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Abstract— Sufficient conditions are presented for a system
with input delays having finite L2-gain. The bounded real
lemma conditions are infeasible when the actual and the
delayed values of the input act on the system simultaneously.
Considering the actual and delayed inputs as two independent
inputs is shown to lead to very high upper-bound of the true
L2-gain. Several approaches are presented involving a scaling
method which is based on upper-bounds of the delayed signal
norms; a method which transforms the input delays to state
delays with the help of introducing additional dynamics; and
a method based on integral quadratic constraints. Both time-
invariant and time-varying delays are considered. The methods
are evaluated on an example of interconnected vehicles.

I. INTRODUCTION

Robust stability and performance in the presence of uncer-
tain time-delays in the state-variables has been extensively
studied recently [1], [2], [3], [4], [5], [6]. In contrast, time
delay in the input has avoided the attention of the control
community so far. Only very few papers consider both
state and input delay in the input-output analysis of linear
systems [7]. Indeed, in many cases the problem of input
delay can be resolved. A single input with a constant time-
delay w(t − h) ∈ L2[0,∞] does not influence the L2-
gain of the system. Time-varying delay on the other hand
modifies the norm of the signal, but introducing a new
input w̃(t) = w(t − h(t)) might be sufficient. The problem
emerges when the input acts on the system with and without
delay (w(t − h) and w(t), respectively). Considering them
as independent inputs and disregarding information about the
relation between them [7] will result in overestimation of the
gain.

In the literature, the treatment of input delay in the L2-
gain analysis is confined to delays in the control input [8], not
disturbance inputs, thus closing the loop with the controller
leads to a problem with pure state-delay only.

The problem of input delays may arise in the analysis of
distributed systems and large scale interconnected systems.
In these applications, conclusions on stability/performance of
the overall system can be drawn based on analysis of local
behavior [9], [10], [11]. The inputs to the local system are
transmitted through the network, possibly through multiple
channels, and may therefore contain different delays.

In this paper several approaches are presented for the com-
putation of induced L2-gain of systems with input delays.

This paper was supported by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences

† Systems and Control Laboratory, Computer and Automa-
tion Research Institute of Hungarian Academy of Sciences.
E-mail: varga.gabriella@sztaki.mta.hu,
rodonyi@sztaki.hu

The results are compared with the condition proposed in [7].
Cases for both time-invariant and time-varying delays are
considered. The problem with input delays is illustrated in
Section II. The practical approaches are presented in Section
III. The efficiency of the methods are demonstrated on an
interconnected vehicle model in Section IV.

Notations. R and C denote the real and the complex
fields, respectively. Matrix inequality M > 0 (M ≥ 0)
denotes that M is symmetric and positive (semi-) definite,
i.e. all of its eigenvalues are positive (or zero). Negative
(semi-) definiteness is denoted by M < 0 (M ≤ 0).
The transpose and conjugate transpose of a matrix M is
denoted by MT and M∗, respectively. σ̄(M) denotes the
maximum singular value of matrix M . col{x, y} denotes
the column vector built from vectors x and y. Ln2 denotes
the space of square integrable signals with norm defined
by ‖x‖2 =

(∫∞
0
‖x(t)‖2dt

)1/2
, where ‖x(t)‖ denotes the

Euclidean norm on Rn. Space H∞ consists of all complex
valued functions which are analytic in <s > 0 and for which
‖G‖∞ , sup<s>0 σ̄(G(s)) = supω σ̄(G(jω)) < ∞. If
G ∈ H∞ is an asymptotically stable system with zero initial
conditions, then ‖G‖∞ = supu∈Ln

2

‖Gu‖2
‖u‖2 is the induced L2-

gain of G.

II. PROBLEM FORMULATION AND PRELIMINARIES

Sufficient and necessary conditions for a system having
finite L2-gain is briefly summarised. Consider an LTI system
G described by the equations

ẋ(t) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) (2)

with x(t) ∈ Rn, u(t) ∈ Rnu and y(t) ∈ Rny .
Definition 1 (Dissipativity [12]): System G with supply

rate s(u(t), y(t)) is said to be strictly dissipative if there
exists a non-negative function V : Rn 7→ R such that

V (x(t))− V (x(0))−
∫ t

0

s(t)dt < 0 (3)

for all t > 0 and all trajectories (x, u, y) which satisfy (1)-
(2). Function V is called storage function.

