Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

We were unable to process your file(s) fully electronically and have proceeded by

- Scanning (parts of) your article
- Rekeying (parts of) your article
- Scanning the artwork

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>The citation “Blundy and Cashmann (2001)" has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q2</td>
<td>Please check the layout and table header in Table 1 and amend if necessary.</td>
</tr>
<tr>
<td>Q3</td>
<td>Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact a.sundarababu@elsevier.com immediately prior to returning your corrections.</td>
</tr>
<tr>
<td>Q4</td>
<td>Please check the capturing of the author affiliations and amend if necessary.</td>
</tr>
<tr>
<td>Q5, Q8</td>
<td>This sentence has been slightly modified for clarity. Please check that the meaning is still correct, and amend if necessary.</td>
</tr>
<tr>
<td>Q6</td>
<td>The number of keywords provided exceeds the maximum allowed by this journal. Please delete 1 keyword.</td>
</tr>
<tr>
<td>Q7</td>
<td>Citation “Magyari et al., 2014” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q9</td>
<td>The citation “Radulescu, 1988” has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q10</td>
<td>Uncited references: This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Thank you.</td>
</tr>
<tr>
<td>Q11</td>
<td>Please check the captured grant sponsors and amend if necessary.</td>
</tr>
<tr>
<td>Q12</td>
<td>Please provide an update for reference "Magyari et al., in press".</td>
</tr>
</tbody>
</table>
Q13 Please confirm that given names and surnames have been identified correctly.

Please check this box if you have no corrections to make to the PDF file. □

Thank you for your assistance.
Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadul volcano (SE Carpathians)

S. Harangi a,b,⁎, A. Novák c, B. Kiss d, I. Seghedi e, R. Lukács a,d, L. Szarka f, V. Wesselgem c, M. Metwaly f, K. Gribovszkic c

a MTA-ELTE Volcanology Research Group, H-1117 Budapest, Pázmány sétány 1/C, Budapest, Hungary
b Department of Petrology and Geochemistry, Eötvös University, Budapest, Hungary
c RCAES, Geodetic and Geophysical Institute of Hungarian Academy of Sciences, Hungary
d Volcano Research Group, Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Szeged, Hungary
e Institute of Geodynamics, Romanian Academy, 19–21 str. Jean-Louis Calderon, 020032 Bucharest, Romania
f National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Egypt

• Combined use of petrologic and magnetotelluric data to constrain the magma storage
• The amphibole barometry indicates that the magma chamber could have been at 8–13 km depth.
• The long lasting crystal mush was reheated by intruding basaltic magmas prior to the volcanic eruptions.
• The magnetotelluric data imply a mushy magmatic body with 5–15% melt fraction beneath the Ciomadul.
• Suggestion a term as 'volcano with potentially active magma storage' or PAMS volcano

http://dx.doi.org/10.1016/j.jvolgeores.2014.12.006
0377-0273/© 2014 Published by Elsevier B.V.

Please cite this article as: Harangi, S., et al., Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadul..., J. Volcanol. Geotherm. Res. (2014), http://dx.doi.org/10.1016/j.jvolgeores.2014.12.006
Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadul volcano (SE Carpathians)

S. Harangi a,b,⁎, A. Novák c, B. Kiss a,d, I. Seghedi e, R. Lukács a,d, L. Szarka c, V. Wesztergom c, M. Metwaly f, K. Gribovszki e

Q4 MTA-ELTE Volcanology Research Group, H-1117 Budapest, Pázmány sétány 1/C, Budapest, Hungary
1 Q4 Department of Petrology and Geochemistry, ELTE University, Budapest, Hungary
2 Q4 RCMS, Geodetic and Geophysical Institute of Hungarian Academy of Sciences, Hungary
3 Q4 Volcano Research Group, Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Szeged, Hungary
4 Q4 Institute of Geodynamics, Romanian Academy, 19–21, str. Jean-Luis Calderon, 020032 Bucharest, Romania
5 Q4 National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Egypt

ARTICLE INFO

Article history:
Received 22 June 2014
Accepted 9 December 2014
Available online xxxx

Keywords:
Magnetotelluric
Petrology
Thermobarometry
Volcano
Magma reservoir
Ciosmadul
Potentially active magma storage

ABSTRACT

The Ciomadul is the youngest volcano of the Carpathian-Pannonian region, which erupted last time at 32 ka. It produced high-K dacitic lava domes and numerous pyroclastic rocks. The dacite is crystal-rich and contains plagioclase, amphibole in addition to biotite, titanite, apatite, zircon and occasionally quartz, K-feldspar as well as olivine, clinopyroxene and orthopyroxene. There are two groups of amphiboles, characterized by low-Al and high-Al, respectively. They occur in the same samples and also as different zones of the same crystals. Thermobarometric calculations suggest that the low-Al amphiboles were formed from a low temperature (~800 °C) silicic magma, whereas the high-Al amphiboles crystallized at about 950 °C from a more mafic melt. A near-solidus silicic crystal mush body was stored at 7–14 km depth, where an eruptible magma batch was produced by major reheating (about 200 °C temperature increase) due to the intrusion of hot mafic magma into the silicic magma reservoir. A magnetotelluric survey was performed to reveal whether any melt-bearing magma body could presently reside beneath the volcano. The 2D and 3D inversion modeling calculations indicate low electric resistivity values in the depth interval of 5–25 km, just beneath the volcanic centers. This can be interpreted as implying a partially melted zone, i.e. a crystal mush body containing about 5–15% melt fraction. In addition, the 2D modeling calculation indicates also a deeper low resistivity anomaly at 30–40 km depth. The consistent petrologic and magnetotelluric constrains on the magma storage beneath Ciomadul corroborated also the recent seismic tomography result, which pointed out a low-velocity anomaly at 8–20 km depth zone.

Thus, results of independent models suggest the presence of a melt-bearing crystal mush body beneath the seemingly inactive volcano. Since there are implications for long repose periods during the lifetime of the volcano as well as for effective and rapid remobilization of the low-temperature silicic crystal mush body prior to volcanic eruptions, the present existence of a low melt fraction silicic crystal mush beneath Ciomadul could mean that there is still a potential for a rejuvenation in the future. We suggest for long-dormant or seemingly inactive volcanoes, such as Ciomadul, having melt-bearing magmatic body at depths to term as ‘volcano with potentially active magma storage’ or PAMS volcano.

