour sites: there exists a C = C(d) such that

|g(x, y) − g(x, y + e)| ≤ C · (|x− y|+ 1)1−d , x, y ∈ Z
d, e ∼ 0. (2.12)

This bound follows from the much stronger [L96, Theorem 1.5.5].
The following heat kernel bound follows from the Local Central Limit Theorem: there

exist C = C(d) < +∞ and c = c(d) > 0 such that

pt(x, y) ≤ Ct−
d
2 exp

(
−c |x− y|

2

t

)
, x, y ∈ Z

d, t ≥ 1. (2.13)

The bounds (2.12) and (2.13) together imply that there exists a C = C(d) such that

∑

w∈Zd

pt(y,w)|g(v + e, w) − g(v,w)| ≤ Ct 12− d
2 , y, v ∈ Z

d, t ≥ 1. (2.14)

3 Voter model: graphical construction, duality, stationary

distributions

We will now define the voter model on Z
d and present some well-known facts about it.

We refer the reader to [Li85] for an introduction to the voter model and proofs of all the
statements that we make in this section.

Fix d, R ∈ N. The voter model on Z
d with range R, denoted by (ξt)t≥0, is the Markov

process with state space {0, 1}Zd
and infinitesimal generator given by

(Lf)(ξ) =
∑

x,y∈Zd:
0<|x−y|1≤R

f(ξy→x)− f(ξ)
|B1(R)| − 1

, (3.1)

7



where f : {0, 1}Zd → R is any function that only depends on finitely many coordinates,

ξ ∈ {0, 1}Zd
and

ξy→x(z) =

{
ξ(z) if z 6= x,
ξ(y) if z = x.

In words, each site x ∈ Z
d updates its state ξ(x) with rate 1 by uniformly choosing a site

y ∈ B1(R) \ {x} and adopting the state ξ(y) of y. In case R = 1, we say that the model
is nearest-neighbour.

Given ξ ∈ {0, 1}Zd
, we denote by Pξ a probability measure under which (ξt)t≥0 is

defined and satisfies Pξ [ξ0 = ξ] = 1. Likewise, given a probability distribution ν on

{0, 1}Zd
, we write Pν =

∫
Pξ dν(ξ).

The process (ξt) satisfies a duality relation with respect to a system of coalescing
random walks. We will now explain what is meant by this – or rather, we will give a
particularly simple formulation of duality that will be sufficient for our purposes.

For each x, y ∈ Z
d with 0 < |x − y|1 ≤ R, let (D

(x,y)
t )t≥0 be a Poisson process with

rate (|B1(R)| − 1)−1 on [0,∞), so that D
(x,y)
0 = 0 and D

(x,y)
t −D(x,y)

t− is equal to 0 or 1

for all t. One pictures D
(x,y)
t −D(x,y)

t− = 1 as an arrow pointing from x to y at time t. We
denote by P a probability measure under which all these processes are defined and are
independent. For each x ∈ Z

d, we then define (on this same probability space) (Y x
t )t≥0

as the unique Z
d-valued process which is right-continuous with left limits and satisfies

Y x
0 = x, Y x

t = Y x
t− +

∑

z∈B1(R)

z ·
(
D

(Y x
t−,Y x

t−+z)
t −D(Y x

t−,Y x
t−+z)

t−

)
. (3.2)

One pictures Y x
t as it moves along the time axis and follows the arrows that it encounters.

The collection of processes {(Y x
t )t≥0 : x ∈ Z

d} is what we refer to as a system of coalescing
random walks. This terminology makes sense because, as is clear from the above definition,
each (Y x

t )t≥0 is a continuous-time random walk on Z
d with rate 1 which jumps to a

uniformly distributed location in Y x
t− + (B1(R) \ {0}) and moreover, these walks move

independently until they meet, after which they coalesce and remain together.
Now, the duality equation for the voter model is, for any A ⊂⊂ Z

d, t ≥ 0 and proba-
bility measure ν on {0, 1}Zd

,

Pν [ξt(x) = 1 for all x ∈ A] =
∫

P [{Y x
t : x ∈ A} ⊂ {y : ξ(y) = 1}] dν(ξ). (3.3)

Note that by inclusion-exclusion the equation (3.3) characterizes the distribution of ξt for
the process started with distribution ν. Of particular interest is the case when ν is equal
to

πα := (αδ{1} + (1− α)δ{0})⊗Z
d
,

the product measure of Bernoulli(α) on Z
d, for α ∈ [0, 1]. In order to discuss this case,

let us introduce some notation. For A ⊂ Z
d, we let

Nt(A) = |{Y x
t : x ∈ A}|, t ≥ 0 and N∞(A) = lim

t→∞
Nt(A); (3.4)

the limit exists because Nt(A) decreases with t. Denoting by E the expectation operator
associated with P, we can then rewrite (3.3) as

Pπα [ξt(x) = 1 for all x ∈ A] = E

[
αNt(A)

]
.

By taking the limit on the right-hand side as t → ∞, we can conclude that, under Pπα ,

as t→∞, ξt converges in distribution to a measure µα on {0, 1}Zd
characterized by

µα [ξ(x) = 1 for all x ∈ A] = E

[
αN∞(A)

]
(3.5)
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for every finite A ⊂ Z
d. The measures µα are invariant and ergodic with respect to

translations on Z
d and satisfy

µα[ ξ(x) = 1 ] = α, Corrµα (ξ(x), ξ(y))
(2.9)
= hR(x, y), x, y ∈ Z

d, (3.6)

thus (1.1) indeed holds by (2.6) and (2.10).
As these measures are obtained as distributional limits of (ξt), they are also stationary

with respect to the dynamics of the voter model. In fact, in Section V.1 of [Li85] it is
shown that

• if d ≥ 3, then the set of extremal stationary distributions of the voter model is equal
to {µα : α ∈ [0, 1]}. Here, a measure is said to be extremal if it cannot be written
as a nontrivial convex combination of other stationary distributions.

• if d = 1 or 2, then there are only two extremal stationary distributions, namely the
point masses on the constant configurations ξ ≡ 1 and ξ ≡ 0. (If d = 1 or 2, by
recurrence of the random walk we have N∞(A) = 1 almost surely for any finite and
non-empty A. We can then see from (3.5) that µα is a convex combination with
weight α of the point masses on the constant configurations).

Finally, we give a useful construction, jointly on the same probability space, of the
system of coalescing random walks and for each α ∈ [0, 1], a random ξ(α) ∈ {0, 1}Zd

distributed as µα. To this end, we take the probability space in which the aforementioned
measure P and the processes {(Y x

t )t≥0 : x ∈ Z
d} are defined, and enlarge it so that a

sequence of random variables {Un : n ∈ N}, all independent and uniformly distributed
on [0, 1], are also defined (and are independent of the Y x

t ’s). Next, fix an arbitrary
enumeration x1, x2, . . . of Z

d. For any n ≥ 1, define the random variables

η(n) = min{m : m ≤ n and Y xm
t = Y xn

t for some t ≥ 0} (3.7)

and then set
ξ(α)(xn) = 1{Uη(n)≤α}, n ∈ N, α ∈ [0, 1]. (3.8)

It is then straightforward to check that ξ(α) has law µα, as defined in (3.5), and moreover
it satisfies

ξ(α)(x) = ξ(α)(y) if Y x
t = Y y

t for some t.

Moreover, it follows from this construction that if α ≤ α′, then ξ(α)(x) ≤ ξ(α′)(x) for each

x ∈ Z
d, therefore µα is stochastically dominated by µα′ , that is, if f : {0, 1}Zd → R is

increasing (with respect to the partial order on {0, 1}Zd
that is induced by the order 0 < 1

on the coordinates), then ∫
f dµα ≤

∫
f dµα′ (3.9)

We will also need the following consequence of the joint construction:

the law of 1− ξ under µα is the same as law of ξ under µ1−α. (3.10)

4 First facts about voter model percolation, d ≥ 3

Throughout this section, we fix d ≥ 3, R ≥ 1 (see (3.1)) and α ∈ [0, 1]. ξ denotes

an element of {0, 1}Zd
and µα denotes the extremal stationary distribution of the voter

model with density α, as described in Section 3.
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We will show that there exist α0 > 0 and a sequence (LN )N≥0 of form LN = L · ℓN
(where ℓ ≥ 6, L ≥ 1, see (4.3)) such that

µα0

[
B(LN )

∗ξ←→ B(2LN )c
]
≤ 2−2N , N ≥ 0. (4.1)

In words: the probability under µα0 that an annulus with inner radius LN and outer

radius 2LN is crossed by a ∗-connected path of 1’s in ξ is less than or equal to 2−2N . We
will prove (4.1) for d ≥ 3 and R ≫ 1 in Section 5 and for d ≥ 5 and R = 1 in Section 6.
Let us now deduce the main results of this paper from (4.1).

Proof of Theorems 1.1 and 1.2. As we have already discussed in Section 3, the measure
µα is invariant and ergodic under spatial shifts of Zd. Therefore the probability under µα
of the event

Perc = {{x : ξ(x) = 1} has an infinite connected component} (4.2)

can only be zero or one for any α. Also, since the event in (4.2) is increasing, by (3.9)
there indeed exists 0 ≤ αc ≤ 1 such that µα (Perc) = 0 for any α < αc and µα (Perc) = 1
for any α > αc. Our aim is to to prove that 0 < αc < 1.

Let us now briefly explain how (4.1) implies

α0 ≤ αc ≤ 1− α0.

As soon as we prove these inequalities, the statements of Theorems 1.1 and 1.2 will follow.
First, since a nearest neighbour path is also a ∗-path, we have

µα0 [Perc] ≤ lim
N→∞

µα0

[
B(LN )

∗ξ←→ B(2LN )c
]

(4.1)
= 0,

from which α0 ≤ αc follows.
Now we will prove αc ≤ 1− α0. Let us define the plane F ⊂ Z

d by

F = {x = (x1, . . . , xd) ∈ Z
d : xi = 0 for all i ≥ 3}.

