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Abstract 

Aims: The aim of this observational study is to investigate the relationship 

between age, duration of diabetes, HbA1c and the parameters of glucose 

levels measured with real-time CGM in children with type 1 diabetes. 

Methods: Glucose level was characterized with the relative time spent in 

hyper- and hypoglycemia, central tendency, variability and MAGE during 

(real-time) CGM. These parameters were measured in 57 children with type 

1 diabetes mellitus. The univariate association of the measured parameters 

was investigated with scatterplots as well as with linear and distance 

correlation coefficients. 

Results: Age and duration of diabetes was not clinically relevantly 

associated with any descriptor of glucose level. HbA1c had an overall 

positive association with variability and MAGE observed during CGM. 

Slight, but non-significant, positive association of HbA1c was observed 

with the time spent in hyperglycemia and the central tendency of glucose 

level. With the exception of MAGE, the associations of the descriptors with 

HbA1c are non-monotonic, with a temporary break in the positive 

correlation at 10%. 

Conclusions: The results confirmed the well-known positive association of 

HbA1c with the central tendency of glucose level. The non-monotonic 

relationship between HbA1c and the indicators of the central tendency of 
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glucose level might be caused by the varying adherence of the patients 

during the CGM registration. HbA1c’s positive association with MAGE 

without that non-monotonicity underlines MAGE’s usefulness in the 

reliable assessment of the patients’ glycemic state. 



 6 

Keywords 

Pediatric type 1 diabetes mellitus; continuous glucose monitoring; glucose 

variability; Hawthorne effect; HbA1c. 

 



 7 

1. Introduction 

Type 1 diabetes is one of the most common chronic disorders in children 

and adolescents. Several factors play a role in the pathogenesis of the 

complications in diabetes. Improved metabolic control in particular might 

prevent or postpone late vascular complications, as has been demonstrated 

by many studies, mainly by the Diabetes Control and Complications Trial 

[1] as well as by Epidemiology of Diabetes Interventions and Complications 

[2]. Glycemic control is usually determined by measurement of glycated 

hemoglobin (HbA1c). However, patients with similar glycated hemoglobin 

levels and mean glucose values can experience different glycemic 

fluctuations. Evidence implicates glycemic variability, mostly present in the 

form of postprandial glycemic spikes, as a key factor in the development of 

the complications of diabetes [3]. 

New technological improvements, especially continuous glucose monitoring 

(CGM) technique, which consists of a disposable transcutaneous glucose 

sensor along with an electronic transmitter/receiver unit [4], allows a more 

precise follow-up of the glucose evolution in vivo. Monitoring might be 

blinded to the patient which is used to inform healthcare professionals about 

the patient’s glucose evolution, or non-blinded, also called personal or real-

time CGM (RT-CGM), where the receiver is supplemented with a graphical 

display which allows the patients to have a direct, almost minute-to-minute 
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observation of their own glucose level, thus enabling a better management 

of their diabetes. This has demonstrated to improve glucose control [5-6]. 

By their 5 minutes measurement frequency (288 measurements per day) the 

possibilities of CGM have direct effect on short term monitoring, but 

questions are raised on its usefulness for evaluating long-term outcome. The 

most important classical indicator in this sense is HbA1c that reflects the 

average glucose level of a patient over 120 days (the “life cycle” of red 

blood cells) [7]. Beside HbA1c, glycemic variability is now suggested to 

play role in the appearance of long-term complications of diabetes [8-9]. 

Correlation of HbA1c and glucose itself is well known, but CGM opened 

new horizons in a more thorough investigation of this issue [10-12]. The 

aim of the current work is to evaluate the relationship between age, duration 

of diabetes and HbA1c on the one hand, and glycemia measured with CGM 

on the other hand in children with type 1 diabetes. 
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2. Material and methods 

2.1. Study population and design 

Fifty seven children with type 1 diabetes mellitus (DM) were selected as a 

convenience sample from the database of the 1st Department of Paediatrics 

of Semmelweis University (Budapest, Hungary), with CGM measurement 

data between July 2009 and February 2011. Only patients with at least 1 

year of DM duration were included so that even HbA1c had time to reach its 

characteristic levels. 

The vast majority of the patient were poorly controlled (according to the 

guidelines [13] of the American Diabetes Association and the International 

Society for Pediatric and Adolescent Diabetes [14-16]) with CGM 

performed to optimize therapy. CGM measurements were non-blinded to 

the patients, i.e. real time (RT)-CGM was employed. 