© 2014 Published by Elsevier B.V.
The southeastern edge of the Carpathian crustal depth beneath the volcano. The detection of melt-bearing magmatic body beneath dormant or even seemingly inactive volcanoes is important to characterize the state of the volcano and evaluate its possible future behavior.

Magnetotelluric method is a powerful tool to detect partial melt or fluids in the crust by quantifying the electric conductivity behavior (Newman et al., 1985; Ingham, 1988, 2005; Matsushima et al., 2001; Brasse et al., 2002; Baba et al., 2006; Schilling et al., 2006; Heise et al., 2007; Wannamaker et al., 2008; Hill et al., 2009; Ingham et al., 2009; Pommier et al., 2010b; Ádám and Szarka, 2011; Díaz et al., 2012; Spichak, 2012; Desissa et al., 2013; Park and Ostos, 2013). However, rock porosity, fluid content and the temperature at the larger depth also influence the electrical resistivity. Distinguishing whether the conductivity anomalies indicate partial melt or fluid is critical, although it is not an easy task in many cases. Laboratory impedance measurements under various pressure and temperature values conducted by Pommier et al. (2008, 2010a, 2010b) suggest that circulating mineralized water in crustal rocks could be characterized by much higher conductivity (>1000 Sm$^{-1}$) than silicate melts (usually 0.01–10 Sm$^{-1}$). Another approach could be the combined use of geophysical (magnetotelluric and seismic interpretations) and petrologic (geothermobarometric constrains on the depth and nature of the magma chamber) methods (Pommier et al., 2010b). The perspective of the magnetotelluric studies was underlined by Umeda et al. (2006) who indicated a crustal magma storage beneath the lide Mts, Japan that was previously considered as a non-volcanic region.

The Ciomadul is the youngest volcano in the Carpathian–Pannonian region (Fig. 1; Szakács et al., 1992, 2002; Karátson et al., 2013), where the last eruption occurred at 32 ka, as given by radiocarbon measurements on charcoal found in pyroclastic deposits (Moriya et al., 1996; Vinkler et al., 2007; Harangi et al., 2010). Although the long quiescence period since the last eruption seems to imply that this volcano is already inactive, there are several indications that a hot magmatic body could still reside beneath the volcano. There is a high heat flow (85–120 mW/m²; Rádulescu et al., 1981; Demetrescu and Andreescu, 1994) around Ciomadul, and up to 78 °C temperature was measured in a drillhole at 1140 m in Bâile Tușnad, at the western edge of Ciomadul (Rádulescu et al., 1981), there are strong CO$_2$ emanations often accompanied with release of H$_2$S and SO$_2$ and the He/He isotope ratio of natural gases and CO$_2$–rich mineral waters implies magmatic origin (Althaus et al., 2000; Vaselli et al., 2002). Furthermore, a recent seismic investigation pointed out a low–velocity anomaly just beneath the volcano with a possible magma reservoir between 8 and 20 km depths (Popa et al., 2012). Thus, Szakács et al. (2002), Harangi (2007) and Szakács and Seghedi (2013) emphasized that Ciomadul should be regarded as a potentially active volcano, where rejuvenation of volcanism cannot be unambiguously excluded. Here we provide the result of a magnetotelluric survey across the volcanic edifice combined with the data of the geobarometric calculations using amphiboles and plagioclases of the dacites (Kiss et al., 2014) to test the feasibility whether the detected parameters could be linked to a potential melt presence in crustal depth beneath the volcano.

2. Geological background

The Ciomadul volcano is located at the southern termination of the Calimani–Gurghiu–Harghita (CGH)andesitic–dacitic volcanic chain, at the southeastern edge of the Carpathian–Pannonian region (Fig. 1; Szakács et al., 1993; Szakács and Seghedi, 1995). The volcanism along the CGH is characterized by a gradually younging volcanism from 11.3 Ma (Peltz et al., 1987; Pécskay et al., 1995). There was a sharp compositional change of the erupted magmas within the Harghita Mountains around 3 Ma and since that time more potassic and incompatible element–enriched volcanic products have been formed (Seghedi et al., 1987; Szakács et al., 1993; Mason et al., 1996). Termination of the volcanic activity at the southern Harghita was followed by eruption of even more potassic magmas after a couple of 100s ka repose time. Shoshonitic magmas with strongly mixed mineralogical character formed isolated cryptodome bodies at about 1.5 Ma (e.g., Mason et al., 1995; Pécskay et al., 1995; Mason et al., 1996). The age of the volcanism in the Ciomadul is controversial. K/Ar dating indicates that the volcanic activity could commence at 500–600 ka after sporadic lava dome effusions at about 900–1000 ka (Pécskay et al., 1992, 1995). However, according to the (U–Th)/He zircon ages Ciomadul could be much younger (~200 ka; Karátson et al., 2013). The volcanism of the Ciomadul is characterized by an initial lava–dome complex development, whereas in the latest phase, volcanic to sub-plinian explosive eruptions were more frequent. As a result, two explosion crater were formed, the Mohos and the Sf. Ana craters (Szakács and Seghedi, 1995). The former one is covered presently by a swamp, whereas the youngest crater is filled by a lake (Magyari et al., 2009, 2014). The erupted magma remained fairly homogeneous through time and shows high–K dacitic composition (Szakács and Seghedi, 1986; Vinkler et al., 2007).

The geodynamic setting of the CGH volcanism and particularly the volcanic activity of southern Harghita and Ciomadul is still debated. Gradual slab–break off of the subducted slab, lithospheric delamination either following the subduction or due to gravitational instability was invoked to explain the tectonic evolution of this region (e.g., Gribacea and Frisch, 1998; Mason et al., 1998; Chalot–Prat and Gribacea, 2000; Sperrn et al., 2001; Lorinczi and Housman, 2009; Fillerup et al., 2010; Koukalov et al., 2010; Seghedi et al., 2011; Ren et al., 2012). Nevertheless, an active geodynamic situation is clearly indicated by the continuous seismicity attributed to the descent of a near vertical slab beneath the Vrancea zone (Onescu et al., 1984; Sperrn et al., 2001; Popa et al., 2012) about 50 km southeast from Ciomadul. This exhibits the largest present–day strain concentration in continental Europe (Wenzel et al., 1999).