For ξ ∈ {0, 1}Zd
, we denote by ξ̄ the restriction of ξ to F . By planar duality (see [K86,

Lemma 2.23]) B(LN ) ∩ F is not connected to infinity by a nearest neighbour path of 1’s
in ξ̄ if and only if B(LN )∩F is surrounded by a ∗-connected cycle of 0’s in ξ̄. Now if the
latter event occurs, then there exists M ≥ N and an x ∈ (LM ·Zd)∩F with |x| ≤ 2LM+1

such that the annulus B(x, 2LM ) \B(x,LM ) is crossed by a ∗-connected path of 0’s in ξ̄.
Thus for any N ∈ N we can bound

µ1−α0 [Perc
c] ≤

∞∑

M=N

∑

x∈LM ·Zd

|x|≤2LM+1

µ1−α0

[
B(x,LM )

∗(1−ξ)←→ B(x, 2LM )c
]

(3.10),(4.1)

≤

∞∑

M=N

(4ℓ+ 1)d · 2−2M ,

from which µ1−α0 [Perc] = 1 follows by letting N → ∞. This implies αc ≤ 1 − α0. The
proof of Theorems 1.1 and 1.2 is complete, given (4.1).

10



4.1 Renormalization scheme for percolation, d ≥ 3

We will borrow the renormalization scheme of [Ra05]. We are going to use multi-scale
renormalization with geometrically growing scales.

Let us fix d ≥ 3. We let ℓ and L be two integers describing the scales of renormalization:

LN = L · ℓN , N ≥ 0. (4.3)

Using these scales we define the renormalized lattices

LN = LN · Zd, N ≥ 0. (4.4)

We want to consider certain embeddings of binary trees on Z
d. First let T(k) = {1, 2}k

for k ≥ 0 (in particular, T(0) = ∅) and then let

TN = ∪Nk=0T(k)

be the binary tree of height N . If 0 ≤ k < N and m = (η1, . . . , ηk) ∈ T(k), we let

m1 = (η1, . . . , ηk, 1), m2 = (η1, . . . , ηk, 2)

be the two children of m in T(k+1).

Definition 4.1. T : TN → Z
d is a proper embedding of TN if

1. T (∅) = 0;

2. for all 0 ≤ k ≤ N and m ∈ T(k) we have T (m) ∈ LN−k;

3. for all 0 ≤ k < N and m ∈ T(k) we have

|T (m1)− T (m)| = LN−k, |T (m2)− T (m)| = 2LN−k.

We denote by ΛN the set of proper embeddings of TN into Z
d.

We now collect a few facts from [Ra05] about these embeddings. Although the lemmas
in [Ra05] that correspond to our Lemmas 4.2, 4.3 and 4.4 below are stated for ℓ = 6, their
statements hold true (and have the same proof) for any integer ℓ ≥ 6.

Lemma 4.2.

|ΛN | =
[
((4ℓ+ 1)d − (4ℓ− 1)d) · ((2ℓ + 1)d − (2ℓ− 1)d)

]2N−1
. (4.5)

This follows from [Ra05, Lemma 3.2].
Next is the statement that, given a crossing of the LN -scale annulus B(2LN )\B(LN ),

we can find a proper embedding T ∈ ΛN so that all L0-scale annuli B(T (m), 2L0) \
B(T (m), L0) : m ∈ T(N) are crossed. Recall the notion of S(x,L) from (2.1).

Lemma 4.3. If γ is a ∗-connected path in Z
d with

{γ} ∩ S(LN − 1) 6= ∅, {γ} ∩ S(2LN ) 6= ∅,

then there exists T ∈ ΛN such that

{γ} ∩ S(T (m), L0 − 1) 6= ∅ and {γ} ∩ S(T (m), 2L0) 6= ∅ for all m ∈ T(N).

This is [Ra05, Lemma 3.3] (in fact, the statement given here corresponds to equation (3.7)
in the proof of that lemma).

Finally, given a proper embedding T ∈ ΛN , the set of images of the leaves {T (m) :
m ∈ T(N)} is very sparse.

Lemma 4.4. For any T ∈ ΛN and any m0 ∈ T(N), we have
∣∣∣
{
m ∈ T(N) : dist (B(T (m0), 2L), B(T (m), 2L)) ≤ ℓkL/2

}∣∣∣ ≤ 2k−1, k ≥ 1. (4.6)

This is a consequence of our assumption ℓ ≥ 6 and [Ra05, Lemma 3.4]. In particular,
(4.6) implies that the sets B(T (m), 2L) for m ∈ T(N) are disjoint.
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5 Spread-out model, d ≥ 3

In this section we work with the voter model with range R, thus we will denote the
stationary distribution (see (3.5)) with density α by µR,α. The goal of this section is
to prove Theorem 1.2. More specifically, we will show that (4.1) holds for any d ≥ 3 if
R ≥ R0(d) for some large R0 and some α0 = α0(d) > 0.

Recall the notion of hR(x, y) from (2.9). The key lemma in our proof of Theorem 1.2
is as follows.

Lemma 5.1. For any X = {x1, . . . , x|X |} ⊂ Z
d we have

µR,α [ξ(x) = 1 for all x ∈ X ] ≤ α|X |
∏

1≤i<j≤|X |

(
1 + hR(xi, xj)

(
α−2 − 1

))
. (5.1)

Before we prove Lemma 5.1, let us see how it allows us to conclude.

Proof of (4.1) for d ≥ 3 and R≫ 1. We use the renormalization scheme described in Sec-
tion 4.1. In this proof we choose ℓ = 6 and L = 1 in (4.3). Given T ∈ ΛN , we denote

XT =
⋃

m∈T(N)

{T (m)}.

Combining Lemmas 4.2 and 4.3 in a union bound, we get, for any N ,

µR,α

[
B(LN )

∗ξ←→ B(2LN )c
]
≤ Ĉ2N max

T ∈ΛN

µR,α [ξ(x) = 1 for all x ∈ XT ] . (5.2)

Now we fix some N and T ∈ ΛN with the aim of bounding the probability on the right-
hand side of (5.2). Note that by Lemma 4.4 we have |XT | = 2N . Let us denote XT =
{x1, . . . , x2N }.

µR,α [ξ(x) = 1 for all x ∈ XT ]
(5.1)

≤

α2N
∏

1≤i<j≤2N

(
1 + hR(xi, xj)α

−2
)
≤ α2N

2N∏

i=1

exp


α−2

∑

j 6=i

hR(xi, xj)


 (5.3)

Now for any 1 ≤ i ≤ 2N let us bound

∑

j 6=i

hR(xi, xj)
(2.11)

≤
∑

j 6=i

f(R)∧C|xi− xj |2−d
(4.6)

≤
∞∑

k=1

2k ·
(
f(R) ∧ C ·

(
6k/2

)2−d
)
, (5.4)

thus if we choose α = 1
4Ĉ

−1 (with Ĉ as in (5.2)) then by limR→∞ f(R) = 0 (see (2.11))
and (5.4) we can choose R big enough so that for any 1 ≤ i ≤ 2N we have

α−2
∑

j 6=i

hR(xi, xj) ≤ ln(2), (5.5)

which implies the desired bound (4.1):

µR,α

[
B(LN )

∗ξ←→ B(2LN )c
] (5.2),(5.3)

≤ Ĉ2Nα2N
2N∏

i=1

exp


α−2

∑

j 6=i

hR(xi, xj)




(5.5)

≤ Ĉ2N
(
1

4
Ĉ−1

)2N

22
N
= 2−2N .
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The rest of this section is devoted to the proof of Lemma 5.1.
Recall the graphical construction of coalescing random walks Y x

t , x ∈ Z
d, t ∈ R+

defined on the probability space of the Poisson point processes (D
(x,y)
t )t≥0 from Section 3.

Given X ⊂⊂ Z
d, denote by Xt = {Y x

t : x ∈ X}, so thatNt(X ) = |Xt|. IfD(x,y)
t −D(x,y)

t− = 1
for some x ∈ Xt−, y ∈ Z

d and t ∈ R+, then the graphical construction (3.2) of coalescing
random walks implies

Xt = (Xt− \ {x}) ∪ {y}. (5.6)

Let us introduce another set-valued stochastic process X ′
t , annihilating random walks,

also defined on the probability space of the Poisson point processes (D
(x,y)
t )t≥0. Starting

also from X ′
0 := X these particles also perform independent R-spread-out continuous-time

random walks until one of the walkers tries to jump on a site occupied by another walker,
in which case both of them disappear immediately. The formal definition is as follows. If

D
(x,y)
t −D(x,y)

t− = 1 for some x ∈ X ′
t−, y ∈ Z

d and t ∈ R+, then

X ′
t =

(
X ′
t− \ {x}

)
∆{y}, (5.7)

where A∆B denotes the symmetric difference of the sets A and B. Let us denote by
N ′

t(X ) = |X ′
t |.

Lemma 5.2. For any X ⊂⊂ Z
d, α ∈ [0, 1], R ∈ N and t ≥ 0 we have

E

[
αNt(X )

]
≤ E

[
αN ′

t (X )
]
. (5.8)

Proof. As soon as we show X ′
t ⊆ Xt, the inequality (5.8) will immediately follow.

Let us assume that D
(x,y)
t −D(x,y)

t− = 1 for some x ∈ Xt− and that X ′
t− ⊆ Xt− holds.

One can readily check using (5.6) and (5.7) that we also have X ′
t ⊆ Xt by considering the

cases
(a) x ∈ Xt− \ X ′

t−, (b) x ∈ X ′
t−, y /∈ X ′

t−, (c) x ∈ X ′
t−, y ∈ X ′

t−

separately. Since X0 = X ′
0 = X , the inclusion X ′

t ⊆ Xt for all t ∈ R+ follows by induction.

Let us now give an alternative construction of X ′
t on a different probability space.

Recall the notation X = {x1, . . . , x|X |}. Let Xi
t , 1 ≤ i ≤ |X | denote independent R-

spread-out random walks with Xi
0 = xi. For 1 ≤ i < j ≤ |X |, we denote

τ(i, j) = inf{ t : Xi
t = Xj

t }. (5.9)

We also define the set-valued stochastic process It ⊆ [1, . . . , |X |] and the stopping times
T0, T1, T2, . . . by letting T0 = 0 and IT0 = [1, . . . , |X |], and then inductively for k ≥ 1 by

Tk := inf{ τ(i, j) : i < j, i, j ∈ ITk−1
}, Tk = τ(i∗, j∗), ITk

= ITk−1
\ {i∗, j∗}.