The sample included patients using continuous subcutaneous insulin 

infusion (CSII) and multiple daily injections (MDI) treatment regimes. The 

CGM sensors were accurate and reliable, time to sensor failure, frequency 

and duration of data gaps were negligible, the alarms worked properly. Sex, 

age, duration of diabetes and HbA1c at the time of the CGM measurement 

were extracted for each patient from the electronic records of the hospital 
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information system. HbA1c was measured with NGSP certified method. 

The summary of these patient characteristics is shown in Table 1. 

CGM recordings were electronically processed (by exporting them to 

comma separated values format using the software of the device 

manufacturer) and the following parameters were extracted from the time 

series of glucose measurements to characterize the clinically relevant 

aspects of the patients’ glucose evolution: 

 Time spent in hyperglycemia and hypoglycemia relative to the 

whole length of recording (hypoglycemia was defined as glucose 

level < 3.9 mmol/l, hyperglycemia was defined as glucose level > 10 

mmol/l) in [%]. 

 Central tendency of glucose levels (quantified with mean and 

median glucose level) in [mmol/l]. 

 Dispersion, i.e. variability of glucose levels (quantified with standard 

deviation and interquartile range of glucose level) in [mmol/l]. 

 Glycemic variability as measured by Mean Amplitude of Glycemic 

Excursions (MAGE), calculated according to the algorithm of 

Baghurst [17-18]. While there are many glycemic variability metrics 

described in the literature [19], MAGE was now chosen due to its 

very widespread use even in spite of its limitations [20], i.e. to show 
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a representative example of glycemic variability metrics to illustrate 

their application. Comparison of these metrics is extensively covered 

in the literature [21]. 

Summary of these parameters is presented in Table 2. 

2.2. Statistical analysis 

A pairwise analysis was performed between every possible variable 

(altogether 3·7=21 pairs). As every variable was quantitative, this was 

essentially a question of correlation, which was investigated with graphical 

(scatter plot) and analytical (calculation of correlation coefficients) methods. 

Scatter plots sometimes revealed not simply non-linear, but markedly non-

monotonic relationships, so the calculation of the linear correlation 

coefficients is not sufficient. Spearman-ρ correlation coefficient is often 

applied in situations where non-linearity is encountered [22], however it 

also falls short in detecting non-monotonic connections. Therefore, a 

method is needed that characterizes the overall dependence of two 

variables; now a modern metric for this purpose, called distance correlation 

[23-25] was used. Distance correlation is based on the difference between 

the joint probability density function of the variables and the product of 

their marginal density functions (as these should be equal if the variables are 

independent, hence, their difference characterizes the dependence of the 

variables). This way, distance correlation does not depend on the nature of 
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the relationship, it can detect the strength of linear and non-linear, 

monotonic and non-monotonic, i.e. arbitrary connection between the 

variables. 

Also to facilitate the detection of more complex connections, LOWESS-

estimators [26] for the non-parametric regression between the investigated 

variables were plotted on the scatter plots. Second-degree polynomial were 

used with a smoothing parameter of 0.75. Ninety-five percent confidence 

intervals for the regression are also shown. These non-parametric 

regressions – and their confidence intervals – help visualizing the 

relationship between the investigated variables (without confining ourselves 

to any pre-specified function form of the relationship). 

Due to the relatively low sample size, we did not attempt to perform an age-

stratified analysis, to maintain the reliability of the results. 

Statistical analysis and visualization was performed under the R statistical 

environment, version 3.0.2 [27]. The R script developed for this purpose is 

available at the corresponding author on request. 
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3. Results 

Age and duration of DM showed no clear relationship with any descriptor of 

the glucose levels as evidenced by the correlation coefficients (Table 3) and 

the scatterplots (figures not shown here). 

HbA1c (Figure 1) however shows a clear – but statistically non-significant – 

overall positive association with ratio of time spent in hyperglycemia (but 

not with hypoglycemia). Note that a small, seemingly paradoxical non-

monotonic region at about HbA1c=10% can be observed. As far as the 

central tendency is concerned, again a clear, but statistically non-significant 

overall positive association can be observed both for mean and median. The 

paradoxical non-monotonic region around 10% shows up again. However, 

for glycemic variability, there is a clear and statistically significant positive 

association (both for standard deviation and interquartile range). The trend 

change about 10% is not as pronounced as before; rather, a flat region can 

be seen on the scatter plots. 

MAGE (Figure 2) only has a slight positive association with HbA1c (and 

the paradoxical region around 10% is missing, too). 

Linear correlation coefficients are significant for glucose variability vs. 