3. Analytical conditions

3.1. Petrologic investigations

Fresh samples were collected both from lava dome rocks and from pumiceous pyroclastic deposits. Composition of the mineral phases of the Ciomadul dacites was determined using a CAMECA SX100 electron microprobe equipped with four WDS and one EDS at the University of Vienna, Department of Lithospheric Research (Austria). The operating conditions were as follows: 15 kV accelerating voltage, 20 nA beam current, 20 s counting time on peak position and PAP correction procedure for data reduction. Amphibole and plagioclase crystals were measured with defocused beam (3–5 µm). Calibration was based on the following standards: Amelia albite (Na, Si, Al), San Carlos olivine (Mg), almandine 112140 (Fe), microcline (K), wollastonite (Ca), rutile (Ti) and spessartine (Mn).

3.2. Magnetotelluric survey and data quality

Magnetotellurics (MT) is a geophysical technique characterizing the electric conductivity (or its reciprocal quantity, the electrical resistivity) structure at depth, applying a very large natural electromagnetic (EM) source of magnetosphere origin. The time variations of the EM field penetrate into the subsurface, where they are attenuated, depending on the period length of the variations. At the surface, the magnetotelluric transfer function (the MT impedance, i.e. the complex relationship between...
the recorded electric and magnetic field variations) depends on the electrical resistivity structure beneath the surface. The MT method is able to reveal if there is any melt-bearing magmatic body at depth below the given field site.

In autumn 2010 we carried out twelve long period magnetotelluric soundings in the investigated area (Fig. 2). The time variations of the magnetic field components (H_x, H_y and H_z) were measured by using induction coils, while the E_x, E_y electric (“telluric”) field components were measured by using 50 m long electric dipoles. The average distance among the 12 field stations varied between 1 km and 4 km. Due to the 4–5 days long continuous recording of the EM fields at each station, it was possible to observe time variations in the period range of 0.25–15,000 s. A simultaneous use of three different LEMI 417 acquisition systems, allows applying remote and cross reference techniques, which is an efficient technique to eliminate EM noise of artificial origin.

Due to surface roughness, hillside location, and various technical difficulties, the spacing between the neighboring MT stations could not be equidistant. At a part of the field stations (usually close to inhabited areas and/or to railway lines), strong artificial electromagnetic noise was observed. At some sites the telluric wires were occasionally bitten and cut by wild animals. Due to the fact that the effective recording time sufficient to estimate the MT transfer function for the investigated...
depth range is about 1 – 2 days, and our record length was 2 – 5 times longer (4 – 5 days/station), the aforementioned disturbances and damages did not make impossible to construct full MT sounding curves. The natural electromagnetic variation (i.e. variation of solar wind origin) was relatively low in autumn 2010, when the MT soundings were carried out. The data were processed by using robust single-site processing code, and, in some cases, remote reference processing code, in order to eliminate artificial electromagnetic noises and to estimate MT transfer functions with different approaches (Verő, 1972; Egbert and Booker, 1986; Egbert and Livelybrooks, 1996).

4. Results

4.1. Petrology of the Ciomadul dacite

The Ciomadul lava dome rocks and pumices are relatively homogeneous in composition (SiO₂ = 62–68 wt.%, K₂O = 3.0–3.6 wt.%, Na₂O = 4.0–4.6 wt.%; Szakács and Seghedi, 1986; Mason et al., 1996; Vinckler et al., 2007) and are calc-alkaline, high-K dacites. The crystal content is relatively high in the lava dome rocks (30–40 vol.%), whereas pumices contain less phenocrysts (10–15 vol.%). The crystal assemblage is fairly diverse; in addition to the dominant plagioclase, amphibole and biotite phenocrysts (Fig. 3A), titanite, apatite, zircon are commonly observed, occasionally with quartz, K-feldspar, allanite and clinopyroxene, olivine and orthopyroxene. This complex mineral assemblage implies mixing of silicic and mafic magmas prior to the eruptions (Kiss et al., 2014). A notable feature of many dacite samples is the occurrence of felsic crystal clots (Fig. 3B), which contain the same mineral population as the host rock. They often consist of 10–15 vol.% interstitial vesiculated glass. Clinopyroxene and olivine form crystal clots with minor plagioclase phenocrysts, but they occur also solely in the silicic groundmass.

Plagioclase is the most abundant mineral phase occurring either in large glomerocrystic aggregates or as euhedral microphenocrysts. The An-content is in the range from 25 to 60 mol% in both plagioclase types, but they differ in FeO content. The glomerocrystic plagioclases are characterized by typically low FeO (FeO < 0.2 wt.%) while the FeO content of the microphenocrysts shows large variation with up to 0.55 wt.% values. It is remarkable that the outermost rim of the glomerocrystic plagioclases in the older lava dome rocks has often elevated FeO akin to that of the microphenocrystic plagioclases. They contain mineral inclusions such as amphibole and occasionally titanite and zircon. Amphiboles occur in diverse textural forms (Fig. 3B) and show a wide compositional range (Al₂O₃ = 6–15 wt.%, MgO = 10–18 wt.%; Table 1., Fig. 4A) even within single samples (Kiss et al., 2014). They can be classified into two groups, a low-Al and a high-Al ones that are common in many intermediate arc volcanoes (e.g., Redoubt, Coombs et al., 2013; Unzen, Sato et al., 2005; Soufrière Hills, Murphy et al., 2000; Mt. Pelée, Pichavant et al., 2002; Pinatubo, Pallister et al., 1996).