In words, Tk is the time of the k’th annihilation and ITk
is the set of indices of those

walkers that are still alive after the k’th annihilation. Of course if Tk = +∞ for some
k ≥ 1 then we stop our inductive definition. We define It = ITk−1

for any Tk−1 ≤ t < Tk.

Claim 5.3. The set-valued process X ′
t = {Xi

t : i ∈ It} has the same law as the annihi-
lating walks described in (5.7).

The proof of this claim is straightforward and we omit it. From now on we will use
this new definition of annihilating walks. For 1 ≤ i < j ≤ |X | we also define the indicators

ηi,j = 1 [ τ(i, j) < +∞, τ(i, j) = Tk for some k ] , (5.10)
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thus ηi,j is the indicator that the walkers indexed by i and j annihilate each other before
any other walker annihilates either of them. Let us define

A∞(X ) =
|X |∑

i=1

|X |∑

j=i+1

ηi,j (5.11)

the total number of annihilations that ever occurred. Now we have

lim
t→∞
N ′

t (X ) =: N ′
∞(X ) = |X | − 2A∞(X ), (5.12)

since each annihilation event kills two walkers. By (3.5), Lemma 5.2 and (5.12) we only
need to prove

E

(
α−2A∞(X )

)
≤

∏

1≤i<j≤|X |

(
1 + hR(xi, xj)

(
α−2 − 1

))
(5.13)

in order to complete the proof of Lemma 5.1. Let us introduce auxiliary Bernoulli random
variables η∗i,j , 1 ≤ i < j ≤ |X | such that they are independent and

P[η∗i,j = 1] = 1− P[η∗i,j = 0]
(2.9)
= hR(xi, xj)

(5.9)
= P[τ(i, j) < +∞]. (5.14)

Similarly to (5.11), let us define

A∗
∞(X ) =

|X |∑

i=1

|X |∑

j=i+1

η∗i,j. (5.15)

Now the right-hand side of (5.13) is equal to E
(
α−2A∗

∞(X )
)
, thus in order to prove (5.13)

we only need to show that for any λ ≥ 0 we have

E

[
eλA∞(X )

]
≤ E

[
eλA

∗
∞(X )

]
. (5.16)

By taking the Taylor expansion of the above exponential functions about λ = 0, we see
that we only need to prove

E

[
(A∞(X ))k

]
≤ E

[
(A∗

∞(X ))k
]
, k ≥ 0.

in order to achieve (5.16). By expanding the k’th power of the sums in the definitions of
A∞(X ) (see (5.11)) and A∗

∞(X ) (see (5.15)), we see that we only need to prove

P [ηi1,j1 = · · · = ηik ,jk = 1] ≤ P
[
η∗i1,j1 = · · · = η∗ik,jk = 1

]
(5.17)

for any k ≥ 1 and any 1 ≤ il < jl ≤ |X |, 1 ≤ l ≤ k. First, we may assume that the the list
of pairs {i1, j1}, . . . , {ik, jk} does not contain the same pair more than once, because we
can throw out such duplicates and reduce the value of k without changing the probabilities
on either side of (5.17). Second, we may also assume that the sets {i1, j1}, . . . , {ik, jk}
are disjoint, because if some of these sets have non-empty intersection, then the left-hand
side of (5.17) is equal to zero by the definition of the indicators ηi,j (see (5.10)): a walker
can only be annihilated once. Now if the sets {i1, j1}, . . . , {ik, jk} are disjoint, then

P [ηi1,j1 = · · · = ηik ,jk = 1]
(5.10)

≤ P [τ(i1, j1) < +∞, . . . , τ(ik, jk) < +∞]
(∗)
=

k∏

l=1

P [τ(il, jl) < +∞]
(5.14)
=

k∏

l=1

P
[
η∗il,jl = 1

] (∗∗)
= P

[
η∗i1,j1 = · · · = η∗ik,jk = 1

]
,

where (∗) holds because the walkers Xi
t , 1 ≤ i ≤ |X | are independent and the sets

{i1, j1}, . . . , {ik, jk} are disjoint, and (∗∗) holds because η∗i,j, 1 ≤ i < j ≤ |X | are indepen-
dent. The proof of (5.17) and Lemma 5.1 is complete.
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6 Nearest-neighbour model, d ≥ 5

The goal of this section is to prove Theorem 1.1. More specifically, we will show that (4.1)
holds for any d ≥ 5 and R = 1 and some α0 = α0(d) > 0. Note that the same proof would
work for any R ≥ 1; the only reason we stick to the classical nearest-neighbour case is
to ease notation. Also note that a slight generalization of the method presented in this
section would yield a proof of Theorem 1.1 as well as Theorem 1.2, however we chose to
also present in Section 5 a relatively short argument which only proves Theorem 1.2.

We use the graphical construction of ξ(α) distributed as µα (see (3.8)), however we will
often drop the dependence on α from our notation, especially if a particular calculation
works for any α ∈ (0, 1).

We will use the renormalization scheme of Section 4.1. In order to specify the value
of ℓ in (4.3) we fix the exponents

ε =
1

4d
, δ =

ε

d
. (6.1)

The following choice of ℓ in (4.3) will be suitable for our purposes:

ℓ = 31/δ . (6.2)

The choice of a large enough L in (4.3) will be specified later in Section 6.4.
Choosing ℓ as in (6.2) we have

|ΛN |
(4.5)
= ≤ C2N for some C = C(d). (6.3)

Combining (6.3) and Lemma 4.3 in a union bound, we get, for any N ,

P[B(LN)
∗ξ←→ B(2LN )c] ≤ C2N max

T ∈ΛN

P

[
∩m∈T(N)

{B(T (m), L)
∗ξ←→ B(T (m), 2L)c}

]

(6.4)
We now fix N and a proper embedding T ∈ ΛN with the aim of bounding the proba-

bility on the right-hand side in (6.4) (see (6.14) below). We recall the definition of ε from
(6.1) and let

T = L2−ε (6.5)

and, for x, y ∈ Z
d, we define the events

Ex =

{
max
0≤t≤T

|Y x
t − x| >

1

4
L

}
, (6.6)

Ex,y = Ec
x ∩ Ec

y ∩ {Y x
t 6= Y y

t , 0 ≤ t ≤ T} , (6.7)

Fx,y = Ex,y ∩ {ξ(x) = ξ(y) = 1}. (6.8)

Remark 6.1. We defined T ≪ L2 because we want P[Ex]≪ 1, see (6.16) and (6.40).

Claim 6.2. For any z ∈ LZd (4.4)
= L0, the following inclusion holds:

{B(z, L)
∗ξ←→ B(z, 2L)c} ⊆


 ⋃

x∈B(z,2L)

Ex


 ∪




⋃

x,y∈B(z,2L)
|x−y|=1

Fx,y


 (6.9)

Proof. Assume that the event on the left-hand side occurs. Then there exists a ∗-connected
path (z1, , . . . , zk) with |z1| = L, |zk| = 2L and ξ(zi) = 1 for each i. For one such path,
define

i∗ = max{i ≤ k : Y zi
t = Y z1

t for some t ≤ T}.
If i∗ = k, then Ez1 ∪ Ezk occurs, since |z1 − zk| ≥ L. If i∗ < k, then the walks (Y zi∗

t ) and
(Y

zi∗+1
t ) do not meet before time T , so either Ezi∗ ∪ Ezi∗+1

or Fzi∗ ,zi∗+1
occurs.
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With (6.9) in mind, given T ∈ ΛN we choose two sets X ,Y ⊂ Z
d.

Definition 6.3. The pair (X ,Y), X ,Y ⊂ ∪m∈T(N)
B(T (m), 2L) is called admissible if

(i) for any m ∈ T(N), (|B(T (m), 2L) ∩X |, |B(T (m), 2L) ∩Y|) is either (2, 0) or (0, 1);

(ii) if B(T (m), 2L) ∩ X = {x, y}, then |x− y| = 1.

The set of all admissible pairs (X ,Y) associated to T is denoted PT .

Lemma 6.4. Given T ∈ ΛN ,

1. For any (X ,Y) ∈ PT we have

1

2
|X |+ |Y| = 2N . (6.10)

2. There exists C = C(d) such that the number of admissible pairs can be bounded by

|PT | ≤ (CLd)2
N
. (6.11)

3. We have

⋂

m∈T(m)

{B(T (m), L)
∗ξ←→ B(T (m), 2L)c} ⊂

⋃

(X ,Y)∈PT




⋂

{x,z}∈X
|x−z|=1

Fx,z


 ∩


⋂

y∈Y

Ey


 .

(6.12)

4. For every x ∈ X , we have

∣∣∣X ∩B(x, ℓkL/2)
∣∣∣ ≤ 2k, k ≥ 1. (6.13)

Proof. Given an admissible pair (X ,Y) associated to T , define

A(X ,Y) = {m ∈ T(N) : (|B(T (m), 2L) ∩ X |, |B(T (m), 2L) ∩ Y|) = (2, 0)},

so that, by Definition 6.3 (i), we have

T(N)\A(X ,Y) = {m ∈ T(N) : (|B(T (m), 2L) ∩ X |, |B(T (m), 2L) ∩ Y|) = (0, 1)}

and thus,

2N = |T(N)| = |A(X ,Y)|+ |T(N)\A(X ,Y)| =
1

2
|X |+ |Y|.

Additionally, by Definition 6.3, the pair (X ,Y) is determined when we choose A(X ,Y) and
then, for each m ∈ A(X ,Y), we choose two ∗-connected vertices in B(T (m), 2L) and for
each m ∈ T(N)\A(X ,Y), we choose one vertex in B(T (m), 2L). Thus (6.11) indeed holds:

|PT | ≤
∑

A⊆T(N)

(
|B(2L)| · 3d

)|A|
· |B(2L)|2N−|A| ≤ (CLd)2

N
.

