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Abstract: 

Background: Various methods are currently used for the early detection of 
West Nile virus (WNV) but their outputs are either not quantitative and/or 
do not take into account all available information. Our study aimed to test 
a multivariate syndromic surveillance system in order to evaluate if the 
sensitivity and the specificity of detection of WNV could be improved.  
Method: Weekly time series data on nervous syndromes in horses and 
mortality in both horses and wild birds were used. Baselines were fitted to 
the three time series and used to simulate 100 years of surveillance data. 
WNV outbreaks were simulated and inserted into the baselines based on 
historical data and expert opinion. Univariate and multivariate syndromic 
surveillance systems were tested in order to gauge how well they detected 
the outbreaks; detection was based on an empirical Bayesian approach. 
The systems’ performances were compared using measures of sensitivity, 
specificity, and area-under-ROC-curve (AUC).  
Result: When data sources were considered separately (i.e. univariate 
systems), the best detection performance was obtained using the dataset 
of nervous symptoms in horses compared to those of bird and horse 
mortality (AUCs respectively equal to 0.80, 0.75, and 0.50). A multivariate 
outbreak detection system that used nervous symptoms in horses and bird 
mortality generated the best performance (AUC = 0.87).  
Conclusion: The proposed approach is suitable for performing multivariate 
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syndromic surveillance of WNV outbreaks. This is particularly relevant 
given that a multivariate surveillance system performed better than a 
univariate approach. Such a surveillance system could be especially useful 
in serving as an alert for the possibility of human viral infections. This 
approach can be also used for other diseases for which multiple sources of 
evidence are available.  
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ABSTRACT 

Background: Various methods are currently used for the early detection of West Nile virus (WNV) but their 

outputs are not quantitative and/or do not take into account all available information. Our study aimed to test 

a multivariate syndromic surveillance system in order to evaluate if the sensitivity and the specificity of 

detection of WNV could be improved.  

Method: Weekly time series data on nervous syndromes in horses and mortality in both horses and wild birds 

were used. Baselines were fitted to the three time series and used to simulate 100 years of surveillance data. 

WNV outbreaks were simulated and inserted into the baselines based on historical data and expert opinion. 

Univariate and multivariate syndromic surveillance systems were tested in order to gauge how well they 

detected the outbreaks; detection was based on an empirical Bayesian approach. The systems’ performances 

were compared using measures of sensitivity, specificity, and area-under-ROC-curve (AUC). 

Result: When data sources were considered separately (i.e. univariate systems), the best detection 

performance was obtained using the dataset of nervous symptoms in horses compared to those of bird and 

horse mortality (AUCs respectively equal to 0.80, 0.75, and 0.50). A multivariate outbreak detection system 

that used nervous symptoms in horses and bird mortality generated the best performance (AUC = 0.87). 

Conclusion: The proposed approach is suitable for performing multivariate syndromic surveillance of WNV 

outbreaks. This is particularly relevant given that a multivariate surveillance system performed better than a 

univariate approach. Such a surveillance system could be especially useful in serving as an alert for the 

possibility of human viral infections. This approach can be also used for other diseases for which multiple 

sources of evidence are available. 

 

Key words: West Nile, syndromic surveillance, Bayes, horses, multivariate detection 
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INTRODUCTION 1 

West Nile virus (WNV) is a zoonotic mosquito-borne arbovirus mainly transmitted by mosquitoes from the 2 

genus Culex (family Culicidae). Main reservoir hosts are birds but the virus also affects various non-avian 3 

species including horses and humans, with dramatic consequences for public health and for the equine 4 

industry, i.e. potentially fatal encephalitis in humans and horses (Campbell et al., 2002; Castillo-Olivares and 5 

Wood, 2004). In Europe, and more specifically in France, WNV lineage I emerged in the 1960s and several 6 

outbreaks have been documented since that time (Calistri et al., 2010). Even if this lineage is now considered 7 

endemic in a large part of Europe, the number of reported outbreaks is presently increasing in Southern and 8 