Fig. 2. Location of the MT stations in Ciomadul and the sections used to construct the 2D modeling profiles in Fig. 8. Topographic map after Karátson et al. (2013).
The low-Al amphiboles are in close coexistence with the low-FeO plagioclases, quartz, biotite, titanite and K-feldspar, whereas the high-Al amphiboles can occur with the plagioclase microphenocrysts and as overgrowths on olivine and clinopyroxenes. Majority of olivines, orthopyroxenes and clinopyroxenes is characterized by high MgO content (Fo = 84–90 mol% and mg-number = 0.85–0.91, respectively) that implies derivation from primitive basaltic magma. The high-Mg olivines are surrounded by thick reaction corona, however, in rare cases they have unresorbed margin similarly as some high-Mg clinopyroxenes. While the olivines are mostly slightly zoned, clinopyroxenes often show oscillatory and reverse zoning with fluctuation of the mg-number along with the Cr-content (Table 2, Fig. 3D). Magnesian orthopyroxenes occur.

Fig. 3. Representative microscopic images of the Ciomadul dacite: A. Characteristic occurrences of amphibole and plagioclase phenocrysts and microphenocrysts in the lava dome rocks (optical microscopic picture with one nicol); B. Felsic inclusions (crystal clots) are common in a dacite. They have cumulate texture, but with some interstitial glass and are composed of plagioclases, amphibole, titanite, apatite, biotite and zircon (optical microscopic picture with one nicol). C. Back scattered image of a lava dome rocks. Note the different zoning patterns and reaction rims of the amphibole phenocrysts. They can be subdivided into two groups: hornblendes (low-Al amphibole) with thicker reaction rim and pargasites (high-Al amphibole) with stronger zoning and very thin reaction rim. D. Clinopyroxene crystal clot in dacitic lava dome rock. In the back-scattered image oscillatory zoning of the clinopyroxene crystals can be clearly observed. cpx = clinopyroxene; ol = olivine; am = amphibole.

<table>
<thead>
<tr>
<th>Sample</th>
<th>TC15</th>
<th>Kp9-30b</th>
<th>KCS17-100</th>
<th>TX13-1</th>
<th>KCS17-100</th>
<th>BX08/1</th>
<th>BX28-3-sza</th>
<th>TC15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal</td>
<td>Low-Al</td>
<td></td>
<td></td>
<td></td>
<td>High-Al</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Felsic crystal clot</td>
<td>Felsic crystal clot</td>
<td></td>
<td>am2</td>
<td>am9</td>
<td>amf_9_c</td>
<td>am6</td>
</tr>
<tr>
<td>SiO₂</td>
<td>44.98</td>
<td>44.91</td>
<td>43.93</td>
<td>47.17</td>
<td>44.14</td>
<td>44.05</td>
<td>44.45</td>
<td>44.89</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.32</td>
<td>1.25</td>
<td>1.27</td>
<td>0.96</td>
<td>2.20</td>
<td>1.58</td>
<td>1.39</td>
<td>1.94</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>8.57</td>
<td>8.28</td>
<td>8.49</td>
<td>7.28</td>
<td>11.61</td>
<td>10.41</td>
<td>11.33</td>
<td>10.97</td>
</tr>
<tr>
<td>FeO</td>
<td>15.33</td>
<td>15.51</td>
<td>15.76</td>
<td>14.24</td>
<td>8.18</td>
<td>12.18</td>
<td>7.72</td>
<td>7.62</td>
</tr>
<tr>
<td>MgO</td>
<td>12.19</td>
<td>11.83</td>
<td>12.41</td>
<td>13.41</td>
<td>16.09</td>
<td>13.99</td>
<td>17.01</td>
<td>16.74</td>
</tr>
<tr>
<td>MnO</td>
<td>0.42</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.12</td>
<td>0.20</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>CaO</td>
<td>11.86</td>
<td>11.72</td>
<td>11.73</td>
<td>11.70</td>
<td>11.75</td>
<td>11.77</td>
<td>11.70</td>
<td>11.93</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.48</td>
<td>1.53</td>
<td>1.44</td>
<td>1.40</td>
<td>2.24</td>
<td>2.04</td>
<td>2.40</td>
<td>2.07</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.94</td>
<td>0.90</td>
<td>0.97</td>
<td>0.72</td>
<td>0.90</td>
<td>0.83</td>
<td>0.88</td>
<td>0.81</td>
</tr>
<tr>
<td>Total</td>
<td>97.09</td>
<td>96.36</td>
<td>97.04</td>
<td>97.31</td>
<td>97.229</td>
<td>97.11</td>
<td>97.03</td>
<td>96.10</td>
</tr>
<tr>
<td>T °C</td>
<td>728</td>
<td>704</td>
<td>756</td>
<td>705</td>
<td>956</td>
<td>893</td>
<td>950</td>
<td>941</td>
</tr>
<tr>
<td>P MPa</td>
<td>347</td>
<td>365</td>
<td>295</td>
<td>270</td>
<td>325</td>
<td>207</td>
<td>301</td>
<td>276</td>
</tr>
</tbody>
</table>

| | | | | | | | | |
| a All Fe as FeO.
5. Thermobarometric calculations

Occurrence of amphiboles and their coexistence with wide range of minerals enable to perform thermobarometric calculations to constrain the condition of the crystallization (e.g., Hammarstrom and Zen, 1986; Johnson and Rutherford, 1989; Blundy and Holland, 1990; Anderson and Smith, 1995; Bachmann and Dungan, 2002; Ridolfi et al., 2010). Composition of amphiboles is particularly sensitive on pressure (Johnson and Rutherford, 1989; Schmidt, 1992; Anderson and Smith, 1995; Anderson et al., 2008), and thus, it is widely used to estimate the depth of crystallization (converting pressure to depth, we assume 2.85 g/cm³ average density of the crustal rocks). The single amphibole geobarometers of Ridolfi et al. (2010) and Ridolfi and Renzulli (2012) are commonly applied to constrain the depth of magma chambers beneath intermediate arc volcanoes (e.g., Scott et al., 2012; Chamberget et al., 2013; Costa et al., 2013; Turner et al., 2013; Walker et al., 2013). In this case, amphiboles with wide compositional range could imply either a vertically extended magma reservoir or separated magma chambers at different depths. Results of these geobarometers were recently tested using compositionally zoned amphiboles and experimental data and it turned out that the large calculated pressure variation provided by the Ridolfi et al. (2010) or Ridolfi and Renzulli (2012) geobarometers is only apparent and reflects crystallization of amphiboles at different temperature and/or from different magmas (Shane and Smith, 2013; Erdmann et al., 2014; Kiss et al., 2014). The pressure estimates obtained for bimodal amphibole populations in arc magmas can be explained rather by crystallization in cold, felsic magmas and hot, mafic magmas, respectively than by formation in two reservoirs at different depths (Erdmann et al., 2014; Kiss et al., 2014). Thus, a careful textural and compositional investigation, involving a comparison of the amphibole compositions with experimental data and considering their coexisting mineral assemblage, is necessary before conducting the thermobarometric calculations.