The inclusion (6.12) is a consequence of (6.9).
The bound (6.13) follows from Lemma 4.4 and the fact that for each m ∈ T(N) we

have |X ∩B(T (m), 2L)| ≤ 2 by Definition 6.3 (i).
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Putting together (6.4), (6.11) and (6.12), we obtain

P[B(LN)
∗ξ←→ B(2LN )c]

≤
(
CLd

)2N
max
T ∈ΛN

(X ,Y)∈PT

P







⋂

{x,z}∈X
|x−z|=1

Fx,z


 ∩


⋂

y∈Y

Ey





 (6.14)

for some constant C = C(d).
The main ingredient in the proof of (4.1) is the following proposition.

Proposition 6.5. For every d ≥ 5, there exist L(0) ≥ 2 and C = C(d) < +∞ such that

for any L ≥ L(0), any α ≤ L2−d+1/4 and any N ≥ 1 we have

max
T ∈ΛN

(X ,Y)∈PT

P







⋂

{x,z}∈X
|x−z|=1

Fx,z


 ∩


⋂

y∈Y

Ey





 ≤

(
CL4−2d+1/2

)2N
. (6.15)

Together with (6.14) and the assumption d ≥ 5, this proposition immediately yields the
desired result (4.1). We will explain why our method fails to prove (4.1) if d = 3, 4 and
R = 1 in Remark 7.1.

The rest of this section is devoted to the proof of Proposition 6.5.

6.1 Reduction to delayed coalescing walks using the graphical construc-

tion

From now on, we fix not only T ∈ ΛN (see Definition 4.1), but also (X ,Y) ∈ PT (see
Definition 6.3). Let us define

β = β(L, d)
(6.6)
= P[Ex] = P[E0]. (6.16)

Lemma 6.6.

P







⋂

{x,z}∈X
|x−z|=1

Fx,z


 ∩


⋂

y∈Y

Ey





 ≤ β

|Y| · E
[
αN∞(X ) · 1{NT (X )=|X |}

]
(6.17)

Remark 6.7. Recall the definition of N∞(·) in (3.4). The event in the indicator on the
right-hand side is simply the event that the walks started from the vertices of X do not
coalesce with each other before time T .

Proof. We will use the joint graphical construction of the system of coalescing walks and
the configuration ξ = ξ(α) described by equation (3.8). Since our set X is fixed, we can
and will assume that, in the enumeration of Zd that was needed for (3.7), the vertices in
X come before all other vertices of Zd. We can thus write

X = {x1, x2, . . . , x|X |}. (6.18)

We will now define some sigma-algebras involving the Poisson processes (D
(x,y)
t ) that

were used in the graphical construction of the coalescing random walks (Y x
t ) in (3.2) and
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the uniform random variables (Un) that were used in (3.8). We let

Gy = σ
(
D

(z,w)
t : z ∼ w, |z − y| ≤ L/4, t ≤ T

)
, y ∈ Y;

GX = σ



{
D

(z,w)
t : z ∼ w, dist({z},X ) ≤ L/4, t ≤ T

}

∪
{
D

(u,v)
t −D(u,v)

T : u ∼ v, t > T
}
∪ {Un : 1 ≤ n ≤ |X |}


 .

Recalling (6.6)-(6.8) we note that




⋂

x,z∈X
|x−z|=1

Fx,z


 ∈ GX and Ey ∈ Gy for all y ∈ Y.

Using (4.6), we see that the sets

{z ∈ Z
d : |z − y| ≤ L/4} × [0, T ], y ∈ Y

are all disjoint, and also disjoint from

(
{z ∈ Z

d : dist({z},X ) ≤ L/4} × [0, T ]
)
∪
(
Z
d × (T,∞)

)
.

This implies that the sigma-algebras GX and Gy for y ∈ Y are all independent. Con-
sequently,

P







⋂

x,z∈X
|x−z|=1

Fx,z


 ∩


⋂

y∈Y

Ey





 = P



⋂

x,z∈X
|x−z|=1

Fx,z


·
∏

y∈Y

P [Ey]
(6.16)
= β|Y|·P



⋂

x,z∈X
|x−z|=1

Fx,z


 .

We now define MX = {η(xk) : 1 ≤ k ≤ |X |}, where η is defined in (3.7). For every
non-empty A ⊆ {1, . . . , |X |} we have

P


{MX = A} ∩

⋂

x,z∈X
|x−z|=1

Fx,z




(3.8),(6.8)
= α|A| · P


{MX = A} ∩

⋂

x,z∈X :
|x−z|=1

Ex,z


 . (6.19)

Note that, by (3.4), (3.7) and (6.18), we have |MX | = N∞(X ). Therefore

P




⋂

{x,z}∈X
|x−z|=1

Fx,z




(6.19)
=

|X |∑

k=1

αk · P


{|MX | = m} ∩

⋂

x,z∈X :
|x−z|=1

Ex,z




= E


α

N∞(X ) · 1





⋂

x,z∈X :
|x−z|=1

Ex,z








(4.6),(6.6),(6.7)

≤ E

[
αN∞(X ) · 1{NT (X )=|X |}

]
.

The proof of Lemma 6.6 is complete.
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6.2 Reduction to independent random walks

We now turn to the bound on the expectation on the right-hand side of (6.17). We will
need to take a close look at the coalescing walks {(Y x

t )t≥0 : x ∈ X}. For this, it will
no longer be convenient to work with the graphical construction of the coalescing walks

using Poisson processes (D
(x,y)
t ) that we described in Section 3. Rather, we will switch to

a new probability space, in which we will give a different representation of the system of
coalescing walks.

The following construction will depend on the set X which has been fixed at the
beginning of Section 6.1 and also on the enumeration of X that was fixed in (6.18).
Let P denote a probability measure under which one defines a collection of processes
{(Xx

t )t≥0 : x ∈ X} satisfying:
• for each x ∈ X , (Xx

t )t≥0 is a continuous-time, nearest neighbor random walk on Z
d

with jump rate 1 and Xx
0 = x;

• these walks are all independent.

(We emphasize that this is not a system of coalescing walks). The expectation operator
associated to P is denoted by E. We then define the processes:

• {(W x
t )t≥0 : x ∈ X}. They are defined by induction. Put W x1

t = Xx1
t for all t.

Assume W x1 , . . . ,W xn are defined and let

σ = inf{t : Xxn+1
t =W xk

t for some k ≤ n}.

On {σ = ∞}, let W xn+1

t = X
xn+1

t for all t. On {σ < ∞}, let K be the smallest
index such that X

xn+1
σ =W xK

σ . Put

W
xn+1

t =

{
X

xn+1
t if t ≤ σ;

W xK
t if t > σ.

• {(Zx
t )t≥0 : x ∈ X}. These are defined exactly as above, with the only difference that

in the induction step, σ is defined by

σ = inf{t ≥ T : X
xn+1
t = Zxk

t for some k ≤ n}.

Claim 6.8. (i) {(W x
t )t≥0 : x ∈ X} is a system of coalescing walks started from X ; in

particular, its law under P is the same as that of {(Y x
t )t≥0 : x ∈ X} under P.

(ii) {(Zx)t≥0 : x ∈ X} is a system of random walks that move independently (with no
coalescence) up to time T and after time T , behave as a system of coalescing walks.

The proof of this claim is straightforward and we omit it.
Similarly to (3.4) we also define

NW
t = |{W x

t : x ∈ X}|, NW
∞ = lim

t→∞
NW

t

NZ
t = |{Zx

t : x ∈ X}|, NZ
∞ = lim

t→∞
NZ

t .

We now have

E

[
αN∞(X ) · 1{NT (X )=|X |}

]
= E

[
αNW

∞ · 1{Xx
t 6=Xy

t for all x,y∈X , x 6=y and t≤T}
]

= E
[
αNZ

∞ · 1{Xx
t 6=Xy

t for all x,y∈X , x 6=y and t≤T}
]
≤ E

[
αNZ

∞

]
. (6.20)

At this point one might be tempted to apply Lemma 5.2, i.e., to switch from coalescing
to annihilating walks. In Remark 7.2 we explain why the method of Section 5 cannot be
used to prove Theorem 1.1.
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6.3 A stochastic domination result

In this subsection we state the ingredients of the proof of Proposition 6.5. Given these
ingredients, we will prove Proposition 6.5 in Section 6.4. In Sections 6.5, 6.6 and 6.7 we
prove the ingredient results.

Recall the notion of the enumeration X = {x1, x2, . . . , x|X |} from (6.18). Let us define

Un := 1{∃ k < n, t ≥ T : Xxn
t = Xxk

t }, 1 ≤ n ≤ |X |, U =

|X |∑

n=1

Un. (6.21)

In words: Un is the indicator of the event that the n’th walker hits any of the previous
walkers after T . Recalling the construction of Section 6.2 we have

NZ
∞ = |X | −

|X |∑

n=1

1{∃ k < n, t ≥ T : Zxn
t = Zxk

t } ≥ |X | − U

and we can thus bound
E
[
αNZ

∞

]
≤ α|X | ·E

[
α−U

]
(6.22)

Let us now describe the main ideas of this subsection. The indicator variables Un,
1 ≤ n ≤ |X | are not independent; however, in Proposition 6.13 we will argue that their sum
can be dominated by a sum of independent variables. Let us explain now the heuristics
for this domination. Suppose we reveal the paths (Xxn

t )t≥0, 1 ≤ n ≤ |X | one by one,
starting with (Xx1

t )t≥0. We think of each path n as a trial: a success if it avoids all the
previously revealed paths after time T (that is, if Un = 0), and a failure otherwise. At the
time of revealing path n, it should have a high probability of being a success (since the set
{Xx

T : x ∈ X} is very sparse), unless some path of index k < n behaved in an atypical
manner that makes it exceptionally likely that (Xxn

t )t≥T meets (Xxk
t )t≥T . In (6.27) below

we will introduce the variable Vk,n as the indicator of this event that path k endangers
trial n. We then rely on two fundamental observations. First (see Lemma 6.11): since the
random set {Xx

T : x ∈ X} is very sparse (as suggested by (6.13)), it is very unlikely that
a path endangers a trial, so that the random variables Vk =

∑
n>k Vk,n, which represent

the number of trials endangered by each path k, are equal to zero with high probability.
Second (see Lemma 6.12): if trial n is not endangered by any path of index k < n, then
it is very likely to be successful.

For any x, y ∈ Z
d let us define the random variable

Mx,y,T
∞ = P[∃s ≥ T : Xy

s = Xx
s | Xx

u : 0 ≤ u <∞]. (6.23)

(the reason for the ∞ symbol in Mx,y,T
∞ will become clear in Section 6.7).