Lemma 1 (Bounded Real Lemma (BRL), [13]): Suppose
that system G is controllable. Let

s(t) = γ2u(t)Tu(t)− y(t)T y(t) (4)

be the supply rate. Then the following statements are equiv-
alent

1) System G is strictly dissipative with s(t) .
2) System G is asymptotically stable and ‖G‖∞ < γ.
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3) There exists a P > 0, P ∈ Rn×n such that[
ATP + PA+ CTC PB

BTP −γ2I

]
< 0. (5)

Moreover, V (x) = xTPx defines a quadratic storage func-
tion if and only if P > 0 satisfies (5).
Linear matrix inequality (LMI) condition (5) is derived with
assuming x(0) = 0 and differentiating (3), which results in
(d/dt)V (x(t))− s(t) =

ξ(t)TMV ξ(t) + ξ(t)TMSξ(t) < 0 (6)

where ξ(t) = col{x(t), u(t)} and

MV =

[
PA+ATP PB

BTP 0

]
,MS =

[
CTC 0

0 −γ2I

]
. (7)

A. Problem with input delays

Let B = [B0, B1] and u(t) = col{w(t), w(t − h)} for
some h > 0 constant time delay. The only input of system
G is w(t). The delay is part of G. With supply rate as in (4)
the matrices in (7) reveal

MV =

 PA+ATP PB0 PB1

BT0 P 0 0
BT1 P 0 0

 (8)

MS =

 CTC 0 0
0 −γ2I 0
0 0 0

 (9)

and ξ(t) = col{x(t), w(t), w(t−h)}. By Schur complement
argument, a necessary condition for a matrix being negative
definite is that all of the diagonal entries are negative definite.
Since the (3, 3) block of matrix MV + MS is zero, the
BRL condition will fail in proving asymptotic stability and
computing the L2-gain of the system.

B. Problem formulation

In the paper the following linear time-delay system, de-
noted by Σ, is considered

ẋ(t) = A0x(t) +A1x(t− h) +B0w(t) +B1w(t− h)

y(t) = Cx(t) (10)

where x(t) ∈ Rn, w(t) ∈ Rnw and y(t) ∈ Rny . The goal
of the paper is to develop and evaluate some modified BRL
conditions for computing upper-bounds on the system’s L2-
gain performance. The following cases will be examined.
• The time-delay is uncertain and time-varying, h = h(t)

and h(t) ∈ [h1, h2], h1 ≥ 0. Define h12 , h2 − h1.
• Time-delay h is constant and known, h1 = h2 = h.

In the L2-gain analysis, the initial conditions of the system
are assumed to be zero, x(t) = 0 for t ≤ 0 and w(t) = 0
for t < 0.

Since (10) is a retarded functional differential equation,
the storage-function in Definition 1 can be replaced by a
Lyapunov-Krasovskii functional (LKF). Two candidate LKFs
are presented in Section II-C.

C. Lyapunov-Krasovskii functionals (LKF)

In case of constant and known time-delays the complete
Lyapunov-Krasovskii functional

VTI(xt) = xT (t)Px(t) + 2xT (t)

∫ 0

−h
Q(ξ)x(t+ ξ)dξ

+

∫ 0

−h

∫ 0

−h
xT (t+ ξ)R(ξ, η)x(t+ η)dηdξ

+

∫ 0

−h
xT (t+ ξ)S(ξ)x(t+ ξ)dξ (11)

provides sufficient and necessary condition for uniform
asymptotic stability of Σ. Matrix functions Q, R and S
can be approximated as piecewise linear functions. For more
details, see [14].

Due to its advantageous parametrisation, the LKF candi-
date

VTV (t) =
9∑
i=1

Vi(t) (12)

developed recently by Lee et al., [15], will be applied for
the case of time-varying delays where