We estimated the crystallization temperature of the low-Al amphiboles using the calculation scheme developed by Anderson et al. (2008), whereas for the high-Al amphiboles we used the thermometric calibrations of Ridolfi et al. (2010) and Ridolfi and Renzulli (2012), which provided more reliable temperature values (Kiss et al., 2014). We obtained less than 800 °C with an average of 740 °C (Fig. 4B) crystallization temperature for the low-Al amphiboles. This is consistent with the experimental results on dacitic rocks containing similar co-existing mineral assemblage (e.g., Fish Canyon tuff; Johnson and Rutherford, 1989) and the occurrence of zircons with high Hf content (>11,000 ppm; Claiborne et al., 2010) in the Ciomadul dacite. In contrast, compositional features of the high-Al amphiboles resemble those crystallized above 900 °C in the experiments (Kiss et al., 2014). Indeed, we got temperature values between 900 °C and 1000 °C with an average of 950 °C (Fig. 4B).

The composition, the low crystallization temperature and the coexisting mineral assemblage (quartz + plagioclase + K-feldspar + biotite + titanite) of the low-Al amphiboles allow the use of the Al-in-amphibole barometer introduced first by Hammarstrom and Zen (1986). This barometer was further developed later (e.g., Schmidt, 1992; Anderson and Smith, 1995) and we used the temperature dependent calculation scheme of Anderson et al. (2008). We obtained crystallization pressure for the low-Al amphiboles ranged between 200 and 365 MPa with a mean value of 285 ± 45 MPa. That corresponds to a crystallization depth of 7–14 km. For the high-Al amphiboles, we got an overlapping pressure range with the previous results, but with a shift toward greater pressure values (200–500 MPa with an average 324 ± 62 MPa) using the Ridolfi et al. (2010) geobarometer.

Table 2 Representative major element composition of Ciomadul clinopyroxenes (core and rim analyses). mg-number = Mg²⁺/(Mg²⁺ + Fe²⁺).

<table>
<thead>
<tr>
<th>Sample</th>
<th>KC17 cpx3</th>
<th>Mo2 cpx5</th>
<th>Mo2 cpx7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>52.70</td>
<td>53.30</td>
<td>52.91</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.42</td>
<td>0.20</td>
<td>0.33</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.80</td>
<td>1.13</td>
<td>1.96</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.12</td>
<td>0.30</td>
<td>0.31</td>
</tr>
<tr>
<td>FeO</td>
<td>4.15</td>
<td>3.66</td>
<td>3.25</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>MgO</td>
<td>18.81</td>
<td>19.49</td>
<td>17.75</td>
</tr>
<tr>
<td>CaO</td>
<td>21.14</td>
<td>20.62</td>
<td>23.12</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.24</td>
<td>0.19</td>
<td>0.27</td>
</tr>
<tr>
<td>Total</td>
<td>99.50</td>
<td>99.03</td>
<td>100.00</td>
</tr>
<tr>
<td>mg-num</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Fig. 4. A. Variation of the Al₂O₃ content (in wt.%) of the Ciomadul dacites. yellow color denotes the low-Al amphiboles, whereas green indicates high-Al amphiboles; B. Distribution of the calculated crystallization temperature (in °C) of the amphiboles based on the thermometer of Anderson et al. (2008) for low-Al amphiboles and Ridolfi et al. (2010) and Ridolfi and Renzulli (2012) for high-Al amphiboles. The thick gray line indicates the water saturated solidus temperature (Tsolidus) of dacite at 200–300 MPa according to Holtz et al. (2001). The thin gray line is the maximal stability temperature in °C for amphiboles at 200–300 MPa based on the experimental results of Barclay and Carmichael (2004) and Adam et al. (2007). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
6. Magnetotelluric results: strike direction, induction arrows and dimensional analyses

Several characteristic MT sounding curves with apparent electric resistivity and impedance phase values are shown in Fig. 5. Unfortunately it was site Cs1, close to the Sf. Ana Lake, i.e. inside the main explosion crater, where the MT sounding curves were of the poorest quality, so this field station had to be excluded from the interpretation. At first, prior to the inversion and modeling process, we checked the magnetotelluric strike direction from the data. Estimations were made by using three standard approaches: the “impedance strike” (Swift angle — Swift, 1967), the “tipper strike”, and the “phase sensitive skew” (Bahr, 1988, 1991). The rose diagrams obtained from the tipper strike angles are shown in Fig. 6. The strike is around N30°E, where at longer periods it has a complex feature. The impedance strike was very complex; phase sensitive strike indicates again a strike direction of about N30°E. Therefore, for some further magnetotelluric modeling, a general strike direction of N30°E can be assumed. The so-called induction arrows, which are calculated from the tipper (i.e. the ratio of vertical to horizontal magnetic field) provide an additional indicator. The induction arrows in Fig. 7 are plotted according to the Parkinson convention (the “reverse” Wiese convention, Wiese, 1962), where their real parts point to the high conductivity (low resistivity) structures. The chaotic behavior of induction arrows at short periods is probably caused by shallow small-scale structural or lithological resistivity anomalies. At longer (approximately T = 100 s) periods the arrows are aligned to southeast direction, while toward even longer (approximately T = 1000 s) periods, they are turning to northeast. At the longest periods the coherence disappears again. In the 100 s–1000 s period range the structure may be considered as two-dimensional (2-D), except near the main volcanic crater filled by the Sf. Ana lake.

The subsurface electromagnetic structure beneath any volcano is complex, because it might consist of variably altered, clayey formations, hydrothermal fluids as well as a magma storage zone. The dimensionality analysis that we carried out (not shown in figure) confirms this complexity. Nevertheless, the magnetotelluric strike direction and the induction vectors allow applying two-dimensional (2-D) approaches.