Recall the definition of ε = ε(d) and δ = δ(d) from (6.1).

Proposition 6.9. There exists T0 = T0(d) < +∞ and D0 = D0(d) < +∞ such that

P [Mx,y,T
∞ > T 1− d

2
+ε] ≤ e−T δ

, x, y ∈ Z
d, T ≥ T0, (6.24)

P [Mx,y,T
∞ > |x− y|2−d+ε] ≤ e−|x−y|δ , x, y ∈ Z

d, |x− y| ≥ D0, T ≥ 0. (6.25)

Remark 6.10. By (2.6) we have E
[
Mx,y,T

∞

]
≍ T 1−d/2∧|x−y|2−d, thus (6.24) are (6.25)

are bounds on the probability that the random variable Mx,y,T
∞ deviates too much from its

expectation.
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The proof of Proposition 6.9 is postponed to Section 6.7.
We now fix T0 and D0 as in Proposition 6.9. Given these choices, we may then assume

that the renormalization constant L satisfies

T
(6.5)
= L2−ε ≥ T0, L ≥ D0. (6.26)

We define for 1 ≤ k < n ≤ |X | the random variables

Vk,n =





1

{
Mxk,xn,T

∞ > T 1− d
2
+ε
}
, if |xk − xn| = 1,

1

{
Mxk,xn,T

∞ > |xn − xk|2−d+ε
}
, otherwise.

(6.27)

In words: Vk,n is the indicator of the event that (Xxk
t )t≥0 endangers (Xxn

t )t≥0. We also
define

V k =
(
Vk,k+1, . . . , Vk,|X |

)
, Vk =

|X |∑

n=k+1

Vk,n. (6.28)

Now by (6.23) and (6.27), for any 1 ≤ k < n ≤ |X |

Vk,n is measurable with respect to σ(Xxk
t : t ≥ 0), (6.29)

therefore

V 1, . . . , V |X | are independent, (6.30)

V1, . . . , V|X | are independent. (6.31)

Now by (6.28) for any 1 ≤ n ≤ |X | the random variable Vn is the number of trajectories
that the trajectory (Xxn

t ) endangers. We will “throw away” those trajectories that are
endangered by another trajectory, and it is going to be convenient to also throw away
(Xxn

t ) itself if it endangers any other trajectory. Thus the number of trajectories that we
will throw away because of the behaviour of (Xxn

t ) is equal to Vn + 1{Vn > 0}.

Lemma 6.11. If e−T δ
+
∑∞

k=1 2
k · e−( 1

2
ℓkL)δ ≤ 1 then for any n ∈ {1, . . . , |X |} the ran-

dom variable Vn + 1{Vn > 0} is stochastically dominated by a random variable V ∗
0 with

probability mass function pV ∗
0

supported on the set of integers {0, 2, 3, 5, . . . , 2k + 1, . . . }
and given by

pV ∗
0
(2) = e−T δ

, pV ∗
0
(2k + 1) = 2k · e−( 1

2
ℓkL)δ , k ≥ 1, pV ∗

0
(0) = 1−

∑

k>0

pV ∗
0
(k). (6.32)

In particular,

P [Vn > 0] ≤ P [V ∗
0 > 0] = e−T δ

+

∞∑

k=1

2k · e−( 1
2
ℓkL)δ . (6.33)

The proof of Lemma 6.11 is postponed until Section 6.5.
Recall the definition of Un from (6.21). In words, the next lemma states that if a path

is not endangered by any of the previous paths, then it is very likely to avoid all of them.

Lemma 6.12. For any n ∈ {1, . . . , |X |},

P [Un = 1 | Xxk
t : 1 ≤ k < n, t ≥ 0] · 1

{
n−1∑

k=1

Vk,n = 0

}

≤ T 1− d
2
+ε +

∞∑

k=1

2k
(
1

2
ℓkL

)2−d+ε

. (6.34)
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The proof of Lemma 6.12 is postponed until Section 6.5.
In order to state the following proposition, and for the sake of clarity, we recapitulate

some relevant definitions:

• Un (for 1 ≤ n ≤ |X |) and U in (6.21);

• Vk,n (for 1 ≤ k < n ≤ |X |), V n and Vn (for 1 ≤ n ≤ |X |) in (6.27) and (6.28);

• V ∗
0 in Lemma 6.11.

We add to this list one more definition; let

p := p(L, d) =
T 1− d

2
+ε +

∑∞
k=1 2

k
(
1
2ℓ

kL
)2−d+ε

P [V ∗
0 = 0]

. (6.35)

Proposition 6.13. Let U∗ ∼ Bin(|X |, p) and let V ∗ be independent from U∗, where V ∗

is the sum of |X | i.i.d. copies of V ∗
0 . Then

U is stochastically dominated by U∗ + V ∗. (6.36)

Remark 6.14. If the n’th path is not endangered by previous paths then the parameter
of the Bernoulli variable Un is bounded by the right-hand side of (6.34). The indicators
Un, 1 ≤ n ≤ |X | are not independent, but we can dominate their correlations by slightly
increasing the parameters of these indicators and by adding V ∗.

We postpone the proof of Proposition 6.13 until Section 6.6.

6.4 Proof of Proposition 6.5

By (3.8) the left-hand side of (6.15) decreases with α, so it is enough to prove (6.15) for

α = L2−d+ 1
4 . (6.37)

Remark 6.15. Let us comment about the choice of α. For the sake of this heuristic
argument let us assume that Y = ∅ in (6.39) below, so that |X | = 2 · 2N , see (6.10).

Comparing the combinatorial complexity term
(
CLd

)2N
of (6.14) with the terms

α|X | · e|X |p/α =
(
α2e2p/α

)2N

in (6.43) below, we see that if we want P[B(LN )
∗ξ←→ B(2LN )c]≪ 1 then it is a good idea

to choose α so that
α2Ld ≪ 1, p/α = O(1). (6.38)

Now p is not much bigger than L2−d (see (6.47) below), so if d ≥ 5, then (6.37) is a good
choice if we want α to satisfy the bounds (6.38).

Let us fix T ∈ ΛN (see Definition 4.1) and (X ,Y) ∈ PT (see Definition 6.3). We have

P







⋂

{x,z}∈X
|x−z|=1

Fx,z


 ∩


⋂

y∈Y

Ey







(6.17),(6.20)

≤ β|Y|E
[
αNZ

∞

] (6.22),(6.36)

≤

β|Y| · α|X | ·E
[(

1

α

)U∗
]
· E
[(

1

α

)V ∗
]
. (6.39)
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Now we bound the terms on the right-hand side of (6.39).

β
(6.6),(6.16)

= P

[
max
0≤t≤T

|Y 0
t | >

1

4
L

]
(2.3),(6.5)

≤ 2d exp

(
−1

8
L ln

(
1 +

d

4
L−1+ε

))
. (6.40)

Recall from Proposition 6.13 that U∗ ∼ Bin(|X |, p), where p = p(L, d) was defined in
(6.35). For a random variable Z ∼ Bin(m, r) and θ ≥ 0, we have E[θZ ] ≤ emrθ, thus

E

[(
1

α

)U∗
]
≤ e|X |p/α. (6.41)

Recall from Proposition 6.13 that V ∗ is the sum of |X | independent copies of V ∗
0 .

E

[(
1

α

)V ∗
0

]
(6.32)
= pV ∗

0
(0) +

e−T δ

α2
+

∞∑

k=1

(
1

α

)2k+1

2ke−( 1
2
ℓkL)δ (6.5),(6.37)

=

pV ∗
0
(0) + L2d− 9

2 · e−L(2−ε)δ
+

∞∑

k=1

exp

(
(2k + 1)(d− 9

4
) ln(L) + k ln(2)− 1

2δ
(ℓδ)kLδ

)

=: q
(∗)
= q(L, d), (6.42)

where in (∗) the parameter q is indeed only a function of L and d, because of the definition
of ε and δ in (6.1) and ℓ in (6.2). We can thus bound

P







⋂

{x,z}∈X
|x−z|=1

Fx,z


 ∩


⋂

y∈Y

Ey







(6.39),(6.41),(6.42)

≤ β|Y| · α|X | · e|X |p/α · q|X | =

exp

{
|Y| ln β +

1

2
|X |(2 ln q + 2 lnα+ 2p/α)

}
. (6.43)

Recall our definition of ℓ from (6.2). We will choose L big enough so that it satisfies
multiple criteria, as we now discuss. By (6.26) we need

L > L(1) := T
1

2−ε

0 ∨D0.

Having already fixed ε, δ and ℓ, we assume that L satisfies

L ≥ L(2), so that exp
(
−L(2−ε)δ

)
+

∞∑

k=1

2k · exp
(
−(1

2
ℓkL)δ

)
≤ 1

2
, (6.44)

so that the condition of Lemma 6.11 is satisfied for L. We will also assume

L ≥ L(3), so that q(L, d)
(∗∗)
≤ 2. (6.45)

The inequality (∗∗) can be achieved because pV ∗
0
(0) ≤ 1 (see (6.32)) and by our choice of

ℓ in (6.2) we have (ℓδ)k ≥ 3k, thus the sum of the other terms in the definition (6.42) of
q can be made arbitrarily small by making L large. Next we observe that

p(L, d) ≤ 4L2−d+ 1
4

(6.37)
= 4α if L ≥ L(2). (6.46)
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To show that this inequality indeed holds, we estimate

p = p(L, d)
(6.5),(6.35),

=
L(2−ε)(1− d

2
+ε) +

∑∞
k=1 2

k
(
1
2ℓ

kL
)2−d+ε

P [V ∗
0 = 0]

(6.1)

≤ L2−d+ 1
4 + L2−d+ε

∑∞
k=1 2

k
(
1
2ℓ

k
)2−d+ε

P [V ∗
0 = 0]

(6.2),(6.33),(6.44)

≤

2
(
L2−d+ 1

4 + L2−d+ε
) (6.1)

≤ 4L2−d+ 1
4 . (6.47)

We can now bound the expression in the exponential in the right-hand side of (6.43):

|Y| ln(β)+ |X |
2

(2 ln q+
p

α
+2 lnα)

(6.45),(6.46),

≤ |Y| ln(β)+ |X |
2

(2 ln 2+4+2 lnα)
(6.37),(6.40)

≤

|Y|
(
ln(2d) − 1

8
L ln

(
1 +

d

4
L−1+ε

))
+
|X |
2

(
Ĉ +

(
4− 2d+

1

2

)
lnL

)
(∗)
≤

(
|Y|+ |X |

2

)(
Ĉ +

(
4− 2d+

1

2

)
lnL

)
(6.10)
= 2N ·

(
Ĉ +

(
4− 2d+

1

2

)
lnL

)
, (6.48)

where (∗) holds for L ≥ L(4). Plugging (6.48) back in (6.43), we obtain that the statement
of Proposition 6.5 holds with ℓ as in (6.2) and L(0) := L(1) ∨ · · · ∨ L(4).

