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 27 

Abstract 28 

Population dynamics studies in insects mostly focus on a specific life stage of a species 29 

and seldom consider different stages. In the framework of our research we studied the 30 

population demography of a protected Maculinea alcon ‘cruciata’ population and the 31 

factors that could influence the distribution of eggs. The results of the mark-recapture 32 

survey showed a relatively short flight period between mid-June and mid-July with 33 

clearly marked early peak period. Unlike in many other butterflies, proterandry was not 34 

strong. The total population of M. alcon ‘cruciata’ was estimated at 699 individuals. 35 

The survival rate, and consequently the average life span, was relatively low. Generally, 36 

males proved to be more mobile than females. Eggs showed a highly aggregated 37 

pattern, and egg numbers was positively related to general shoot size, while the number 38 

of flower buds and the features of the surrounding vegetation did not display any effect 39 

on egg laying. Based on our findings the studied population appears viable, but specific 40 

management techniques could ensure optimal conditions for egg laying in this protected 41 

butterfly. 42 

 43 

Key-words: host plant; mark-recapture; sex ratio; species conservation; survival; 44 

vegetation characteristics 45 
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Introduction 46 

 47 

Dynamics of insect populations, mostly in the case of pests, and more recently 48 

also in protected species, has been the subject of wide range of studies  (Hassell et al. 49 

1991, Way and Heong 1994, Hunter 2001, Yamamura et al. 2006, Thomas et al. 2009). 50 

Most of these studies though concentrate on a single life stage of an insect (e.g., adults, 51 

larvae), while usually neglecting the parallel investigations into other developmental 52 

stages, or the connection between them (Jones and Sullivan 1982, Elkinton and 53 

Liebhold 1990, Yamamura et al. 2006, Ordano et al. 2015). Admittedly, it is much 54 

easier, and therefore much more practical to determine the viability of any population 55 

based solely on the abundance of adults, consequently many pest control and species 56 

conservation actions primarily rely on such information (Jones and Sullivan 1982, 57 

Katsoyannos 1992, Steytler and Samways 1995, Sunderland and Samu 2000, Thomas et 58 

al. 2009, Vrezec et al. 2012). However, linking the dynamics of adults with e.g., egg 59 

laying patterns can offer a more precise picture of the sustainability of certain 60 

populations in a given area, since the viability of a population is primarily determined 61 

by the number of offspring produced in the study area, i.e., in the case of insects by the 62 

number of eggs and/or larvae (Begon et al. 1996). In winged insects, such as butterflies, 63 

which disperse very efficiently, this combined information is vital, since the mere 64 

presence of adults might not imply the persistence of a population in that area at all, it 65 

could merely be a sign of efficient dispersal of adults.  66 

The population dynamics of adult butterflies is frequently connected to weather 67 

conditions and environmental stochasticity (Melbourne and Hastings 2008, Nowicki et 68 

al. 2009, Cormont et al. 2013), while adult egg laying decisions, thus the fate of their 69 
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offspring primarily relies on the condition of host plants, the strength of intraspecific 70 

competition, predatory pressure or other habitat parameters (Stamp 1980, Wiklund 71 

1984, Bergman 2001, Czekes et al. 2014). Ovipositing females have to choose the 72 

optimal site for their offspring, as well as the best available host plant within the site. 73 

Additionally, the survival of the offspring can also be affected by the host plants’ direct 74 

or indirect responses to the presence of eggs and/or larvae as well (see Hilker and 75 

Fatouros 2015 for a review). In the present study we investigated the within-season 76 

dynamics of adult butterflies in the ‘cruciata’ ecotype of the endangered Maculinea 77 

alcon (featured in many former studies as Maculinea rebeli) while linking it to egg 78 

laying patterns and preferences. 79 

Large Blue butterflies of the genus Maculinea Van Eecke, 1915 (synonymised 80 

lately with Phengaris Doherty, 1891) are one of the most intensively studied butterfly 81 

groups in Europe, being considered flagship and umbrella species in nature 82 

conservation. They are highly sensitive to habitat changes, and the conservation of their 83 

habitats is beneficial to many other threatened species (Thomas et al. 1998a, Thomas 84 

and Settele 2004, Nowicki et al. 2005a, Settele et al. 2005). In the past decades severe 85 

declines were recorded in most of their Western European populations due to habitat 86 

fragmentation and intensification of agriculture (Van Swaay and Warren 1999, Van 87 