HbA1c (p<0.005) and MAGE vs. HbA1c (p=0.0385). Time spent in 

hyperglycemia is at the border of significance. Distance correlations are 

significant likewise for variabilities (p=0.0165 and p=0.0063), and is at the 
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border of significance for MAGE (p=0.0676). Note that distance correlation 

is always between 0 and 1, as there is no point in talking about the direction 

of the relationship for a non-monotonic function. The p-values of the 

distance correlations are expected to be higher, given the fact that this test 

has lower power (due to its more general nature). 
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4. Discussion 

Duration of diabetes and age is not associated with any indicator of glucose 

evolution during CGM in clinically relevant way. On the other hand, HbA1c 

is positively – and statistically significantly – associated with the indicators 

of the variability of glucose levels and MAGE. Compared to the duration of 

diabetes and age, stronger and clinically relevant, but statistically still non-

significant, overall positive association can be observed between HbA1c 

and the indicators of the central tendency of glucose level and time spent in 

hyperglycemia. (Non-significance of these is likely attributable to the low 

sample size.) These associations – especially for the time spent in 

hyperglycemia and the central tendency of glucose levels – are not linear, 

furthermore not even monotonic, as they show a marked temporary decrease 

around HbA1c=10%. 

Note that as now 21 hypothesis testings were performed in parallel (one for 

each patient characteristic/CGM-property combination), results cannot be 

compared to the traditional threshold of 5% due to the multiple comparisons 

situation [28]. However, significant correlations – especially for variability 

– had magnitude smaller p-values, so labeling of these as significant 

association is justified, even in the light of the multiple comparisons 

situation. 
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The positive association between the indicators of the central tendency of 

glucose and HbA1c is well known, even quantitatively [29-31]. 

Positive association between the indicators of the variability and HbA1c are 

also described in the literature [32] but not with uniform results [33-34]. 

Our results also confirm the suggested [34] association between 

hyperglycemia and HbA1c. 

The explanation for the seemingly paradoxical behavior of the association 

of HbA1c with the various descriptors of glucose levels is possibly the poor 

adherence that is characteristic for most of the investigated children. The 

motivation to “cheat” during the CGM-measurements (i.e. to pay closer 

attention to glucose levels than it is usually done by the children) is higher 

for those having worse metabolic state (as evidenced by HbA1c higher than 

8%). Also, there is not only a motivation, but also a possibility for this, 

given that the measurements were non-blinded for the children. Hence, it 

may be hypothesized that children above 8% HbA1c start to increasingly 

pay unusual – i.e. that is not done without CGM – attention to their glucose 

levels during CGM measurement, breaking the association between HbA1c 

and the mean (or median) glucose during CGM. They could, however, do it 

only up to a point (about 10%) as even worse metabolic states could not be 

“compensated” by such temporarily increased adherence. This can be more 

directly illustrated when HbA1c is converted to (long-term) estimated 
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average glucose and is contrasted with the average glucose (i.e. short-term 

average) that can be calculated from the CGM recording (Figure 3). The 

conversion of HbA1c to estimated average glucose was done using the 

formula eAGmmol/l = 1.59 x HbA1c% – 2.59 [29]. 

This phenomenon is the well-known Hawthorne effect studied in many 

fields of science, and already described in relationship to CGM as well [35]. 

Hawthorne effect claims that patients – not necessarily deliberately – alter 

their behavior when they know that they are under observation. 

The small sample size and the convenience sampling of the present study 

limits the robustness of this conclusion, and further studies are needed to 

confirm this finding, and – if confirmed – investigate its determinants. 
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5. Conclusion 

The results confirmed the well-known positive association of HbA1c with 

the indicators of the central tendency of glucose (mean, median). No 

association was found between the duration of the diabetes and the age of 

the patient with any indicator of the glucose levels. 

The relationship between HbA1c and the indicators of the central tendency 

of glucose are non-monotonic, which is likely caused by the varying 

adherence of the patients. HbA1c was also positively associated with 

MAGE, but the non-monotonic region was missing, underlining MAGE’s 

usefulness in the reliable assessment of the patients’ glycemic state. 
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Figure captions 

Figure 1 

Title: Association of hyper- and hypoglycemia, central tendency and 

dispersion during CGM with HbA1c. 

Description: Scatterplots of HbA1c and the various descriptors of the CGM-

measured glucose profile. Solid line indicates the best fitting non-parametric 

regression curve obtained with LOWESS, gray shading shows 95% 

confidence interval for this curve. 
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Figure 2 

Title: Association of MAGE during CGM with HbA1c. 

Description: Scatterplot of HbA1c and MAGE of the CGM-measured 

glucose profile. Solid line indicates the best fitting non-parametric 

regression curve obtained with LOWESS, gray shading shows 95% 

confidence interval for this curve. 
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Figure 3 

Title: Estimated average glucose calculated from HbA1c (i.e. long-term 

average) vs. average glucose during CGM (i.e. short-term average). 