Eastern Europe, particularly in Italy, Greece, and Bulgaria (Di Sabatino et al., 2014).WNV lineage II has been 9 

introduced in Europe in 2004 and spread in several parts of Europe. This lineage induces more cases and more 10 

severe symptoms than lineage I in humans, horses, and birds (Bakonyi et al., 2006; Calzolari et al., 2013; 11 

Hernández-Triana et al., 2014). As an example, in Greece, 197 neuroinvasive human cases and 35 deaths were 12 

reported in 2010 with lineage II (Danis et al., 2011). All these elements contribute to make WNV a growing 13 

concern in Europe. Currently, in France and in most of countries, the surveillance of WNV is mainly passive i.e., 14 

based on the vigilance of owners and veterinary practitioners who declare the cases. To improve early 15 

detection of WNV outbreaks, then, the major challenge is to develop more integrated and quantitative 16 

approaches (Beck et al., 2013; Bellini et al., 2014a). 17 

Syndromic surveillance is defined as “the (near) real-time collection, analysis, interpretation and dissemination 18 

of health-related data to enable the early identification of the impact – or absence of impact – of potential 19 

threats. Syndromic surveillance is based not on the laboratory-confirmed diagnosis of a disease but on non-20 

specific health indicators including clinical signs, symptoms as well as proxy measures” (Triple S Project, 2011). 21 

In Europe, the surveillance of nervous syndromes in horses is considered as one of the most cost-effective 22 

surveillance systems in the European context (Chevalier et al., 2011) and has been shown to detect an outbreak 23 

of WNV 3 weeks prior to laboratory identification in the South of France (Leblond et al., 2007a; Saegerman et 24 

al., 2014). In the USA, instead, increased mortality in wild birds is one of the most timely indicators of virus 25 

activity (Brown, 2012). Mortality in wild birds had rarely been reported in Europe until the recent explosive 26 

spread of lineage II in 2008-2009 in Hungary and Austria, which suggests that this parameter could be also 27 

incorporated into future monitoring systems in Europe (Bakonyi et al., 2013). This is consistent with recent 28 
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experimental infections of European wild birds with various WNV strains, which generated an average 29 

mortality rate of 43% (Del Amo et al., 2014a, 2014b; Dridi et al., 2013; Sotelo et al., 2011; Ziegler et al., 2013). 30 

Apart from mortality in wild birds and nervous symptoms in horses, WNV is also associated with mortality in 31 

horses, which could constitute another signal of a WNV outbreak. Considering that horses and birds should be 32 

affected by WNV before humans (Kulasekera et al., 2001; Leblond et al., 2007a), a surveillance system based on 33 

the analysis of these data could be especially useful in serving as early warning for possible human viral 34 

infections.  35 

Multivariate syndromic surveillance combines different syndromic data sources available (Frisén et al., 2010; 36 

Sonesson and Frisén, 2005) and should give better results for outbreak detection in terms of specificity and 37 

sensitivity than univariate methods alone. However, at the time of writing, multivariate syndromic surveillance 38 

has never been implemented for the detection of WNV outbreaks. The aim of our study was to evaluate the 39 

performance of a multivariate syndromic surveillance system in detecting WNV using three datasets: nervous 40 

syndromes in horses and mortality in horses and wild birds. Mortality will be considered in our study as a 41 

syndrome. We focused on the French Mediterranean coast, which is a particularly high-risk area for WNV 42 

outbreaks. Indeed, in France, WNV has only ever been identified in this area according to the last outbreaks 43 

occurring in 2000, 2004, 2006 and 2015 (Anonymous, 2007; Autorino et al., 2002; Bahuon et al., 2015; Kutasi et 44 

al., 2011; Leblond et al., 2007a; Murgue et al., 2001). This French region is especially at risk because 45 

mammalian and avian hosts, bridging vectors, and large protected wetlands with numerous migratory birds are 46 

all present.  47 

MATERIALS AND METHODS 48 

1. Data sources 49 

1.1. Nervous syndromes in horses 50 

Data on nervous syndromes in horses are collected through the passive surveillance system “RESPE”. This 51 