V1(t) = ζT (t)Pζ(t),

V2(t) =

∫ t

t−h1

xT (s)Q1x(s)ds,

V3(t) =

∫ t−h1

t−h2

xT (s)Q2x(s)ds

V4(t) = h1

∫ 0

−h1

∫ t

t+θ

ẋT (s)R1ẋ(s)dsdθ,

V5(t) = h12

∫ −h1

−h2

∫ t

t+θ

ẋT (s)R2ẋ(s)dsdθ,

V6(t) =

∫ 0

−h1

∫ 0

η

∫ t

t+θ

ẋT (s)Z1ẋ(s)dsdθdη,

V7(t) =

∫ 0

−h1

∫ η

−h1

∫ t

t+θ

ẋT (s)Z2ẋ(s)dsdθdη,

V8(t) =

∫ −h1

−h2

∫ −h1

η

∫ t

t+θ

ẋT (s)Z3ẋ(s)dsdθdη,

V9(t) =

∫ −h1

−h2

∫ η

−h2

∫ t

t+θ

ẋT (s)Z4ẋ(s)dsdθdη

and ζ(t) = col{x(t),
∫ t
t−h1

x(s)ds,
∫ t−h1

t−h2
x(s)ds}. Given

the choice of storage function, MV , ξ(t) and the upper-
left block of MS , denoted by MS,11, must be modified
accordingly.

D. A sampled-data network model

Time-varying delays can drastically modify the norm
of the signal. It is worth considering application specific
properties of the delay. The class of time-varying delays
in consideration is specialised to those present in sampled-
data networks. It is assumed that input w(t) ∈ Lnw

2 affects
the system both directly and through the network (see the
motivating example in Section IV). The following model will
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serve as the basis for deriving upper bounds of ‖w(t−h(t))‖2
in terms of ‖w(t)‖2 in Section III-A.

The input to the network is realised through a Zero Order
Hold (ZOH) device. Let sk = kTs, k = 0, 1, ... denote the
measurement instants, while

0 ≤ t0 < t1 < . . . < tk < . . . , lim
k→∞

tk =∞ (13)

denote the time instants when the new data arrives at the
receiver. Define the time of transmission ηk as tk = sk+ηk.
Assume that there exist known constants h1 and h2 such that
0 ≤ h1 ≤ ηk ≤ h2, k = 0, 1, 2, .... Define

h(t) = t− sk, tk ≤ t < tk+1. (14)

i.e. w(t− h(t)) = w(sk) for tk ≤ t < tk+1.
For more details on the model and a stability analysis of

systems with control over sampled-data networks, see [16].

III. L2-GAIN UPPER-BOUNDS FOR SYSTEMS WITH INPUT
DELAYS

In this section the input-delay problem in the BRL is
relaxed in several ways. It is assumed in the case of time-
varying delays that the delay is due to a sampled data
network. Some of the presented methods will require bounds
on the norms of the transmitted signal w(t− h(t)) in terms
of ‖w(t)‖2. The first subsection is devoted to this issue.

A. Bounds on ‖w(t − h(t))‖2 in case of sampled data
networks

Assume that the input w(t) to be transmitted through the
network is band limited such that the following integral can
be well approximated by

W (t) ,
∫ t

0

‖w(τ)‖2dτ ≈
N∑
k=0

‖w(sk)‖2Ts (15)

where N = t/Ts. With the network model presented in
Section II-D, we have

Wh(t) ,
∫ t

0

‖w(τ − h(τ))‖2dτ

=

N∑
k=0

‖w(sk)‖2(tk+1 − tk) (16)

for the transmitted input. Define h̄ = Ts+h2 as the maximum
time span between time sk and the next update time tk+1.
Let 0 ≤ αk, αk−1 ≤ h2 − h1 = h12 be constants such that

tk+1 − sk + αk = h̄ (17)
tk − sk−1 + αk−1 = h̄ (18)

Subtracting (18) from (17) gives tk+1−tk = Ts−αk+αk−1,
which is in the interval [Ts−h12, Ts +h12]. Combining this
result with (15) and (16) it follows that(

1− h12
Ts

)
W (t) ≤Wh(t) ≤

(
1 +

h12
Ts

)
W (t). (19)

for all t ≥ 0. The bounds for the L2-norm of w(t− h(t)) is
obtained by the limit ‖w‖22 = limt→∞W (t).

B. Exact gain of LTI systems (EG-TI)

In case of time-invariant delays, the in-
duced L2-gain of Σ is given by ‖Σ‖∞ =
maxω σ̄

(
C(jωI −A0 −A1e

−jωh)−1(B0 +B1e
−jωh)

)
,

which will be used as reference in the evaluation of
BRL-based results.