7. Magnetotelluric data modeling and inversion

7.1. Two-dimensional inversion

We carried out 2-D model computations, by inverting MT impedances using non-linear conjugate gradient algorithm by Rodi and Mackie (2001). From the set of the MT sites we defined three different elongated profiles: (a) N-S, (b) NNE-SSW, (c) NNW-SSE (Fig. 8). Two of them (profiles (a) and (b)) cross the volcanic crater (Sf. Ana lake) and the third one (profile (c) in the NE part of the investigated area) points to NNW-SSE direction. Before defining the final models, a number of tests were carried out for searching the smoothing parameters, error floors etc. The starting model for the inversion was a homogeneous half-space with an electrical resistivity of 100 Ω m, where the surface topography was taken into account. In the inversion process we used the measured data errors (if they existed), otherwise an error...
floor of 10% (for the apparent resistivity values) and 5% for the impedance phase values were applied. The static shift correction was automatically corrected, and the root mean square misfit (RMS) was minimized to 100 iterations. Inversions were carried out separately for both polarization modes (TE and TM), and, as a third version, a bimodal inversion (TE + TM) was also carried out. The RMS misfit along all the three profiles converged below 6%. From the inversion results the best fitting solution was selected. In profile (a), a low resistivity structure with $< 5 \, \Omega \, m$ values that correspond to $0.3 - 0.8 \, S\, m^{-1}$ conductivity values was found in the depth range of 5–25 km (Fig. 8). The horizontal extension of this anomaly is less than 6–7 km. A similar anomaly is shown in the profile (b), and its source seems to be more or less of the same size as that in profile (a). This anomaly is located near the main volcanic crater. In profile (c) there is no any low-resistivity zone in this shallow (5–25 km deep) depth range. Instead, the low-resistivity zone appears here much deeper, in the depth range of 30–40 km (Fig. 8).

![Fig. 6. Strike directions at five period ranges, calculated from the tipper values.](image)

![Fig. 7. The phase tensor ellipses and real induction arrows (in the so-called Wiese convection) in the horizontal map at six periods. The fill of ellipses represents the β_p skew angle in degree (Wiese, 1962; Caldwell et al, 2004).](image)

Please cite this article as: Harangi, S., et al., Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadu..., J. Volcanol. Geotherm. Res. (2014), http://dx.doi.org/10.1016/j.jvolgeores.2014.12.006
7.2. 3-D modeling and inversion results

We performed a 3-D inversion by using the WSIN3DMT inversion code (Siripurnvaraporn and Egbert, 2000; Siripurnvaraporn et al., 2005a, 2005b), applying 49 cells in horizontal (N–S and E–W) directions and 32 cells in vertical direction. The horizontal dimensions of the central cell in the grid were set to 10 × 10 km. The considered domain horizontally extended to 1945 km and vertically it extended to a depth of 508 km. The input data for the 3-D inversions from the 12 field stations were the values of imaginary and real parts of the impedance tensor elements Zxx, Zxy, Zyx and Zyy, determined at 13 various periods. The topography in the 3-D inversion was ignored. The inversion after 7 iterations arrived to a good fit between the measured and the modeled values, characterized by 1.92% RMS. The low resistivity anomaly in the depth range of 5–20 km, drawn from 2-D inversion, was confirmed by the 3-D inversion (Fig. 9). However, there is a significant difference between the 3-D and 2-D inversion results: in 3-D inversion, at deeper part there was no indication for a low resistivity zone. This contradiction between the 2-D and 3-D results might be resolved by the behavior of the vertical magnetic field, which was considered in the 2-D inversion, and was ignored in the 3-D one. As seen from the induction arrows and the so-called phase ellipses, at the apparent depth of 25 km, there is an evident deepening tendency from SW toward NE direction. A comparison between 3-D and 2-D inversion results are shown in Fig. 10.

Fig. 8. 2-D inversion results along three selected profiles. Bimodal inversion with H, conjugate was applied, based on inversion code by Rodi and Mackie (2001). Resistivity values are in logarithmic scale: a) NS profile with sites: 9-12-4-5-3 (RMS 5.6%); b) NNE–SSW profile with sites: 10-2-12-11-4-5 (RMS 2.075%); c) profile 6-7-10 (RMS 0.88%).
Fig. 9. 3-D model of the investigated area by 3-D inversion results in different view. Resistivity values are in logarithmic scale. The MT stations are shown by red dots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Comparison of 2-D and 3-D inversion results, shown in the form of maps at apparent depths of 10 and 25 km. The fill of ellipses represents the β skew angle in degree. Resistivity values are in logarithmic scale.

Please cite this article as: Harangi, S., et al., Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadula..., J. Volcanol. Geotherm. Res. (2014), http://dx.doi.org/10.1016/j.jvolgeores.2014.12.006
8. Discussion

8.1. Petrologic constrains on the condition of the magma storage

Magma system beneath volcanoes is regarded to have a complex architecture and is different from the single circular, melt-bearing magma chamber view. The magma reservoir or magma storage contains interconnected crystal-melt mush zones (non-eruptible part of the magma body), occasionally with melt-dominated regions or lenses (eruptible magma), which can be termed as magma chamber (Hildreth, 2004; Annen et al., 2006; Hildreth and Wilson, 2007; Bachmann and Bergantz, 2008; Cashman and Sparks, 2013; Cooper and Kent, 2014). There could be a continuation of this shallow crustal magma reservoir toward the depth, where further magma reservoirs may exist either composed by crystal mush or are already in solid state. At the crust–mantle boundary, an extensive magma storage zone can be present, where mantle-derived mafic magmas could accumulate (Stroncik et al., 2009) or could mix with crustal melt (Hildreth, 1981), altogether forming the ‘hot zone’ (Annen et al., 2006). The volcano petrology is a powerful tool to characterize this complex system using integrated textural and geochemical studies combined with thermobarometric calculations (e.g., Humphreys et al., 2006; Shcherbakov et al., 2011; Viccaro et al., 2012; Kiss et al., 2014).