French network for the surveillance of equine diseases (http://www.respe.net/) collects standardized 52 

declarations from veterinary practitioners registered as sentinels. In the RESPE database, nervous symptoms in 53 

horses are defined as any signs of impairment of the central nervous system, i.e. ataxia, paresis, paralysis 54 

and/or recumbency, and/or behavioral disorder. Nervous disorders with evidence of traumatic or congenital 55 

Page 5 of 27

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Vector-Borne and Zoonotic Diseases

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly/Not for Distribution
origins are excluded. All the samples sent for laboratory diagnosis are systematically tested for two diseases, 56 

WNV and equine herpes virus-1, and results are registered in the RESPE database. Currently, the collected data 57 

are mainly used to produce alerts when cases with positive laboratory diagnoses are identified. To obtain an 58 

outbreak-free baseline dataset, we used data from 2006 to 2013 that included only the 44 declarations without 59 

positive laboratory test results from the region of the French Mediterranean coast. The time series of nervous 60 

syndromes in horses is designated NervSy in subsequent sections.  61 

1.2. Mortality in horses 62 

Data on mortality in horses have been centralized since 2011 in the “EDI-SPAN” database, managed by all the 63 

French fallen stock companies and the French Ministry of Agriculture (Perrin et al., 2012). As WNV does not 64 

produce perinatal mortality, we only considered the 8 742 dead adult horses collected around the French 65 

Mediterranean coast between 2011 and 2014. The time series of mortality in adult horses is designated 66 

DeadHorse in subsequent sections. 67 

1.3. Mortality in wild birds 68 

Data on mortality in wild birds are collected through the event-based surveillance system “SAGIR”, the national 69 

French surveillance network of diseases in wild birds and mammals, which collects declarations from field 70 

workers (e.g., hunters, technicians from departmental hunting federations, and environmental inspectors from 71 

the French National Hunting and Wildlife Agency (ONCFS)). Surveillance relies on diagnosis at a local veterinary 72 

laboratory (Decors et al., 2014). Between 2007 and 2013, 292 dead wild birds were collected and necropsied 73 

around the French Mediterranean coast. The time series of the number of necropsied wild birds is designated 74 

DeadBird in subsequent sections.  75 

2. Data modeling and simulation 76 

2.1. Baselines modeling 77 

All time series were aggregated weekly. Using visual examination, abnormal peaks were observed only in 78 

DeadBird due to health troubles occurring in wild birds’ population (i.e., intoxication). These extreme values 79 

were removed based on a method adapted from Tsui et al. (Tsui et al., 2001): the entire dataset was first fitted 80 

to a negative binomial distribution (see Appendix I) and then values above the 95% confidence interval were 81 

deleted and replaced with the average value of the four previous weeks. 82 
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To calibrate the models, we used NervSy data from 2006 to 2010, DeadHorse data from 2011 to 2013, and 83 

DeadBird data from 2007 to 2011. Instead, to validate the quality of predictions, we used NervSy data from 84 

2011 to 2013, DeadHorse data from 2014, and DeadBird data from 2012 to 2013. To define the background 85 

noise of the time series without outbreaks, we fitted alternative regression models based on Poisson and 86 

negative binomial (NB) distributions (see Appendix I). Models were implemented in R x64 version 3.0.2. 87 

Dynamic regression was performed with the functions glm (package {stats}) and glm.nb (package {MASS}). The 88 

expected number of counts at time t was estimated with the predict functions of the respective packages. 89 

Models were evaluated using the Akaike information criterion (AIC) (Bozdogan, 1987), and the adjusted 90 

deviance (deviance/degree of freedom) was used as a measure of goodness-of-fit (GOF). The agreement 91 

between predicted and observed values was assessed according to the root-mean-squared error (Chai and 92 