C. Independent inputs (II-TI and II-TV)

Cheng [7] proposed to incorporate w(t−h) in the supply
rate as s(t) = γ2(u1(t)Tu1(t) + u2(t)Tu2(t)) − y(t)T y(t),
where

u1(t) = w(t), u2(t) = w(t− h) (20)

With this modification, the BRL condition (6) with MS =
diag{MS,11,−γ2III,−γ2III} is solvable for some γII if the
system is asymptotically stable.1 In this approach the two
inputs, u1 and u2, are considered as independent inputs,
correlation (20) is not exploited, and consequently, the result
is necessarily conservative. On the other hand, the resulted
γII is not the gain of the original system, whose only input
is w(t) ∈ Lnw

2 . With initial condition w(t) = 0 for t < 0, we
have ‖u‖2 =

(
‖u1‖22 + ‖u2‖22

)1/2 ≤ √2‖w‖2 for constant
delays and ‖u‖2 ≤

√
2 + h12/Ts‖w‖2 for time-varying

delays. With this approach it can be proven that

‖Σ‖∞ < γII
√

2 or (21)

‖Σ‖∞ < γII
√

2 + h12/Ts (22)

depending on the class of delay. This BRL condition will be
referred as the method of independent inputs (II) since input
w(t− h) could be replaced by any other independent input
u2(t) for which ‖u2‖2 ≤ ‖w‖2.

D. Scaled inputs with time-invariant delays (SI-TI)

A slight improvement can be achieved with respect to
method II-TI due to the following observations. Assume that
w(t) = 0 for t < 0. Then, time-invariant delays do not
change the L2-norm of a signal, ‖w(t)‖2 = ‖w(t− h)‖2 =
α‖w(t)‖2 + (1 − α)‖w(t − h)‖2 for any α ∈ R; On finite
interval with h(τ) = h, however, we have

Wh(t) = W (t− h) ≤W (t). (23)

Let the supply rate be defined by (4) with u(t) = w(t).
An upper-bound on the left-hand side of the dissipation
inequality (3) is derived by replacing

S(t) ,
∫ t

0

s(τ)dτ

with

Sα(t) ,
∫ t

0

sα(τ)dτ ≤ S(t)

where

sα(t) , γ2
(
α‖w(t)‖2 + (1− α)‖w(t− h)‖2

)
− ‖y(t)‖2

1MV and MS,11 depend on the chosen storage function.
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with α ∈ R. Then

V (t)− V (0)− S(t) ≤ V (t)− V (0)− Sα(t) (24)

The derivative of the right-hand side being negative definite
provides a sufficient condition for strict dissipativity of Σ
with supply rate s(t). Moreover, in the BRL condition MS =
diag{MS,11,−αγ2I,−(1−α)γ2I}. For any fixed α ∈ (0, 1)
an LMI problem have to be solved which minimises γ2.
A line-search in the outer loop can be performed to find
the optimal α. It can be shown that for α = 0.5 the BRL
conditions SI-TI and II-TI are equivalent.

E. Scaled inputs with time-varying delays (SI-TV)

The same idea as before applies also to the case of time-
varying delays, except that now the bound (19) must be
considered. A straightforward derivation results in MS =
diag{MS,11,−αγ2I,− 1−α

1+h12/Ts
γ2I}. Again, α = 0.5 coin-

cides with the corresponding method of independent inputs.

F. Additional dynamics (AD-TI and AD-TV)

Assume that the input w(t), which is to be transmitted
through the network, is band limited. Then, a sufficiently
high-bandwidth low-pass filter, Wd(s), with ‖Wd‖∞ = 1
and state-space realisation

ẋd(t) = Adxd(t) +Bdw(t),

wd(t) = Cdxd(t) (25)

has negligible effect on w(t). Assuming zero initial condi-
tions, approximation wd(t) ≈ w(t) holds. System (10) can
be replaced by (25), (26) and (27)

ẋ(t) =A0x(t) +A1x(t− h) +B0w(t) +B1wd(t− h)(26)
y(t) =Cx(t). (27)

This model transforms the input-delay to state-delay and
can be used for both time-invariant and time-varying delays.
For general inputs, the high-frequency components of w are
filtered out, but the system gain is, usually, also small at
high frequencies, therefore this effect has low impact on
the system gain. On the other hand, the phase lag of the
additional dynamics is added to the phase lag caused by the
delay.