6.5 Proof of Lemmas 6.11 and 6.12

We now prove the two lemmas of Section 6.3 bounding the probability that random
walk paths endanger (Lemma 6.11) and intersect (Lemma 6.12) each other. These proofs
simply put together results that have already been established. For Lemma 6.11, we
combine Proposition 6.9 – which bounds the probability that a path endangers another
path that starts at a given distance from it – with (6.13) – which bounds the number of
points of X that are within a given distance from a fixed point x ∈ X . Lemma 6.12 is even
simpler and follows from a combination of (6.13) with the definition of “endangering” in
(6.27).

Proof of Lemma 6.11. Fix n ∈ {1, . . . , |X |}. We take a bijection

θ : {0, 1, . . . , |X | − n} → {n, n+ 1, . . . , |X |}

with the property that

0 = |xθ(0) − xn| ≤ |xθ(1) − xn| ≤ · · · ≤ |xθ(|X |−n) − xn|.

We have

|{i ≥ n : |xi − xn| ≤ ℓkL/2}| ≤ |X ∩B(xn, ℓ
kL/2)|

(6.13)

≤ 2k, k ≥ 1,

so that
|xθ(i) − xn| > ℓkL/2 for all i ≥ 2k, k ≥ 1.

By our definition of ℓ (see (6.1),(6.2)) and L (see (6.26)) we have ℓkL/2 ≥ D0, for any
k ≥ 1, moreover T ≥ T0 (see (6.26)), therefore we can use Proposition 6.9 to bound the
probability of the event in the indicator Vn,θ(i) (see (6.27)) that trajectory n endangers
trajectory θ(i):

P
[
Vn,θ(i) = 1

]
≤
{
e−T δ

if i = 1;

e−(ℓ
kL/2)

δ

if i ≥ 2k, k ≥ 1.
(6.49)
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Now, if i ≥ 2, we have

P [Vn ≥ i] ≤ P [Vn ≥ 2⌊log2 i⌋] ≤
∑

j≥2⌊log2 i⌋

P [Vn,θ(j) = 1]
(6.49)

≤
∞∑

k=⌊log2 i⌋

2k · e−(ℓkL/2)
δ

and similarly,

P [Vn ≥ 1] ≤ e−T δ
+

∞∑

k=1

2k · e−(ℓkL/2)
δ

.

We then obtain

P [Vn + 1{Vn > 0} ≥ 1] = P [Vn + 1{Vn > 0} ≥ 2] ≤ e−T δ
+

∞∑

k=1

2k · e−(ℓkL/2)
δ

and, for i > 2,

P [Vn + 1{Vn > 0} ≥ i] ≤ P [Vn ≥ i− 1] ≤
∞∑

k=⌊log2(i−1)⌋

2k · e−(ℓkL/2)
δ

.

The statement of the lemma now follows from comparing these inequalities with the
definition of the law of V ∗

0 in (6.32).

Proof of Lemma 6.12. We have

P [Un = 1|Xxk
t : 1 ≤ k < n, t ≥ 0]

(6.21)

≤
n−1∑

m=1

P [∃s ≥ T : Xxn
s = Xxm

s |Xxk
t : 1 ≤ k < n, t ≥ 0]

=

n−1∑

m=1

P [∃s ≥ T : Xxn
s = Xxm

s |Xxm
t : t ≥ 0]

(6.23)
=

n−1∑

m=1

Mxm,xn,T
∞ ,

so that

P [Un = 1 | Xxk
t : 1 ≤ k < n, t ≥ 0] · 1

{
n−1∑

k=1

Vk,n = 0

}
≤

n−1∑

m=1

Mxm,xn,T
∞ · 1 {Vm,n = 0} .

Now, by (6.27),

Mxm,xn,T
∞ · 1 {Vm,n = 0} ≤





T 1− d
2
+ε if |xm − xn| = 1;

|xm − xn|2−d+ε otherwise.

The proof of (6.34) can now be completed by applying Definition 6.3 and (6.13) as we
did in the proof of Lemma 6.11; we omit the details.

6.6 Proof of Proposition 6.13

In this section we will prove our stochastic domination result using a coupling argument.
The key idea lies in the definition of some auxiliary random variables U∗

n, 1 ≤ n ≤ |X |, so
let us start by explaining this informally (the precise definition is given in (6.64)). Define
the events

An =

{
n−1∑

k=1

Vk,n = 0, Vn = 0

}
, 1 ≤ n ≤ |X |. (6.50)
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In words: An is the event that the n’th random walk path is not endangered by previous
paths and does not endanger upcoming paths. We will specify the key properties of
U∗
n, 1 ≤ n ≤ |X | using the events An in (6.51) and (6.52) below. Suppose we fix n and we

reveal all the paths {Xxi
t : i < n, t ≥ 0}, and moreover we reveal the vector V n (defined

in (6.28)). Given all this information, we are able to determine whether or not An has
occurred. Now,

(a) assume An has occurred. At this point, we have full knowledge of all the paths
with index smaller than n, and also some partial knowledge of the n’th path: we

know V n, in fact we know that An occurred, which implies Vn =
∑|X |

k=n+1 Vn,k = 0.
In Lemma 6.17, we argue that the conditional probability of {Un = 1} given all
this information is at most p (defined in (6.35)), a number that is not much larger
than the bound we had given in (6.34) (which did not include the conditioning on
{Vn = 0}). We are thus able to define U∗

n so that Un ≤ U∗
n and U∗

n ∼ Bernoulli(p).

(b) if An has not occurred, we simply prescribe (using extra, auxiliary randomness) that
U∗
n is Bernoulli(p).

The sum
∑|X |

n=1 Un · 1An is then dominated by
∑|X |

n=1 U
∗
n · 1An ≤

∑|X |
n=1 U

∗
n, and the sum∑|X |

n=1 Un ·1Ac
n
is dominated by

∑|X |
n=1(Vn+1{Vn > 0}) (see (6.53) below), which in turn is

dominated by
∑|X |

n=1 V
∗
n , a sum of i.i.d. random variables distributed as V ∗

0 from Lemma
6.11. Finally, the desired independence properties of our construction follow from the fact
that the distribution of U∗

n is the same regardless of the conditioning; this is formalized
in Lemma 6.18.

Proof of Proposition 6.13. In a series of lemmas we will construct, by extending the prob-
ability space of the random walks (Xxn

t ), 1 ≤ n ≤ |X |, random variables U∗
1 , . . . , U

∗
|X |

satisfying

Un · 1An ≤ U∗
n · 1An ; (6.51)

U∗
n ∼ Ber(p) and is independent of

(
(U∗

k )1≤k≤n−1, (V k)1≤k≤|X |

)
. (6.52)

Here we show how this construction implies (6.36). We let U∗ =
∑|X |

n=1 U
∗
n. We have

U
(6.21)
=

|X |∑

n=1

Un

(6.51)

≤
|X |∑

n=1

(U∗
n + 1Ac

n
)
(6.50)

≤ U∗ +

|X |∑

n=1

(
1{Vn>0} +

n−1∑

k=1

Vk,n

)

= U∗ +

|X |∑

n=1

1{Vn>0} +

|X |∑

k=1

|X |∑

n=k+1

Vk,n
(6.28)
= U∗ +

|X |∑

k=1

(Vk + 1{Vk>0}). (6.53)

Now (6.52) implies that U∗ ∼ Bin(|X |, p) and is independent of V1, . . . , V|X |, which are
also independent by (6.31). Putting this together with Lemma 6.11 we obtain that

U∗ +

|X |∑

n=1

(1{Vn>0} + Vn) is stochastically dominated by U∗ + V ∗,

where V ∗ is a sum of |X | independent copies of V ∗
0 . This completes the proof of Proposition

6.13 given (6.51) and (6.52).

The rest of this subsection is devoted to the construction of random variables
U∗
1 , . . . , U

∗
|X | satisfying (6.51) and (6.52). We start recalling a few standard facts about

conditional expectations.

26



Lemma 6.16. Let (Ω,F ,P) be a probability space.

1. [Wi91, Section 9.7, Property (k)] If X is an F-measurable and bounded random
variable (r.v.), G,G′ ⊂ F are sigma-algebras and G′ is independent of σ(G ∪ σ(X)),
then

E[X | G,G′] = E[X | G]. (6.54)

2. [Kl05, Theorem 2.24] Let H ⊆ F be a sigma-algebra, Z be an F-measurable r.v.
independent of H, Y be an H-measurable r.v., and f : R2 → R be Borel-measurable
and bounded. If we define g(y) := E[f(y, Z)] for y ∈ R then

E [f(Y,Z) |H] = g(Y ). (6.55)

We now extend the probability space of the walksXx
t , t ≥ 0, x ∈ X with an independent

collection of auxiliary random variables

ζk, 1 ≤ k ≤ |X |, i.i.d. and unifomly distributed on [0, 1]. (6.56)

For 1 ≤ n ≤ |X |, we introduce the sigma-field

σn := σ ((ζk : 1 ≤ k ≤ n) , (V k : 1 ≤ k ≤ |X |) , (Xxk
t : t ≥ 0, 1 ≤ k ≤ n))

(6.29)
= σ ((ζk : 1 ≤ k ≤ n) , (V k : n < k ≤ |X |) , (Xxk

t : t ≥ 0, 1 ≤ k ≤ n)) . (6.57)

Recalling (6.21) we also define the random variable

pn := P [Un = 1 | σn−1] = P

[
Un = 1

∣∣∣∣∣
(ζk)1≤k≤n−1, (V k)n≤k≤|X |,

Xxk
t , t ≥ 0, 1 ≤ k ≤ n− 1

]
. (6.58)

Lemma 6.17. The number p defined in (6.35), the event An, 1 ≤ n ≤ |X | defined in
(6.50) and the random variable pn defined in (6.58) satisfy

pn · 1An ≤ p. (6.59)

Proof. By (6.29), (6.54) and the fact that (Xxk
t ) , 1 ≤ k ≤ |X | are independent random

walks, we have
pn = P [Un = 1 |V n, Xxk

t , t ≥ 0, k ≤ n− 1] .