Draxler, 2014). The criterion was assessed within the calibration period (RMSEc) and within the validation 93 

period (RMSEv). In either case, the lower the value, the better the predictive performance of the model.  94 

2.2. Baselines simulation 95 

For each time series, the best regression model was used to predict the expected value of each week of the 96 

next simulated year. Distribution of cases for each week was defined as a Poisson distribution with lambda 97 

equals to the predicted value for the same week. Weekly samples from 100 fictive years were generated by 98 

random sampling from the previous distributions as proposed by Dórea et al. (Dórea et al., 2013). 99 

2.3. WNV outbreaks modeling  100 

The weekly counts of cases of five real European WNV outbreaks (Anonymous, 2007; Autorino et al., 2002; 101 

Kutasi et al., 2011; Leblond et al., 2007a; Murgue et al., 2001) were fitted to the NB distribution and the 102 

resulting distribution of the additional number of nervous cases due to WNV during an outbreak was 103 

NB(mu=3.12, theta=1.150). The mortality among horses clinically affected by WNV was fitted to a normal 104 

distribution (mean=0.384, standard deviation=0.128) based on (Autorino et al., 2002; Leblond et al., 2007a; 105 

Murgue et al., 2001; Ward et al., 2006). The NervSy dataset did not provide the real number of clinically 106 

affected horses, so we assumed that only 50% of horses with nervous symptoms were declared to RESPE. To 107 

estimate the real number of clinically affected horses, we simulated RESPE declarations of nervous symptoms 108 

associated with 100 WNV outbreaks and doubled the counts of horses obtained. The related weekly count of 109 
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dead adult horses was then deduced and fitted to the NB distribution NB(mu=3, theta=2.005). The distribution 110 

of the weekly number of dead birds was estimated by expert’s opinions to be NB(mean=2.23, theta=3.34). 111 

Experts were European diplomates in equine internal medicine and persons involved in SAGIR network, RESPE 112 

network, and reference laboratories. They based their estimation on data available in the literature (Bakonyi et 113 

al., 2013); (Del Amo et al., 2014a, 2014b; Dridi et al., 2013; Sotelo et al., 2011; Ziegler et al., 2013) and their 114 

personal knowledge acquired during the observation of real WNV outbreaks in Hungary, France, Italy and Spain 115 

during the last decade and their knowledge of equine and wild birds diseases in general.  116 

2.4. WNV outbreaks simulation 117 

Data on real WNV outbreaks are scarce, so we used simulated outbreaks to evaluate our detection system. For 118 

each syndrome, the distribution of the number of cases during an outbreak was estimated with the fitdist 119 

function of the package {fitdistrplus}. Time series for each syndrome during 100 fictive outbreaks of 8 weeks 120 

were simulated by randomly sampling the corresponding distribution. All the weeks within an epidemic time 121 

period have thus the same probability to have a high (or low) number of cases.  122 

2.5. Simulated WNV outbreaks insertion in simulated baselines 123 

One simulated outbreak was inserted in each year of simulated baseline. The outbreaks related to nervous 124 

cases in horses were randomly inserted, followed by the corresponding outbreaks related to wild bird 125 

mortality, such that the time lag between the first dead bird and the first nervous case in horses due to WNV 126 

was 0, 1, or 2 weeks according to (Kulasekera et al., 2001). The corresponding horse mortality outbreaks were 127 

inserted such that half of the affected horses died the week of onset of clinical signs and half died the week 128 

after (Bunning et al., 2002; Cantile et al., 2000; Trock et al., 2001; Ward et al., 2006). A summary of time lag 129 

between nervous symptoms in horses, horses mortality and wild birds mortality is available in Appendix II 130 

figure 1. 131 

 132 

3. Outbreak detection  133 

3.1. Bayesian framework 134 

Bayesian hypothesis testing is based on two mutually exclusive hypotheses which can be expressed in the 135 

syndromic surveillance context as H1, “there is an ongoing outbreak of WNV (or another event with similar 136 
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symptoms)”, and H0, “there is no ongoing outbreak” (Andersson et al., 2014). The relative probability of the 137 

two hypotheses can be expressed as a ratio (Opri) which represents our a priori belief about the disease status: 138 