The Ciomadul dacites have a fairly diverse crystal assemblage that can be divided into a low-temperature (<800 °C) mineral population (low-FeO plagioclase, low-Al amphibole, biotite, quartz, K-feldspar, titanite, apatite, zircon, and allanite) and a high-temperature (>900 °C) mineral group (plagioclase microphenocrysts, high-Al amphibole, olivine, clinopyroxene, orthopyroxene). The low-temperature mineral assemblage is also found as felsic crystal clots, which can be interpreted to represent fragments of a crystal mush body, having a long lifetime beneath the volcano at temperature close to the solidus of granodioritic/dacitic system (Kiss et al., 2014). This magma storage is regarded as a heterogeneous silicic magma reservoir, where crystals and melts existed with variable relative amounts, but overall, it consisted of a non-eruptible magma body (i.e., crystals >> melt). The compositional zoning of zircons and textural features of olivines and clinopyroxenes (not detailed here) suggest that the felsic shallow crustal magma storage was developed by intermittent pulses of silicic magma ascent and repeated intrusions of basaltic magmas. This sequence of events could keep the magma reservoir at temperature above the solidus temperature for 10^5 a with no volcanic eruption. The geobarometric calculations from the low-Al amphiboles indicate that this felsic magma reservoir resided at 7–14 km depth (Fig. 11). Among the amphiboles, there are crystals with a zoning type where high-Al amphibole rim is observed around low-Al amphibole cores. This clearly suggests that both amphibole types crystallized in the same magma reservoir at similar depth and not in distinct magma storage zones (Kiss et al., 2014). Furthermore, it implies that a major reheating event with over 200 °C temperature increase occurred just prior to the extrusive volcanic eruptions and this can be connected to the intrusion of hot basaltic magma into the felsic crystal mush body. This mantle-derived basalt magma transported high-Mg olivines and clinopyroxenes into the silicic magma reservoir. The lack of strong resorption around many Mg-rich olivine and clinopyroxene crystals in the dacite implies that mixing of the mafic and silicic magma could occur just before the eruption. The melt-bearing crystal sponge was effectively remelted and as a consequence an eruptible magma was formed (Kiss et al., 2014). The key-elements in this process are the existence of a crystal mush body with some melt fraction, presumably not more than 10–20 vol.% and the ascent of a hot mafic magma batch, which had enough volume to reheat significant part of the cold magma body. The mafic crystal clots in the Ciomadul dacite provide additional information about the deeper magma system. Clinopyroxenes often show compositional zoning including oscillatory zoning pattern with major changes in the mg-number and Cr content. This is consistent with intermittent replenishment in the mafic magma storage. Since we have no data on the melt composition equilibrated with the clinopyroxenes, it...
is not possible to estimate the depth of the mafic magma storage, but considering the thick crust (Rădulescu, 1988; Enescu et al., 1992; Dérova et al., 2006) beneath the Ciomadul, we tentatively infer that this could be located at the crust–mantle boundary around 30–40 km depth.

8.2. Magnetotelluric indication for the magma storage

Magnetotelluric technique is a powerful tool to detect partially melted zone beneath volcanoes, since conductivity anomalies can be typically attributed to the presence of fluids, such as silicate melts in the crust and the mantle (Schilling et al., 1997, 2006; Baba et al., 2006; Heise et al., 2007; Hill et al., 2009; Pommier et al., 2010a; Pommier and Le-Trong, 2011). The high conductivity anomaly (0.2–0.8 Sm$^{-1}$ in the strongest part) beneath Ciomadul at depth between 5 and 25 km obtained both from the 2D and 3D inversion modeling calculations (Figs. 8 and 9) clearly suggest interconnected fluids within the solid crustal rocks. At shallow depth, hydrothermally altered rocks and/or sedimentary deposits with interconnected pore fluids could explain the high conductivity values. Although we cannot entirely rule out the presence of aqueous fluid as being the cause of the high conductivity at greater depth, we think that the coherent high conductivity anomaly (0.3–0.8 Sm$^{-1}$) beneath 10 km (Fig. 8) can be more reliably explained by partially melted crustal zone. Partially melted zones with similar conductivity values were suggested by Schilling et al. (1997) and Brasse et al. (2002) beneath the Bolivian Altiplano, Hill et al. (2009) beneath Mt. St. Helens and Mt. Adams and Heise et al. (2007) beneath the Taupo Volcanic Zone. Pommier et al. (2010b) emphasized that electrical measurements in laboratories are important to distinguish whether the high conductivity indicates the presence of silicate melt or aqueous fluids. Brines (mineralized water) circulating in pores and fractures of the crustal rocks could have an extremely high conductivity (\(~1000 \text{Sm}^{-1}\)) whereas silicate melts have typically 0.01–10 Sm$^{-1}$ electrical conductivity.

A partially melted zone consists of a two-phase medium with a solid rock matrix and interstitial melt. The bulk conductivity is controlled by the geometry of the melt fractions. Unconnected melt pockets in the resistive rock do not change significantly the bulk electrical behavior, whereas there is a noticeably increase in the conductivity in case of interconnected melt (Sato and Ida, 1984; Roberts and Tyburczy, 1999). Recently, it is emphasized that magma reservoirs even beneath active volcanoes are composed of mixture of crystals and melts in various proportions (crystal mush; Hildreth, 2004; Bachmann and Bergantz, 2004, 2008; Hildreth and Wilson, 2007). High conductivity in crustal level could thus indicate a crystal mush body with the presence of melt fraction in a critical amount that allows a sort of interconnection. The conductivity of a crystal mush zone with interconnected melt does not strongly depend on the solid rocks (Glover et al., 2000), but has a dependence on the composition of the melt phase, the pressure and temperature as well as on the relative amount of the melt within the electrically resistant solid framework (Pommier et al., 2008). The effect of temperature and pressure on the conductivity is described by an Arrhenius law and this was incorporated into the SIGMELT software developed by Pommier and Le-Trong (2011). Composition of the melt is a critical parameter to determine the conductivity, where Na$_2$O content has the most significant role (Gaillard, 2004; Pommier et al., 2008). Considering a dacitic melt with the typical composition of the Ciomadul volcanic rock (Na$_2$O = 4.6 wt.%, SiO$_2$ = 64–67 wt.%, and assuming 4 wt.% H$_2$O), the SIGMELT software (Pommier and Le-Trong, 2011) provides conductivity value of 0.5–1.1 Sm$^{-1}$, assuming 800–900 °C temperature and 200–300 MPa. However, if we consider a more residual melt fraction with higher SiO$_2$ content (~70 wt%), the conductivity slightly decreases (0.1–0.2 Sm$^{-1}$). On the contrary, larger amount of dissolved water in the melt increases significantly the conductivity up to 6–8 Sm$^{-1}$ at H$_2$O = 10 wt.%. The ubiquitous occurrence of hydric phases (amphibole, biotite) in the Ciomadul dacies requires a water content ~4 wt.% in the melt. Thus, we could infer that the melt conductivity at a dacitic to rhyolitic composition similar to that of the Ciomadul rocks could be around 1–1.5 Sm$^{-1}$, while 0.2–0.5 Sm$^{-1}$ values could correspond with a partially melted zone containing 10–20% interconnected melt. This latter conductivity values fit well with the resistivity anomaly obtained by the 2D and 3D MT models at 5–25 km depth (Fig. 8).