Recall from (6.28) that Vn is the indicator of the event that the path (Xxn
t ) does not

endanger any upcoming paths. We now claim that

pn · 1 {Vn = 0} = P [Un = 1, Vn = 0 |Xxk
t , t ≥ 0, k ≤ n− 1]

P [Vn = 0 |Xxk
t , t ≥ 0, k ≤ n− 1]

· 1 {Vn = 0} . (6.60)

Before we prove this, let us see how it allows us to conclude. Noting that

P [Vn = 0 |Xxk
t , t ≥ 0, k ≤ n− 1]

(6.29),(6.54)
= P [Vn = 0] , (6.61)

we have

pn · 1An

(6.50)
= pn · 1 {Vn = 0}1

{
n−1∑

k=1

Vk,n = 0

}

(6.60),(6.61)

≤
P [Un = 1 |Xxk

t , t ≥ 0, k ≤ n− 1] · 1
{∑n−1

k=1 Vk,n = 0
}

P [Vn = 0]
· 1 {Vn = 0} .
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By applying Lemma 6.12 to the numerator and Lemma 6.11 to the denominator, we
conclude that the right-hand side is smaller than p, thus (6.59) holds.

It remains to prove (6.60). To this end, we abbreviate

V = σ(V n), G = σ(Xxk
t : t ≥ 0, 1 ≤ k ≤ n− 1).

We must then prove that

1{Vn=0} · P [Vn = 0|G] · P [Un = 1|G,V] = 1{Vn=0} · P [Un = 1, Vn = 0|G];

since Vn is V-measurable and P [Vn = 0|G] is G-measurable, this is the same as

E
[
1{Un=1, Vn=0} · P [Vn = 0|G]

∣∣ G,V
]
= 1{Vn=0} · P [Un = 1, Vn = 0|G]. (6.62)

We now check that the right-hand side of (6.62) satisfies the definition of the left-hand
side. First, note that 1{Vn=0} ·P [Un = 1, Vn = 0|G] is measurable with respect to σ(G,V).
Second, for any event C ∈ σ(G,V), we must check that

E
[
1C · 1{Un=1, Vn=0} · P [Vn = 0|G]

]
= E[1C · 1{Vn=0} · P [Un = 1, Vn = 0|G]]. (6.63)

Now V is an atomic sigma-algebra (since it is generated by finitely many events, see (6.28))
and {Vn = 0} is an atom of V, therefore the event C ∩ {Vn = 0} is equal to G ∩ {Vn = 0}
for some G ∈ G. Using this, (6.63) is equivalent to

E
[
1G · 1{Un=1, Vn=0} · P [Vn = 0|G]

]
= E[1{Vn=0} ·E[1G · 1{Un=1, Vn=0}|G]].

By taking E[ · |G] inside the expectation, we see that both sides are equal to

E
[
E[1G · 1{Un=1, Vn=0}|G] · P [Vn = 0|G]

]
.

The proof of Lemma 6.17 is complete.

We are now ready to define

U∗
n := 1An ·

(
Un + (1− Un) · 1

{
ζn ≤

p− pn
1− pn

})
+ 1Ac

n
· 1{ζn ≤ p}. (6.64)

Lemma 6.18. U∗
n satisfies (6.51) and (6.52).

Proof. That (6.51) is satisfied is obvious, so we turn to (6.52).
Recalling the definitions of Un from (6.21), V k from (6.28), An from (6.50), ζk from

(6.56), σn from (6.57) and pn from (6.58) we note that

An, Un, ζn and pn are all σn-measurable, 1 ≤ n ≤ |X |.

Consequently, U∗
1 , . . . , U

∗
n−1 are all σn−1-measurable. Since (V k)n≤k≤|X | are also σn−1-

measurable, we see that (6.52) will follow once we show that

E[U∗
n |σn−1] = p. (6.65)

We start with

E [U∗
n | σn−1]

(6.64)
= E [Un · 1An | σn−1] + E

[
(1− Un) · 1An · 1{

ζn≤
p−pn
1−pn

}
∣∣∣∣ σn−1

]

+ P [Ac
n ∩ {ζn ≤ p} | σn−1]

(∗)
= 1An ·E [Un | σn−1] + 1An · E

[
(1− Un) · 1{ζn≤

p−pn
1−pn

}

∣∣∣ σn−1

]
+ 1Ac

n
· P [ζn ≤ p | σn−1]

(6.58)
= 1An · pn + 1An · E

[
(1− Un) · 1{ζn≤

p−pn
1−pn

}

∣∣∣ σn−1

]
+ 1Ac

n
· p,
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where in (∗) we used that An ∈ σn−1. The proof of (6.65) will be complete once we show

1An · E
[
(1− Un) · 1{ζn≤

p−pn
1−pn

}

∣∣∣ σn−1

]
= 1An · (p− pn). (6.66)

To this end, we first calculate

1An ·E
[
(1− Un) · 1{ζn≤

p−pn
1−pn

}

∣∣∣ σn−1, (X
xn
t )t≥0

]
(6.67)

= 1An · (1− Un) · E
[
1{ζn≤

p−pn
1−pn

}

∣∣∣ σn−1, (X
xn
t )t≥0

]

(∗∗)
= 1An · (1− Un) ·

p− pn
1− pn

, (6.68)

where (∗∗) follows from (6.59) and (6.55), which can be applied because pn is σn−1-
measurable and ζn is independent of σ(σn−1, (X

xn
t )t≥0).

To conclude the proof of (6.66), note that taking E[ · |σn−1] on (6.67) (and again using
the fact that An ∈ σn−1) gives the left-hand side of (6.66), whereas taking E[ · |σn−1]
on (6.68) (and using (6.58)) gives the right-hand side of (6.66). The proof of (6.65) and
Lemma 6.18 is complete.

6.7 Proof of Proposition 6.9

The goal of this section is to prove Proposition 6.9. Recall the definition of Mx,y,T
∞ from

(6.23). We generalize this definition by setting, for any t ∈ [T,∞),

Mx,y,T
t = P [∃u ≥ T : Xy

u = Xx
u | Fx

t ], Fx
t = σ (Xx

u : 0 ≤ u ≤ t) . (6.69)

This defines a martingale indexed by t ∈ [T,∞]. In order to simplify notation, we will
omit the superscripts that indicate dependence on x, y and T .

Let us now describe the strategy of proof of Proposition 6.9. As suggested in Remark

6.10, we have M0 = E[M∞] ≍ T 1−d/2 ∧ |x − y|2−d, so the event {M∞ > T 1− d
2
+ε} (and

{M∞ > |x− y|2−d+ε} for the case of |x− y| large) can only occur if the terminal value of
the martingale deviates too much from its initial value. This is where Theorem 2.3 comes
into play. In order to apply this theorem, we will obtain estimates on the size of the
jumps of (Mt) and on its predictable quadratic variation 〈M〉∞; these estimates are given

in (6.71) and (6.72). We derive these estimates by comparing Mt with M
(e)
t , which arises

from Mt by artificially forcing the walk (Xx
s )s≥0 to jump at time t in the direction of the

unit vector e ∼ 0, see Definition 6.20. Specifically, in Lemma 6.23 we show that the jumps

of M can be bounded in terms of |Mt −M (e)
t | and the predictable quadratic variation

〈M〉∞ can be expressed as an integral of (Mt −M
(e)
t )2. The difference |Mt −M (e)

t | is
bounded in Lemma 6.24 using the random walk facts of Section 2.3.

Recall that (Mt) is càdlàg. Denote by

∆MT = sup
t≥T
|Mt −Mt−|

the maximal jump size of Mt after time T . Recall the notion of 〈M〉t from Definition 2.2.

Lemma 6.19. There exist dimension-dependent constants C0, C1, C2 such that the fol-
lowing bounds almost surely hold:

MT ≤ C0T
1− d

2 (6.70)

∆MT ≤ C1T
1
2
− d

2 (6.71)

〈M〉∞ − 〈M〉T ≤ C2T
2−d (6.72)
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Before we prove Lemma 6.19 we use it to prove Proposition 6.9.

Proof of Proposition 6.9. We first prove (6.24):

P
[
M∞ > T 1− d

2
+ε
] (6.70)

≤ P
[
M∞ −MT > T 1− d

2
+ε − C0T

1− d
2

] (∗)
≤

P

[
M∞ −MT >

1

2
T 1− d

2
+ε

]
(2.2),(6.71),(6.72)

≤

exp

(
−1

2

1
2T

1− d
2
+ε

C1T
1
2
− d

2

ln

(
1 +

1
2T

1− d
2
+εC1T

1
2
− d

2

C2T 2−d

))
=

exp

(
− 1

4C1
T

1
2
+ε ln

(
1 +

C1

2C2
T− 1

2
+ε

))
(∗)
≤ exp (−T ε) , (6.73)

where the inequalities marked by (∗) hold if T is large enough. We have proved that (6.24)
holds with δ = ε.

We now turn to (6.25). Given our x, y ∈ Z
d, we bound

P [M∞ > |x− y|2−d+ε]
(6.69)

≤ P

[
P [∃u ≥ T̂ : Xy

u = Xx
u | Fx

∞] >
1

2
|x− y|2−d+ε

]
+

P

[
P [∃u ≤ T̂ : Xy

u = Xx
u | Fx

∞] >
1

2
|x− y|2−d+ε

]
, (6.74)

where T̂ is defined by

T̂ = C|x− y|2−
ε

d−2−ε/2 , C = 2
1

d/2−1−ε/4 ,

so that 1
2 |x− y|2−d+ε = T̂ 1− d

2
+ε/4.