Eq.1   139 

 140 

When evidence in favor (or not) of each hypothesis is observed, we can build the a posteriori belief about the 141 

disease’s status (Opost): 142 

Eq.2   143 

where P(H1 |Ex) is the probability of H1 given the evidence E observed in time series x and P(H0 |Ex) is the 144 

probability of H0 given the evidence E observed in time series x in a particular week. 145 

 146 

Using this general framework with the application of Bayes’ theorem, Opost can be calculated as:  147 

Eq.3   148 

where Vx is the value of evidence, P(Ex|H1) is the probability of observing the number of reported cases of 149 

syndrome x in a particular week given that H1 is true, and P(Ex|H0) is the probability of observing the number of 150 

reported cases of syndrome x in a particular week given that H0 is true.  151 

In order to estimate P(Ex|H1) and P(Ex|H0),  information on the probability distribution for the number of 152 

reported cases in non-outbreak and outbreak situations is used. The probability of Ex (observation of n cases in 153 

time series x) during an outbreak is calculated as: 154 

Eq.4  [ ]∑
=

−×=
n

i

outbase inPiPHEP
0

1 )()()|(  155 

where Pbase(i) is the probability of drawing i cases from the baseline distribution in time series x and Pout(i)  is 156 

the probability of drawing i cases from the outbreak distribution in time series x based on the shape of the 157 

outbreak, as previously simulated. 158 

To detect outbreaks, several values for Opost were tested to serve as alarm thresholds. 159 

3.2. Combining time series 160 
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When the three time series were combined, Vtot incorporated evidence from NervSy, DeadHorse, and DeadBird, 161 

respectively denoted as ENervSy, EDeadHorse, and EDeadBird.  Assuming that the three sources of evidence were 162 

conditionally independent given outbreak status and seasonality of baselines, Vtot was calculated as: 163 

Eq.5   164 

and Opost_tot was calculated as: 165 

Eq.6   166 

 167 

4. Performance assessment 168 

Sensitivity (Se) and specificity (Sp) were calculated as: 169 

Eq.7  Se = TP / (TP+ FN) 170 

Eq.8  Sp = TN / (TN + FP) 171 

where TP is the number of true positive alarms, TN the number of true negative alarms, FP the number of false 172 

positive alarms, and FN the number of false negative alarms.  173 

The receiver operating characteristic (ROC) curve was generated in R by testing various alarm thresholds, and 174 

the areas under the curves (AUC) were calculated with the auc function of the package {flux}. A larger AUC 175 

represented a better detection performance. 176 

 177 

RESULTS 178 

1. Modeling time series and simulating data 179 

For all time series the best fits were obtained for NB distributions. The resulting models’ parameters are 180 

summarized in table 1 and corresponding baselines and predictions are shown in figure 1. The probabilities of 181 

observing n cases and the resulting value of V (p(E|H1)/ p(E|H0)) during a non-outbreak (p(E|H0)) and an 182 

outbreak (p(E|H1)) situation for each time series are summarized in figure 2.  183 
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2. Outbreak detection 184 

We estimated the respective performance of each univariate system (NervSy, DeadHorse, and DeadBird) in 185 

detecting WNV outbreaks without considering any a priori values for disease status (Opri=1). Examples of 186 

simulated baselines with inserted outbreaks and associated variations in log10(V) are presented in Appendix II 187 

figure 2. 188 

The best results for univariate outbreak detection were obtained for NervSy, which outperformed analyses 189 

using DeadHorse and DeadBird (figure 3 and table 2). DeadBird models yielded intermediary detection 190 

performances whereas models using DeadHorse were not able to discriminate between outbreak and non-191 

outbreak situations (AUC≈0.50). 192 

The best results for multivariate outbreak detection were obtained for analyses that combined NervSy with 193 