G. Integral quadratic constraints (IQC-TI)

Time-delay operators can be described by IQCs in both the
frequency- and time-domain [17]. Let Π : jR 7→ C2nw×2nw

be a bounded and Hermitian-valued function called multi-
plier. A bounded, causal operator ∆ defined on the extended
space L2e satisfies the IQC defined by Π, denoted by ∆ ∈
IQC(Π), if∫ ∞

−∞

[
w(jω)
z(jω)

]∗
Π(jω)

[
w(jω)
z(jω)

]
dω ≥ 0 (28)

where z = ∆(w). Let Dh denote the delay operator. In [17],
the operator Sh , Dh−1 is embedded into a set of operators
which satisfy IQC (28) with multiplier

Π(jω) = λ1

[
0 −1
−1 −1

]
+ λ2T (jω)

[
|φ(jω)|2 0

0 −1

]
(29)

where λ1, λ2 ∈ R are arbitrary non-negative parameters,
T (jω) = | jω+1

10jω+1 |
2 and

φ(jω) = 2
(jωh)2 + 3.5(jωh) + 10−6

(jωh)2 + 4.5(jωh) + 7.1
.

When the input-delay is described by the above IQC, system
(10) can be embedded into the following model

ẋ(t) = A0x(t) +A1x(t− h) +B1z(t) + (B0 +B1)w(t)

z(t) = ∆(w(t)), ∆ ∈ IQC(Π)

y(t) = Cx(t) (30)

Dissipation inequality (3) with LKF (11) or (12) and IQC
(28)-(29) can be combined by S-procedure to obtain a
sufficient LMI condition for the L2-gain of the system being
less than γ.

IV. EXAMPLE: CONNECTED VEHICLES

Consider a string of vehicles, where each follower vehicle
maintains a constant distance from the preceding vehicle by
using locally available radar information (relative position
and relative velocity) and measurements transmitted through
the network: acceleration of the preceding vehicle, accelera-
tion, position and velocity of the lead vehicle. Disturbances
act on every vehicle. Through the acceleration measurements,
disturbances are transmitted through the network. Depending
on the modeling approach, disturbances act with and without
delay on the vehicle string. In the following analysis L2-
gains of the system from disturbances to spacing errors are
computed with the presented methods.

A. Vehicle platoon model

Let the ith vehicle be described by the following third-
order continuous-time state-space model

ṗi(t) = vi(t), (31a)
v̇i(t) = qi(t) + di(t), (31b)

q̇i(t) = − 1

τi
qi(t) +

gi
τi
ui(t), (31c)

where pi, vi denote position and velocity, di is a disturbance
representing both outer effects and modelling error, qi is
an internal state such that the acceleration of the vehicle
is ai(t) = qi(t)+di(t). Gain calculations will be carried out
on a homogeneous platoon with parameters τi = 0.7 and
gi = 1. The leader vehicle is driven by a human driver, u0
denotes the acceleration demand computed from the pedal
signals. ui, i = 1, 2, ..., n for the follower vehicles denote
the acceleration demand generated by the controllers.

Let the distributed platoon controller be given and de-
signed for a constant spacing policy, see [18]. Taking inter-
vehicle communication delays into account, the controllers
can be described by the following equations

u1(t) =− k1δ1(t)− k2e1(t) + â0(t) (32a)
ui(t) =− k1βδi(t)− k2βei(t) + ka0â0(t) + ka1âi−1(t)

− k1α(v̂i(t)− v̂0(t))− k2α(p̂i(t)− p̂0(t)), (32b)
i = 2, ..., n
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where δi , vi − vi−1 and ei , pi − pi−1 + Li are the
relative speed and spacing error, respectively. The prescribed
spacing Li can be set to zero in the analysis without loss of
generality. k1 = 0.7, k2 = 0.1127, k1α = 0.4642, k2α =
0.0564, k1β = 0.2358, k2β = 0.0564, ka1 = 0.0449, ka0 =
0.9551 are constant parameters. Symbolˆdenotes the effect
of the network as follows. In case the network is modelled
by a constant delay, x̂(t) = x(t− h). In case the network is
a sampled data network, x̂(t) = x(sk) for tk ≤ t < tk+1.