Swaay et al. 2010). They also raise specific scientific interest due to the intriguing 88 

obligate myrmecophylic lifestyle of their larvae (see Witek et al. 2010). Most 89 

Maculinea populations are small and isolated (Thomas et al. 1998b, Meyer-Hozak 90 

2000), characterized by density dependent regulation due to intra-specific competition 91 

between larvae on host plants and/or in host ant colonies (Hochberg et al. 1992, 92 

Nowicki et al. 2009). Long-term surveys have already shown the importance of weather 93 
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patterns (Roy et al. 2001, Cormont et al. 2013), but Maculinea populations are also 94 

affected by general habitat characteristics (Nowicki et al. 2007), and human activities 95 

(e.g., changes in agricultural practices) (Schmitt and Rákosy 2007). 96 

Despite a relatively large number of both field and modelling studies into the 97 

ecology of M. alcon ‘cruciata’ (e.g., Hochberg et al. 1992, Meyer-Hozak 2000, Árnyas 98 

et al. 2006, Oskinis 2012, Timuș et al. 2013, Czekes et al. 2014), hardly any of them 99 

investigated the adult population size and their egg laying behaviour at the same time 100 

(Meyer-Hozak 2000, Kőrösi et al. 2008). Furthermore, none of these studies combined 101 

the information from both sources in a joint analysis. Despite the need for complex 102 

information on populations of protected butterflies, such studies are generally rare in 103 

case of other butterfly species as well (see Bergman 2001). Consequently, the aims of 104 

our research were to (a) study the within-season dynamics of a M. alcon ‘cruciata’ 105 

population, while also (b) examining the temporal changes in the deposition of eggs, 106 

and (c) identifying the factors influencing the distribution of eggs. 107 

 108 

Materials and methods 109 

 110 

Study species and site 111 

Two major ecotypes of the butterfly M. alcon are differentiated based on their 112 

host plant: the hygrophilous form feeding on Gentiana pneumonanthe (previously 113 

treated as M. alcon), and the more xerophilous form feeding on G. cruciata (previously 114 

treated as M. rebeli, hereafter referred to as M. alcon ‘cruciata’). Recent molecular 115 

studies showed that the two forms cannot be regarded as different species (Als et al. 116 

2004, Bereczki et al. 2005, Steiner et al. 2006, Pecsenye et al. 2007). Nevertheless, in 117 

addition to habitat and host plant segregation, they typically use different host ant 118 
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species, and they also have different flight periods (Bereczki et al. 2005, Pech et al. 119 

2004, Sielezniew et al. 2012). M. alcon ‘cruciata’ prefers semi-natural calcareous 120 

grasslands (Bálint 1994, Pech et al. 2004, Rákosy and Vodă 2008), and it uses quite a 121 

wide range of host ant species from the genus Myrmica Latreille, 1804, which adopt 122 

them due to their efficient chemical and acoustical mimicry (see Fiedler 2006 and Witek 123 

et al. 2014 for a review). Their development continues inside the ant nest, where they 124 

are fed by the ant workers (Elmes et al. 1991). The flight period of adult butterflies is 125 

from mid-June to mid-July (Meyer-Hozak 2000, Kőrösi et al. 2008, Timuș et al. 2013). 126 

The conservation status of M. alcon is Least Concern according to the IUCN Red List in 127 

Europe and Near Threatened in the European Union (Van Swaay et al. 2010). 128 

The field study was performed on a 9252 m2 semi-natural calcareous dry 129 

grassland of southeastern exposure in the surroundings of Rimetea village 130 

(N46°27’51.45”, E23°33’46.26”, ca. 620 m a.s.l., Romania). The grassland is a plant 131 

species-rich meadow dominated by Brachypodium pinnatum, Carex humilis and 132 

Festuca rupicola with other characteristic species like Dorycnium pentaphyllum, 133 

Cytisus albus, Hieracium bauhinii, Teucrium montanum and Thymus serpyllum, and it 134 

is intensively grazed by goats and sheep. The meadow is partially surrounded by a 135 

mixed forest and shrubs of Crataegus monogyna, Prunus spinosa, Pyrus pyraster and 136 