DeadBird data, which gave similar results to a combination of the three time series (figure 3 and table 2). The 194 

results of using NervSy combined with DeadBird were also better than those obtained with each time series 195 

alone. For example, for a specificity set at 0.80, the sensitivity of the detection reached 0.80 with the combined 196 

NervSy and DeadBird series whereas it was 0.67 with NervSy and 0.60 with DeadBird alone.  197 

 198 

DISCUSSION 199 

This is the first time that a real assessment of sensitivity and specificity has been implemented for WNV 200 

syndromic surveillance. Previous early warning systems developed for WNV only identified risk factors of WNV 201 

outbreaks, but did not evaluate the detection performances of those systems (Bellini et al., 2014b; Brown, 202 

2012; Chaskopoulou et al., 2013; El Adlouni et al., 2007; Gosselin et al., 2005; Rosà et al., 2014; Shuai et al., 203 

2006; Valiakos et al., 2014). Only two attempts to assess the sensitivity and specificity of surveillance have been 204 

made (Andersson et al., 2014; Leblond et al., 2007a) but the parameters of interest were only evaluated based 205 

on a limited number of outbreaks, which did not allow any conclusions to be drawn regarding overall system 206 

performance. Timeliness has occasionally been evaluated but only based on a limited number of real WNV 207 

outbreaks, and has not been associated with a further evaluation of system performance (Calzolari et al., 2013; 208 

Chaintoutis et al., 2014; Eidson et al., 2001; Johnson et al., 2006; Mostashari et al., 2003; Veksler et al., 2009). 209 
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In our study, we have refrained from assessing timeliness as there is currently little or no data to support 210 

assumptions on the temporal course on WNV outbreak in Europe especially in wild birds. Indeed, we are 211 

currently only able to estimate the number of cases expected during an epidemic time period, but not the 212 

difference between the number of expected cases at the start of an outbreak and later on. All the weeks within 213 

an epidemic time period are thus independent and have the same probability to have a high (or low) number of 214 

cases. In this situation, assessing which one is detected first would be not informative about the timeliness of 215 

our detection. However, further studies should be conducted on that point to rule on the efficiency of such 216 

surveillance in serving as early warning system for possible human viral infections.  217 

Our results indicated that when using a univariate detection method, NervSy was the best indicator of WNV 218 

outbreaks. This is consistent with the number of expected cases during an outbreak compared to the baseline 219 

of each time series considered (i.e. high number of case for NervSy, moderate number of cases for DeadBird, 220 

and low number of cases for DeadHorse). Indeed, models based only on the DeadHorse data resulted in poor 221 

detection performance at the regional level because mortality in horses is mainly due to causes other than 222 

WNV. To implement such surveillance system on the field, it would be necessary to assess the cost-223 

effectiveness of the system in order to define, in close collaboration with decision-makers, the best 224 

balance between sensitivity and specificity. In addition, the real representativeness of datasets are still 225 

unknown and should be assessed as they might have a great impact on systems performances. However, it is 226 

hoped that our promising results will promote the timely collection and analysis of relevant data and the 227 

implementation of such studies.  228 

The best detection performance was obtained using multivariate syndromic surveillance based on reports of 229 

nervous symptoms in horses (NervSy) and wild bird mortality (DeadBird). It is complicated to know how 230 

different datasets complement one another. However, we can expect that dead birds would be mainly used to 231 

signal the start of an outbreak and that horses confirm the occurrence. To our knowledge, this is the first time 232 

that multivariate syndromic surveillance has been implemented for WNV detection. Our results offer a wide 233 

range of opportunities but raise also questions regarding practical implementation on the field of such 234 