(6.75)

Assuming that |x− y| is large enough, we can bound the first term on the right-hand side
of (6.74) analogously to (6.73):

P

[
P [∃u ≥ T̂ : Xy

u = Xx
u | Fx

∞] >
1

2
|x− y|2−d+ε

]
(6.75)

≤ exp
(
−T̂ ε

4

) (6.1)

≤ e−|x−y|ε/4 .

(6.76)
Now we bound the second term on the right-hand side of (6.74) using Markov’s inequality:

P

[
P [∃u ≤ T̂ : Xy

u = Xx
u | Fx

∞] >
1

2
|x− y|2−d+ε

]
≤ P [∃u ≤ T̂ : Xy

u = Xx
u ]

1
2 |x− y|2−d+ε

, (6.77)

and

P [∃u ≤ T̂ : Xy
u = Xx

u ]
(2.8)
= P [∃u ≤ 2T̂ : Xx−y

u = 0] ≤ P
[
max
u≤2T̂

|X0
u| ≥ |x− y|

]
(2.3)

≤

2d exp

(
−1

2
|x− y| ln

(
1 +

d · |x− y|
2T̂

))
(∗∗)
≤ exp

(
−|x− y| ε

d−2

)
, (6.78)

where (∗∗) holds by (6.75) if |x− y| is large enough. Thus

P [M∞ > |x− y|2−d+ε]
(6.74),(6.76),(6.77),(6.78)

≤

e−|x−y|ε/4 +
exp

(
−|x− y| ε

d−2

)

1
2 |x− y|2−d+ε

(∗)
≤ exp

(
−|x− y|ε/d

)
,

where (∗) holds if |x−y| is large enough. This completes the proof of (6.25) with δ = ε/d,
as required by (6.1). The proof of Proposition 6.9 is complete, given Lemma 6.19.
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Now we prepare the ground for the proof of Lemma 6.19.

Definition 6.20. For any t ∈ [T,+∞) let us define for e ∈ Z
d, e ∼ 0, the random variable

M
(e)
t = P [{∃T ≤ s ≤ t : Xy

s = Xx
s } ∪ {∃ s ≥ t : Xy

s = Xx
s + e} | Fx

t ] (6.79)

Recall that we assume that our random walks and martingales are càdlàg.

Definition 6.21. Denote by τ1 < τ2 < . . . the jump times of the random walk (Xx
t ) and

let τ0 = 0. For any n ≥ 1 let en = Xx
τn −Xx

τn− denote the direction of the jump of (Xx
t )

at time τn.

Note that
(τn − τn−1)n≥1 are i.i.d. with Exp(1) distribution. (6.80)

The next claim states that Mt only jumps when Xx
t jumps and in between jumps Mt

is Lipschitz-continuous. The proof is straightforward and we omit it.

Claim 6.22. For any n = 1, 2, . . . we have

Mτn =M
(en)
τn− , (6.81)

d

dt
Mt = −

1

2d

∑

e∼0

(M
(e)
t −Mt), τn−1 < t < τn, (6.82)

and in particular,

|Mt −Ms| ≤ t− s for any τn−1 < s ≤ t < τn. (6.83)

Lemma 6.23. We have

∆MT ≤ sup
t≥T

max
e∼0
|M (e)

t −Mt| (6.84)

〈M〉t − 〈M〉T =
1

2d

∑

e∼0

∫ t

T
(M (e)

s −Ms)
2 ds (6.85)

Proof. The inequality (6.84) immediately follows from (6.81).
Now we prove (6.85). Recall Definition 2.2. The right-hand side of (6.85) is adapted

to (Fx
t ) and continuous in t, hence it is predictable (see Definition 2.1), thus we only need

to check that that for any T ≤ s ≤ t we have

E[M2
t −M2

s | Fx
s ] = E

[
1

2d

∑

e∼0

∫ t

s
(M (e)

u −Mu)
2 du | Fx

s

]
. (6.86)

Let us define for δ > 0 and u ≥ T the random variable

ψδ
u :=

1

δ
E[(Mu+δ −Mu)

2 | Fx
u ]

(∗)
=

1

δ
E[M2

u+δ −M2
u | Fx

u ], (6.87)

where (∗) follows from the fact that Mt is a martingale. Using (6.81), (6.83) and that
(Xt) is a continuous-time simple random walk on Z

d we obtain

lim
δ→0+

ψδ
u =

1

2d

∑

e∼0

(M (e)
u −Mu)

2, P− a.s. (6.88)

It follows from the definition (6.87) that for any δ > 0 we have

E

[∫ t

s
ψδ
udu | Fx

s

]
= E

[
1

δ

∫ t+δ

t
M2

u du−
1

δ

∫ s+δ

s
M2

u du | Fx
s

]
.
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From this, (6.80) and Claim 6.22 it follows that

lim
δ→0+

E

[∫ t

s
ψδ
udu | Fx

s

]
= E

[
M2

t −M2
s | Fx

s

]
, P− a.s. (6.89)

Now (6.86) will follow from (6.88) and (6.89) by dominated convergence as soon as we
prove that for any T ≤ u and 0 < δ ≤ 1 we have ψδ

u ≤ 2. This bound follows from (6.80)
and Claim 6.22.

Lemma 6.24. There exists C > 0 such that for any t ≥ T ≥ 1 and e ∼ 0,

|M (e)
t −Mt| ≤ Ct

1
2
− d

2 . (6.90)

Before we prove Lemma 6.24, let us deduce Lemma 6.19 from it.

Proof of Lemma 6.19. We begin with (6.70). We first observe that, for any y, z ∈ Z
d,

∑

w∈Zd

pT (y,w) · P [∃t ≥ 0 : Xw
t = Xz

t ]
(2.10),(2.5)

≤
∫ ∞

T
pt(y, z)dt

(2.6)

≤ C0T
1− d

2 . (6.91)

With this at hand, we derive (6.70):

MT
(6.69)
=

∑

z,w

1{Xx
T = z} · pT (y,w) · P

[
∃t ≥ T : Xy

t = Xx
t | Xx

T = z, Xy
T = w

]

=
∑

z

1{Xx
T = z} ·

∑

w

pT (y,w) · P [∃t ≥ 0 : Xw
t = Xz

t ]
(6.91)

≤ C0T
1− d

2 .

The bound (6.71) follows from (6.84) and (6.90). Now we prove (6.72):

〈M〉∞ − 〈M〉T
(6.85)
=

1

2d

∑

e∼0

∫ ∞

T
(M (e)

s −Ms)
2 ds

(6.90)

≤
∫ ∞

T
Cs1−d ds = CT 2−d.

Proof of Lemma 6.24. Given t ≥ T let us define A = {∃T ≤ s ≤ t : Xy
s = Xx

s }. We
have

Mt
(6.69),(2.10)

= P [A | Fx
t ] +

∑

v,w∈Zd

P [Ac ∩ {Xy
t = w} | Fx

t ]1[X
x
t = v] · g(v,w)

g(0, 0)
,

M
(e)
t

(6.79),(2.10)
= P [A | Fx

t ] +
∑

v,w∈Zd

P [Ac ∩ {Xy
t = w} | Fx

t ]1[X
x
t = v] · g(v + e, w)

g(0, 0)
,

thus we obtain (6.90):

|M (e)
t −Mt| ≤

∑

v,w∈Zd

P [Ac ∩ {Xy
t = w} | Fx

t ] · 1[Xx
t = v] · |g(v + e, w) − g(v,w)|

g(0, 0)

(2.4)

≤

∑

v,w∈Zd

P [Xy
t = w] · 1[Xx

t = v] · |g(v + e, w) − g(v,w)|
(2.14)

≤ Ct
1
2
− d

2 .
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7 Concluding remarks

Remark 7.1. Let us briefly explain why the method of Section 6 fails to prove (4.1) if
d = 3, 4 and R = 1 by arguing that the right-hand side of (6.14) does not go to zero.
Rather than fixing the value of ℓ as in (6.2), in this heuristic argument we will keep track
of the dependence on ℓ as well as on L of the terms on the right-hand side of (6.14). If
we assume Y = ∅, then by (6.10) we have |X | = 2 · 2N . We will bound the probability of
the event the right-hand side of (6.14) from below. For any fixed α > 0 we can bound

P




⋂

{x,z}∈X
|x−z|=1

Fx,z




(3.4),(6.8)

≥ αP


N∞(X ) = 1,

⋂

{x,z}∈X
|x−z|=1

Ex,z


 . (7.1)

Now the probability that Ex,z occurs and yet Y x
t = Y z

t for some t > T is roughly
√
T
2−d

=
L(1−ε/2)(2−d) by (2.6), moreover we can use the binary tree structure of X to construct
a scenario where N∞(X ) = 1 and give a (heuristic) lower bound the probability on the
right-hand side of (7.1) by

(
L(1−ε/2)(2−d)

)2N
·

N∏

k=1

(
Lℓk
)(2−d)2N−k

≍
(
L(2−d)(2−ε/2) · ℓ(2−d)·2

)2N
.

If we multiply this with the combinatorial complexity term
(
Ldℓ2d−2

)2N
that appears on

the right-hand side of (6.14) then the resulting product goes to infinity as N →∞.

Remark 7.2. Let us explain why the method of Section 5 cannot be used to prove Theorem
1.1. Let us assume Y = ∅ (so that by (6.10) we have |X | = 2·2N ) and bound the probability
of the event of the right-hand side of (6.14):

P




⋂

{x,z}∈X
|x−z|=1

Fx,z




(6.17),(6.20)

≤ E
[
αNZ

∞

]
.

Now we try to bound this using the idea of Lemma 5.2, i.e., we let random walks starting
from the vertices of X run independently until time T and then we let them annihilate
each other. Let us denote by NZ′

∞ the number of walkers that do not get annihilated. Then

we have E
[
αNZ

∞

]
≤ E

[
αNZ′

∞

]
, but using an argument similar to the one used in Remark

7.1 we can (non-rigorously) bound

E
[
αNZ′

∞

]
≥ P [NZ′

∞ = 0 ] &
(
L(1−ε/2)(2−d)

)2N
,

and this term is not small enough to beat the combinatorial complexity term (CLd)2
N

on
the right-hand side of (6.14).
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