Rosa canina. The site constitutes a part of the ROSCI0253 ‘Trascău’ Natura 2000 137 

protected site. 138 

 139 

Data collection 140 

a) Population dynamics survey 141 
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A mark-recapture study of adult M. alcon ‘cruciata’ butterflies was conducted 142 

between 15 June and 16 July 2012 covering the entire flight period. The survey plan 143 

followed the requirements of the Pollock’s Robust Design approach (Pollock 1982; 144 

Pollock et al. 1990), i.e. relatively infrequent but highly intensive capture days were 145 

established, which constituted primary sampling periods. The sampling took place on 146 

every fourth day, with a single exceptional case in which the interval between 147 

consecutive capture days was reduced to three days due to the forecast of unfavourable 148 

weather conditions on the following days. Butterflies were surveyed between 10 AM 149 

and 5 PM during five one-hour capture sessions, regarded as secondary sampling 150 

periods, and were separated by 30 min breaks to allow free mixing of butterflies 151 

between the secondary sampling periods. Captured individuals were marked on the 152 

underside of their hind-wing with unique identity numbers using a fine-tipped 153 

waterproof pen (© Schneider GmbH), and then immediately released at the place of 154 

capture. For each capture we recorded the date, the exact time and the position of each 155 

capture (GPS coordinates), as well as the identity number and the sex of the adult. 156 

 157 

b) Distribution of butterfly eggs 158 

 Prior to the adult butterfly survey we randomly placed out 22 sampling plots 159 

within the study site. The plots were circles of 2 m radius, as generally applied in the 160 

case of Maculinea species based on the average foraging radius of the host ant Myrmica 161 

(see Elmes 1975, Elmes et al. 1998), with a focal G. cruciata plant in the middle. 162 

Within the plots we recorded the number of all G. cruciata host plants, and the number 163 

of their shoots. Shoots were considered to belong to the same plant when they were 164 

obviously connected either above the soil surface. In order to minimise disturbance, we 165 
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recorded the number of eggs on the focal host plant within each plot (n = 22) only at the 166 

end of each mark-recapture sampling day. At the end of the whole study period we 167 

counted all eggs found on all host plant shoots within the sampling plots in addition to 168 

the characteristics of the host plants and general vegetation features. The following 169 

parameters were recorded: (a) the total number of butterfly eggs laid on the host plant 170 

shoots, and separately on different verticils, (b) shoot height as the length of the shoot 171 

(cm), (c) number of shoot leaves, and (d) number of flowers (only flower buds with 172 

coloured sepals were taken into account since small green flower buds are impossible to 173 

count sometimes) on separate verticils of shoots, (e) the number of host plants in each 174 

plot, (f) the maximum height of the surrounding vegetation (cm), and (g) the proportion 175 

of vegetation cover visually estimated to the nearest 5%. 176 

 177 

Data analysis 178 

Mark-recapture data was analysed with the use of Mark 7.0 program (White and 179 

Burnham 1999) applying the Robust Design (RD) model (Pollock 1982; Kendall et al. 180 

1995). The RD model allows relatively high precision of population estimates, and it 181 

has proved its applicability in butterfly population studies (Nowicki et al. 2008). The 182 

analyses were conducted separately for males and females, because sex-specific 183 

population parameters were of interest for our study. The data from capture sessions 184 

(i.e. secondary periods of the RD model) within sampling days were used to estimate 185 

daily population sizes for these days (Ni). In the estimation we accounted for individual 186 

heterogeneity in capture probabilities, since its existence was revealed by the tests for 187 

violations to equal catchability assumption (Otis et al. 1978; Chao 1988). In turn, the 188 

data pooled together within capture days (i.e. primary periods of the RD model) were 189 
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used for assessing survival rate between these days (φi). The model variant assuming no 190 

time variation in survival rate performed the best as indicated by its lowest value of the 191 

Akaike Information Criterion corrected for small sample (AICc; Hurvich and Tsai 192 

1989), which implies that adult survivorship was fairly constant throughout the flight 193 

period. Subsequently, we calculated the average adult lifespan as e = (1 – φ)–1 – 0.5 194 