Description: Scatterplot of estimated average glucose calculated from 

HbA1c and average glucose during CGM. Dashed line indicates the best 

fitting non-parametric regression curve obtained with LOWESS, gray 

shading shows 95% confidence interval for this curve. Solid line is the 

reference curve indicating the equality of the two types of average glucose 

values. 
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Tables 

Table 1 

Title: Most important descriptive statistics of the patients’ characteristics. 

Description: Patient characteristics in Mean (Median) ± SD (IQR) [Min-

Max] format for continuous variables and as frequency tables for discrete 

variables. 

Parameter Descriptive statistics 

Total number of patients 57 

Treatment regime 30 (52.6%) MDI, 27 (47.4%) insulin pump 

Length of CGM measurement [hours] 216.9 (161.6) ± 166.7 (258.1) [19.5 – 705.5] 

Type of device 47 (82.5%) Guardian REAL-Time 

9 (15.8%) Paradigm 522 and 722 

1 (1.8%) Paradigm Veo-554 

Sex 36 (63.2%) female, 21 (36.8%) male 

Age [year] 12.5 (13.0) ± 3.5 (6.0) [4 – 18] 

Duration of DM [year] 5.1 (4.0) ± 3.5 (6.0) [1 – 18] 

HbA1c [%] 8.6 (8.2) ± 1.5 (1.7) [5.9 – 12.1] 

HbA1c [mmol/mol] 70.8 (66.1) ± 16.1 (18.6) [41.0 – 108] 
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Table 2 

Title: Most important descriptive statistics of the investigated CGM 

parameters. 

Description: Descriptive statistics of the indicators derived from CGM-

measured glucose evolution in Mean (Median) ± SD (IQR) [Min-Max] 

format. 

Parameter Descriptive statistics 

Percentage of time spent in hyperglycemia 

(>10 mmol/l) [%] 

31.3 (30.8) ± 16.3 (21.7) [0.4-74.3] 

Percentage of time spent in hypoglycemia 

(<3.9 mml/l) [%] 

1.1 (0.5) ± 1.4 (1.3) [0-4.7] 

Mean glucose level [mmol/l] 8.8 (8.8) ± 1.23 (1.49) [5.97-12.04] 

Median glucose level [mmol/l] 8.42 (8.3) ± 1.38 (1.9) [4.7-11.7] 

Glucose level standard dev. [mmol/l] 2.75 (2.8) ± 0.59 (0.62) [1.18-4.09] 

Glucose level IQR [mmol/l] 3.85 (3.9) ± 1.01 (1.1) [1.4-6.65] 

MAGE 7.17 (7.39) ± 1.47 (1.89) [3.46-9.65] 
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Table 3 

Title: Correlation of the investigated parameters. 

Description: Asymmetric correlation matrix of the investigated parameters (linear and distance correlation coefficients with significance). 

 

Linear correlation Distance correlation 

Age 

[year] 

DM duration 

[year] 

HbA1c 

[%] 

Age 

[year] 

DM duration 

[year] 

HbA1c 

[%] 

Ratio of hyperglycemia (>10 mmol/l) [%] 
r 0.04 -0.01 0.24 0.21 0.18 0.27 

p 0.7403 0.9514 0.0775 0.5540 0.7953 0.1642 

Ratio of hypoglycemia (<3.9 mml/l) [%] 
r -0.04 0.02 -0.14 0.15 0.18 0.24 

p 0.7801 0.8723 0.2871 0.8881 0.5777 0.1929 

Mean glucose level [mmol/l] 
r 0.05 0.03 0.21 0.22 0.20 0.26 

p 0.7226 0.8291 0.1200 0.4637 0.6394 0.1904 

Median glucose level [mmol/l] 
r 0.02 0.04 0.14 0.20 0.20 0.23 

p 0.8567 0.7689 0.2855 0.6163 0.5904 0.3482 

Glucose level standard deviation [mmol/l] 
r 0.13 -0.15 0.38 0.22 0.22 0.36 

p 0.3467 0.2730 0.0032 0.4869 0.4757 0.0165 

Glucose level IQR [mmol/l] 
r 0.09 -0.08 0.42 0.17 0.22 0.39 

p 0.4881 0.5497 0.0013 0.9606 0.5756 0.0063 

MAGE 
r 0.10 -0.17 0.27 0.19 0.25 0.30 

p 0.4727 0.1989 0.0385 0.7057 0.2390 0.0676 
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