Background: Various methods are currently used for the early detection of West Nile virus (WNV) but their output is either not quantitative or does not take into account all available information. Our study aimed to test a multivariate syndromic surveillance system in order to improve early detection of WNV.

Method: Weekly time series data on nervous syndromes in horses and mortality in both horses and wild birds were used. Baselines were fitted to the three time series and used to simulate 100 years of surveillance data. WNV outbreaks were simulated and inserted into the baselines based on historical data and expert opinion. Univariate and multivariate syndromic surveillance systems were tested in order to gauge how well they detected the outbreaks; detection was based on an empirical Bayesian approach. The systems’ performances were compared using measures of sensitivity, specificity, and area-under-ROC-curve (AUC).

Result: When data sources were considered separately (i.e. univariate systems), the best detection performance was obtained using the dataset of nervous symptoms in horses compared to those of bird and
horse mortality (AUCs respectively equal to 0.80, 0.75, and 0.50). A multivariate outbreak detection system that used nervous symptoms in horses and bird mortality generated the best performance (AUC = 0.87).

Conclusion: The proposed approach is suitable for performing multivariate syndromic surveillance of WNV outbreaks. This is particularly relevant given that a multivariate surveillance system performed better than a univariate approach. Such a surveillance system could be especially useful in serving as an alert for the possibility of human viral infections. This approach can be also used for other diseases for which multiple sources of evidence are available.