(Nowicki et al. 2005b). 195 

Based on the estimates of daily population sizes and survival rates, we also 196 

estimated the recruitment (Bi), i.e. the numbers of individuals eclosing from pupae and 197 

entering the adult population during the intervals between consecutive capture days. As 198 

the adult life span was relatively short when compared with the length of these intervals 199 

(di), we used the formula of Nowicki et al. (2005a; see this reference for the rationale), 200 

which accounts for the individuals eclosing and dying within the same intervals: Bi
’ = d 201 

× (Ni+1 – Ni ∙ φ
d) × (φ – 1) / (φd – 1). The sum of recruitment for the entire flight period 202 

makes up seasonal population size (Ntotal). In a similar way, by summing female 203 

recruitments prior to each capture day, we derived the total numbers of females present 204 

until these days. 205 

To compare the distances covered by female and male butterflies we measured 206 

the distance between the two furthermost points where an individual was captured. We 207 

also measured the area of the polygon marked by the capture points of an individual in 208 

order to compare the area covered by female and male butterflies. The measurements 209 

were based on recorded GPS coordinates and conducted using Garmin Mapsource 210 

software (version 6.16.3, Garmin Ltd. 1999-2010). The flight distances and areas could 211 

be quantified only in the case of individuals which were captured at least twice (for 212 

distance), and three times (for area), therefore, due to the low recapture rate, a relatively 213 
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small data set was available for analysis (n = 11 females and 59 males for distance; n = 5 214 

females and 28 males for area). Wilcoxon signed rank test were used for the comparison 215 

of flight distances between males and females. Due to the low sample size a similar 216 

analysis was not performed for the area covered. 217 

Poulin’s discrepancy index (Rózsa et al. 2000) was used to characterize the 218 

distribution of eggs on all host plants within sampling plots recorded at the end of the 219 

study period. Biases in the distribution of eggs among different host plant verticils were 220 

checked with Generalized Linear Mixed Model approach (GLMM, Poisson error, 221 

maximum likelihood approximation; n = 133). The number of eggs laid on different 222 

verticils of egg bearing plant shoots was introduced as dependent variable, while the ID 223 

of verticil as independent factor. Sampling plot and plant IDs were introduced as nested 224 

random factors to handle dependency of data. Only egg data regarding the top four 225 

verticils were taken into account since no eggs were recorded on lower verticils. 226 

We tested the relationship between the estimated number of females present 227 

before each sampling day, and the total number of eggs laid in the same period (n = 8) 228 

in order to reveal whether the number of eggs laid is related to the number of female 229 

butterflies. Spearman rank correlation analysis was applied due to the lack of normality 230 

of both variables. In addition, the effect of the abundance of eggs already present on 231 

oviposition was checked by testing the relationship between the number of eggs present 232 

and the number of newly laid eggs in the following period for seven consecutive periods 233 

between the eight sampling days. Again, Spearman rank correlation analysis was 234 

applied in this case. 235 

 236 
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 The effects of host plant and vegetation characteristics on egg distribution were 237 

analyzed with the use of GLMM approach (Poisson error, maximum likelihood 238 

approximation; n = 410). Correlation between host plant characteristics were checked 239 

using Spearman rank correlation analysis due to non-normality of datasets. A principal 240 

component analysis (PCA) was applied to obtained uncorrelated derived variables for 241 

plant characteristics, and the principal components were used as independent variables 242 

in the GLMM analysis. The number of eggs laid on each focal host plant was 243 

introduced as a dependent variable, while independent variables were the host plant 244 

morphological characteristics (PC1 [correlated plant height and number of leaves] and 245 

PC2 [correlated number of flower buds]), the number of host plants in sample plots, the 246 

maximum height of the surrounding vegetation, and vegetation cover. Sampling plot 247 

and host plant IDs were introduced as random factors to handle dependencies. 248 

Automated model selection procedure was carried out, and the effects of different 249 

explanatory variables were averaged across the supported models with delta AICc < 4, 250 

i.e. those with the AICc differing by less than 4 from the best model (see Grueber et al., 251 

2011). 252 

 All statistical analyses were carried out using the R 3.1.1 Statistical Environment 253 