9. Implications for a partially melted zone beneath Ciomadul

Our interpretation that a partially melted zone could result in the high conductive anomaly in the crust at 5–25 km is supported by other geophysical anomalies such as the seismic low velocity zone at the same depth (8–20 km; Popa et al., 2012) and the high heat flow (Demetrescu and Andreeas, 1994). Remarkably, the highest conductivity in the crustal level is detected just below the crater area. Furthermore, this is consistent with the recent volcanism of the Ciomadul. The petrologic constrains on the magma storage suggest the existence of silicic crystal mush between 7 and 14 km, where intrusion of basaltic magma could effectively remobilize it leading to volcanic eruption. Existence of a magmatic body is inferred also by the relatively high 4He/3He values (R$_m$/R$_a$ is around 3.0–4.5) in the gases emitted at the Ciomadul (Vaselli et al., 2002). Furthermore, occurrence of Mg-rich and zoned clinopyroxenes requires a deeper magma chamber, possibly at the crust–mantle boundary. The 2D magnetotelluric models (Fig. 8) indicate a conductivity anomaly at 30–40 km slightly northeastward from the crater area that might fit with the petrologic assumption. Remarkably, the S-waves seismic tomographic profiles provided by Popa et al. (2012) also show a deeper low velocity anomaly at same position.

Thus, the presence of a partially melted zone or with other words, a crystal mush body with some melt fraction beneath Ciomadul appears to be well established by independent observations. The inferred highest conductivity value (0.3–0.7 Sm$^{-1}$) from the 2D model of the MT measurements (Fig. 8) could indicate an interconnected network of highly conductive phases, i.e. melt in the crustal rocks. Considering a solid rock framework with conductivity of less than 0.01 Sm$^{-1}$, the melt fraction can be estimated following the method described by Schilling et al. (2006). Assuming melt conductivity calculated by the SIGMELT software (Pommier and Le-Trong, 2011) for a dacitic composition similar to the Ciomadul volcanic rocks (0.4–1.0 Sm$^{-1}$) a melt fraction of 5–15% is obtained. This can be regarded as a minimum value considering that some melt could be isolated melt pocket (Partzsch et al., 2000).

The presence of a melt-bearing crystal mush body beneath Ciomadul would mean that there is a potential that this volcano might be rejuvenated in the future. Petrologic studies indicate that in the past (100–150 ka), volcanic eruptions were triggered by effective remobilization of an already locked, low temperature and low melt fraction silicic crystal mush via intrusion of hot basaltic magmas (Kiss et al., 2014). Such processes were invoked as a triggering mechanism for several similar volcanic systems (e.g., Unzen, Japan; Nakamura, 1995; Pinatubo, Philippines, Pallister et al., 1992; Soufrière Hills, Montserrat; Murphy et al., 2000). One of the key elements for such scenario is the presence of melt-bearing magmatic body beneath the volcano. This does not mean that Ciomadul is a potentially active volcano, since no unrest has been detected and no eruptions were documented in the last 10 ka. However, there are signs that volcanoes can be reactivated even after several 10s ka quiescence (Clynne and Muffler, 2010; Escobar-Wolf et al., 2010; Frey et al., 2013). Furthermore, InSAR and seismic data imply that the Uturuncu volcano in Bolivia, having last eruption at 270 ka, could have been replenished by fresh magma at the depth (Pritchard and Simonds, 2002, 2004; Sparks et al., 2008). It is unclear whether this is just a magma storing episode or could lead to volcanic eruption in the future, however, it is a sign that deep magmatic processes could occur beneath a volcano well after the last volcanic eruptions. Furthermore, zircon geochronology on a number of locations shows...
that magnetocrystallization can be continuously taking place over sev-
eral 10s or even > 100s ka before the volcanic eruptions (e.g., Bachmann et al., 2007; Claiborne et al., 2010). Thus, we suggest for long-dormant or seemingly inactive volcanoes having melt-bearing magmatic body at depths to term as ‘volcano with potentially active magma storage’ or PAMS volcano. Although these volcanoes do not show presently clear sign of rejuvenation, future volcanic activity cannot be unambiguously excluded considering that the melt-bearing crystal mush body could potentially be remobilized. Thus, further combined petrologic and geophysical (e.g., further magnetotelluric) investigation as well as more focused gas-geochemical monitoring are necessary to refine the geometry and the state of the magma body beneath Ciomadul.

Q10 10. Unicted references

Harangi et al., 2013
Magery et al., in press
Weaver et al., 2000

Acknowledgment

This research on the Ciomadul volcano belongs to the scientific project supported by the OTKA (Hungarian National Research Fund) No. K68587. Interpretation of the magnetotelluric data by A.N. was part of the János Bolyai Scholarship of the Hungarian Academy of Sciences and the TAMOP-4.2.2.C-11/1-KONV-2012-0015 (Earth-system) project supported by the EU and the European Social Foundation.

References

Please cite this article as: Harangi, S., et al., Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadul..., J. Volcanol. Geotherm. Res. (2014), http://dx.doi.org/10.1016/j.jvolgeores.2014.12.006

Delamination or slab detachment beneath Vrancea? New arguments from local and geological interpretations. Tectonophysics 317, 189–203.

Q12