The closed-loop platoon model described by (31) and
(32) with i = 0, 1, 2, ..., n is excited by both the actual
disturbance inputs and their delayed values. For example,
the system (d0 7→ e1) with state vector defined by x =
[e1, δ1, q1]T is described by the closed-loop matrices A0 = 0 1 0

0 0 1
−0.16 −1 −1.43

, B0 =

 0
−1
0

, B1 =

 0
0

1.43

,

A1 = 0, C =
[

1 0 0
]
. Since A1 = 0, the L2-gain is

computed by applying a quadratic storage function, V (x) =
xTPx.

System (d1 7→ e2) with x = [e1, δ1, q1, e2, δ2, q2]T

is described by the following state-space matrices

A0 =


0 1 0 0 0 0
0 0 1 0 0 0

−0.16 −1 −1.43 0 0 0
0 0 0 0 1 0
0 0 −1 0 0 1
0 0 0 −0.08 −0.34 −1.43

,

A1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−0.08 −0.66 0.06 −0.08 −0.66 0

,

B0 = [0, 1, 0, 0,−1, 0]T , B1 = [0, 0, 0, 0, 0, 0.06]T ,
C = [0, 0, 0, 1, 0, 0] . The L2-gain is computed by applying
LKF storage functions VTI and VTV in case of time-invariant
and time-varying delays, respectively.

B. L2-gain analysis results

Tables I - IV show the L2-gains of systems (d0 7→ e1)
and (d1 7→ e2) for time-invariant and time-varying delays.
For time-invariant delays the accurate gain (row EG) can be
computed.

In the method of additional dynamics (AD), Wd(s) =
1

τds+1 has been introduced. It can be observed that higher
time-constant τd increases the gain, as the phase lag of the
additional dynamics is added to the lag caused by the time-
delay. On the other hand, too small τd results in numerical
problems during the solution of the LMIs of the BRL, see
e.g. the outlier 8.87 and the NaN entry in row τd = 0.05,
Table II. Method AD with small τd provided the smallest
upper-bounds for the gains.

For time-varying delays the range of delay is chosen such
that the results can be compared to the case of constant
delays. The centre of the interval is 0.5(h1 + h2) = 0.05
and 0.5(h1 + h2) = 0.25, respectively, in the two parts of
Table II.

When the input delay is characterised by IQCs, the upper-
bound is a bit higher as compared to method AD. Pfifer and

TABLE I
L2-GAIN OF SYSTEM (d0 7→ e1) WITH TIME-INVARIANT DELAY.

h [s] 0.05 0.1 0.25 0.5 0.8
EG-TI 1.27 1.35 1.6 2.02 2.51
AD-TI(τd = 0.5) 2.07 2.15 2.4 2.8 3.26
AD-TI(τd = 0.2) 1.6 1.69 1.94 2.35 2.83
AD-TI(τd = 0.1) 1.44 1.52 1.77 2.19 2.68
AD-TI(τd = 0.05) 1.35 1.44 1.69 2.1 2.6
IQC-TI 3.55 3.55 3.56 3.58 3.63
SI-TI 17.75 17.75 17.75 17.75 17.75
II-TI 17.75 17.75 17.75 17.75 17.75

TABLE II
L2-GAIN OF SYSTEM (d0 7→ e1) WITH TIME-VARYING DELAY.

h1 0.04 0 0.24 0.2 0.15
h2 0.06 0.1 0.26 0.3 0.35
AD-TV(τd = 0.5) 2.09 2.16 2.42 2.48 2.57
AD-TV(τd = 0.2) 1.62 2.22 1.95 2.25 4.44
AD-TV(τd = 0.1) 1.48 4.44 1.84 4.44 8.87
AD-TV(τd = 0.05) 1.77 8.87 2.15 8.87 NaN
SI-TV 24.24 38.3 24.24 38.3 49.54
II-TV 25.1 43.47 25.1 43.47 58.86

Seiler [17] generalised the approach to time-varying delays,
but they assume norm bounds on the rate of the time-delay,
which cannot be applied for sampled data networks where
h(t) has jumps.

Both the method of independent inputs and scaled inputs
are very conservative as compared to the other methods. SI
is a bit less conservative than II, when the optimal value for
α differs from 0.5.

V. CONCLUSIONS

Four methods (scaling of the inputs, independent inputs,
integral quadratic constraints and incorporation of additional
dynamics) are presented for solving the L2-gain computation
problem with input delays. It can be concluded the method of
additional fast dynamics is the most advantageous. It converts
the input delay to state delay, and very tight upper-bounds
can be calculated for the gains, in case of both time-invariant
and time-varying delays.
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