(R Development Core Team 2014) and Quantitative Parasitology 3.0 (Rózsa et al., 254 

2000). Normality of datasets was regularly checked with the Shapiro-Wilk test. Relevel 255 

function was used in order to carry out post-hoc sequential comparisons among factor 256 

levels when performing GLMM. GLMMs were carried out with the use of glmer 257 

function in lme4 package (Bates et al. 2014), and dredge function in MuMIn package 258 

(Barton 2015) was applied for automated model selection. Table-wide Bonferroni-Holm 259 

correction was applied in the case of sequential comparisons, such as Spearman rank 260 
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correlations and comparison of factor levels in the GLMM analysis concerning the 261 

location of eggs on different verticils. 262 

 263 

Results 264 

 265 

Demography of adult butterflies 266 

During the entire study we captured and marked 152 (67.5%) males and 73 267 

(32.5%) females, out of which 85 males and 14 females, respectively, were recaptured 268 

at least once. The total adult population was assessed at 699 individuals, with a 269 

relatively balanced sex ratio (55% males vs. 45% females) (Table 1). The estimated 270 

survival was fairly low, which translates in rather short adult lifespan of ca. 2 days with 271 

no major inter-sexual difference (Table 1). 272 

The butterfly had a relatively short flight period between mid-June and mid-273 

July, with a clearly pronounced peak occurrence in the early part of the period (Fig. 1). 274 

More than 50% of individuals emerged within the first week, and more than 80% within 275 

the first two weeks (Fig. 1). Besides, in comparison to many other species of butterfly, 276 

we found rather weak proterandry (cf. Pfeifer et al. 2000; Nowicki et al. 2005b): the 277 

number of females peaked only three days after the peak of males. 278 

Most of the butterflies clearly preferred the close proximity of shrubs (Fig. 2). 279 

The mean distance covered by males was 81.61 m (SD = ±56.99, min = 9, max = 217), 280 

and the mean area was 1766.98 m2 (SD = ±2260.67, min = 25, max = 8091). Females 281 

were less mobile, with a mean flight distance of 53.9 m (SD = ±57.72, min = 14, max = 282 

213), and with a mean area of 193 m2 (SD = ±289.19, min = 5, max = 684). Males 283 

covered significantly longer distances, than females (Wilcoxon signed rank test W = 284 

454, p < 0.05). 285 
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 286 

Egg laying dynamics and preferences 287 

At the end of the study altogether 94 eggs were recorded on a total of 410 G. 288 

cruciata shoots of 201 plants within the 22 study plots. More than 90% of the shoots 289 

lacked eggs, and the maximum number of eggs was 23 on a single shoot. The overall 290 

mean egg density was 0.47 eggs/plant, and 0.23 eggs/shoot (4.48 eggs/plant and 4.09 291 

eggs/shoot only for plants with eggs); while the mean host plant density was 0.72 292 

plants/m2 (9.05 plants/plot), and 1.48 shoots/m2 (18.6 shoots/plot). The distribution of 293 

eggs on plants showed a highly aggregated pattern (Fig. 3) as indicated by Poulin’s 294 

discrepancy index (D = 0.97). Eggs were laid only on the top four verticils of the plants. 295 

Most eggs were laid on the 2nd verticil (33.93% of total), but no significant differences 296 

were revealed between the number of eggs on the different verticils (GLMM, z ≤ 1.487, 297 

p = NS, n = 133). 298 

Eggs were recorded even during the first part of the study period on the focal 299 

host plants of the sampling plots (n = 22), even if less than 10% of the focal plants bore 300 

eggs on the 2nd sampling day (22.06). By the 6th sampling day (08.07) 63% of the plants 301 

had eggs, after this the percentage of egg bearing plants decreased (Fig 4.). The number 302 

of eggs laid before each capture period did not correlate with the number of females 303 

recruited in the same period (Spearman r = 0.53, p = 0.13, n = 8). In turn, the number of 304 

newly laid eggs correlated negatively with the number of eggs already present on host 305 

plants, the negative correlations between the two variables reached statistical 306 

significance level during all but two sampling periods (Table 2). 307 

Host plant morphological characteristics were mostly correlated according to the 308 

results of the Spearman rank-correlation analysis (n = 410): height vs. number of leaves 309 