multivariate system. In the model, the value of evidence compares the probability of observing syndromes 235 

under baseline conditions and during a WNV outbreak and the calculation of specificity refers to false alarms 236 

from random aberrations. Consequently peaks in the syndromic data streams due to other causes such as (i.e., 237 
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equine herpes virus-1 for NervSy or Avian Influenza or intoxication for DeadBird) will be presented as evidence 238 

in favor of WNV. The Bayesian framework offers the possibility to include differential diagnoses and specify 239 

their prior probability and expected impact on the distribution of counts in each data-stream. Doing so would 240 

enable us to estimate the posterior probability and evidence in favor of a WNV outbreak. However, such a 241 

model would be very complicated and hard to support with data. Instead we explicitly define our hypothesis of 242 

interest. When the model triggers an alarm, the distinction between WNV and other diagnoses will be made 243 

using field investigations.  244 

The Bayesian framework is a comprehensive and logical way to combine syndromic data from several data-245 

streams and it seems well adapted for multivariate WNV detection using three indicators for WNV outbreak 246 

detection. This framework provides a means of weighting the results from syndromic surveillance and thus, 247 

additional information can be easily added. Then, a next step in the early detection of WNV outbreaks should 248 

be to test the efficiency of the method with other data, such as the predicted abundance of mosquitoes 249 

(Calistri et al., 2014; Rosà et al., 2014), environmental risk factors (Tran et al., 2014), and risk of introduction 250 

(Bessell et al., 2014; Brown et al., 2012). In addition, the Bayesian approach could be easily adapted to 251 

spatiotemporal analysis. Such approach could be especially relevant for WNV surveillance as there are strong 252 

links between environment and WNV outbreaks and as we expect local clusters of cases (e.g., (Leblond et al., 253 

2007b; Mostashari et al., 2003)). Without integrating a spatiotemporal approach, the usefulness of a 254 

multivariate syndromic approach could be limited especially for vector-borne diseases surveillance, and thus 255 

the next step would be to develop and test a spatiotemporal model. However, the quality of geographical 256 

information of reported cases used in our study are currently insufficient to implement spatiotemporal 257 

analysis. In future studies, it would be interesting to improve data quality in order to test if spatiotemporal 258 

analysis could also improve WNV detection and to rule on the usefulness of Deadhorse time series. Indeed, 259 

using another spatiotemporal scale, local clusters of deaths in horses might be used as a signal of a WNV 260 

outbreak.  261 

CONCLUSION  262 

The proposed approach gives promising results for improving surveillance of WNV in France, and maybe also 263 

more generally in Europe. It offers a comprehensive and logical way to combine syndromic data from several 264 
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data-streams which can be relevant to improve the surveillance of many other diseases (e.g., Bluetongue virus 265 

combining data from milk yield and stillbirths, or Japanese encephalitis combining data on nervous symtoms in 266 

horses and reproductive losses in swine). However, questions remain on the practical implementation on the 267 

field of such multivariate system especially regarding interpretation of combined signal, and detection’s 268 

timeliness to serve as an early signal for possible human WNV infections in Europe. It is hoped that our results 269 

will support the implementation of further studies to solve these questions and that they will contribute to 270 

develop more collaborative work between existing surveillance networks. 271 
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ILLUSTRATIONS 423 

Figure 1: Three time series considered. NervSy: number of declaration of nervous syndrome in horses without 424 

positive lab result. DeadHorse: number of dead adult horses collected by French fallen stock companies. 425 

DeadBird: number of dead wild birds autopsied with values above the 95% confidence interval deleted. Dotted 426 

lines = training data, solid black lines = test data, solid blue lines = predicted value, solid red lines = 95% 427 

Confidence interval. 428 

 429 

Figure 2: Value of evidence and probabilities of observing n cases during a non-outbreak (Base) and an 430 

outbreak (Out) situation. Base= distribution of distribution into the baseline, Out = distribution of cases related 431 
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to a WNV outbreak, Tot= distribution of cases during an outbreak (Base + Out), Log(V)= 432 

log10(p(n|outbreak)/p(n|baseline)). Out was estimated with fitdistr function of the package {fitdistrplus} and 433 

was based for NervSy on NB(mu= 3.12, theta =1.150), for DeadHorse on NB(mu= 3, theta =2.005), and for 434 

DeadBird on NB(mean= 2.23, theta=3.34). 435 

 436 

Figure 3: ROC curves for univariate and multivariate outbreak detection using NervSy, DeadHorse and 437 

DeadBird.  438 

 439 
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Negative binomial distribution 

AIC GOF RMSEc RMSEv 
Formulae theta mean 

NervSy	~	sin�2��� − 4� 18.33⁄ � + sin�2�� 26.5⁄ � 0.413 0.077 143 0.279 0.30 0.39 

DeadHorse	~	4 × �� − 4� 52⁄ + � + sin�2��� − 12� 53⁄ � 176 40.3 1063 1.016 7.06 8.57 

DeadBird	~	4 × �� − 4� 52⁄ + sin�2�� 26.5⁄ � 0.373 0.520 497 0.675 1.03 1.05 

 

Table 1: Models and models parameters obtained for the three time series. Theta is the dispersion parameter as defined in the function 

glm.nb (package {MASS}) in R x64 version 3.0.2.  
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 NervSy DeadHorse DeadBird 

NervSy & 

DeadBird 

NervSy & 

DeadHorse 

DeadHorse 

& DeadBird 
Total 

AUC 0.80 0.50 0.75 0.87 0.80 0.75 0.87 

Standard 

error 
0.0082 0.0097 0.0089 0.0068 0.0081 0.0089 0.0068 

 

Table 2: Area under the ROC curve (AUC) and standard error for univariate and multivariate outbreak detection using NervSy, 

DeadHorse and DeadBird.  
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Appendix I:  

 

Table 1: Variables tested for each time series available and for Poisson and negative binomial 

distributions 

 

Table 2: Negative binomial model used to remove extreme values from DeadBird using Tsui et al. approach 

Negative binomial distribution 
AIC GOF RMSEc 

Formulae theta mean 

DeadBird	~	8 × (3 + �) 52⁄ + sin(2�� 26.5⁄ ) 0.22 0.79 819 0.65 1.84 

 

Variable name Variable description 

year Year considered 

week Week of the year considered 

time Week number according to the total number of weeks available in the dataset 

season Season of the year considered 

month Month of the year considered 

sin sin(2*pi*(week/53) ) 

cos cos(2*pi*(week/53) ) 

period8 Round(week*8/52) 

period8shift Round((3+week)*8/52) 

season.shift2 Round((week-4)*4/52) 

sinX2 sin (2*pi* week/26.5) 

sinX2.shift sin (2*pi*(week-6)/26.5) 

sinminus6 sin (2*pi*(week-6)/53) 

sinminus12 sin (2*pi*(week-12)/53) 

sinminus18 sin (2*pi*(week-18)/53) 

sinX4.shift sin (2*pi*(week-3)/13.25) 

sinX4 sin (2*pi*(week)/13.25) 

sinX3.shift sin (2*pi*(week-4)/18.33) 

sinX3 sin (2*pi*(week)/18.33) 

histmean mean of the 53 previous weeks (and guard band of 4 weeks) 

Page 27 of 27

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Vector-Borne and Zoonotic Diseases

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly/Not for Distribution
Appendix II:  

Supplementary figure 1: Course of WNV outbreak considering mortality in wild birds, nervous 

symptoms in horses and mortality in horses: duration of syndromes and time lag between them. 

 

 

Supplementary figure 2: Examples of simulated baseline with inserted outbreak and corresponding 

variation of the value of evidence (V). solid black line = simulated data, solid blue line = predicted 

value, solid red line = 95% confidence interval, Dotted lines = log10(V) 
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