14 

 

r = 0.5, p < 0.001; number of leaves vs. number of flower buds r = 0.25, p < 0.001; 310 

height vs. number of flower buds r = 0.10, p = 0.050. The PCA yielded 1st (PC1) and 2nd 311 

(PC2) principal components that explained 52% and 31% of the variance, respectively. 312 

PC1 represented plant height and number of leaves with loadings of 0.66 and 0.68, 313 

respectively, as a measure of general shoot size, while PC2 reflected the number of 314 

flower buds with a loading of 0.94. All input variables were retained in the best average 315 

GLMM model for egg laying preferences (Table 3), but only the general shoot size 316 

(PC1) had a significant positive effect on the number of eggs laid (z = 4.59, p < 0.001; 317 

Fig. 5), while none of the other variables displayed any significant effects (z ≤ 1.63, p = 318 

NS)  319 

 320 

Discussion 321 

 322 

The results of the present study show that the studied butterfly population 323 

appears fairly viable based on the comparison with other studies concerning the size of 324 

M. alcon ‘cruciata’ populations (Árnyas et al. 2005, Timuș et al. 2013). During a three 325 

year long MRR study Árnyas et al. (2005) found that on a 0.75 ha site the studied M. 326 

alcon ‘cruciata’ population was stable with nearly 1000 individuals, while Timuș et al. 327 

(2013) estimated the size of another population in Romania to 1073 individuals for a 40 328 

ha site. In comparison, the size of our studied population (699 individuals on ~1ha) 329 

suggests that the population is relatively big. Generally, Maculinea alcon populations 330 

show very small fluctuations (Hochberg et al. 1994, Elmes et al. 1996), thus there is a 331 

considerable chance that our studied population is stable. 332 

Similarly to other studies (Meyer-Hozak 2000, Árnyas et al. 2005), we found 333 

that the butterflies fly from mid-June to mid-July. In some cases the flight period takes 334 
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less than one month (Timuș et al. 2013), which can reflect differences in habitat or/and 335 

meteorological conditions of different populations. Although we found a relatively 336 

weak indication of proterandry, the peak emergence of males still preceded that of 337 

females. This phenomenon is in fact common for all Maculinea species and for 338 

butterflies in general. According to Elmes and Thomas (1987) the males pupate a few 339 

days before females, and thus during the initial part of the flight period the population is 340 

dominated by males. During the entire study we caught roughly twice as many male 341 

individuals as female, but the estimated sex ratio was relatively balanced, which 342 

corresponds with results of other studies (Árnyas et al. 2005, Timuș et al. 2013). 343 

Considerably higher capture and recapture rates of males may be attributed also to the 344 

fact that they fly more often and higher searching for the less mobile females. The latter 345 

tend to fly lower because they are searching for food plants in the undergrowth (Árnyas 346 

et al. 2005).  347 

Earlier mark-recapture and individual tracking studies suggested that Maculinea 348 

butterflies are highly sedentary (Hovestadt and Nowicki 2008, Kőrösi et al. 2008, 349 

Hovestadt el al. 2011, Skórka et al. 2013). Our results concerning adult mobility also 350 

support this fact. Keeping close to the place of eclosion can be an adaptation of these 351 

butterflies to myrmecophily (Hovestadt and Nowicki 2008). Inter-sexual differences 352 

were revealed by our study: males proved to be more mobile than females. On the other 353 

hand, similar research on other Maculinea species showed higher mobility in females 354 

(Kőrösi et al. 2012, Skórka et al. 2013), which could be attributed to females trying to 355 

decrease intra-specific competitive pressure among their offsprings (Nowicki and 356 

Vrabec 2011). However, all these studies were carried out on M. teleius and M. 357 

nausithous, i.e. species with more restricted habitat requirements (wet meadows) and 358 
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higher population densities in comparison to M. alcon ‘cruciata’, which prefers semi-359 

dry grasslands and has lower population densities (Meyer-Hozak 2000, Nowicki et al. 360 

2007). In our population the higher mobility of males is likely to stem from the high 361 

male/female ratio due to which males may need to cover larger areas in order to find 362 

mating partners. Therefore, male mobility may play a crucial role in gene flow in our 363 

population (Piaggio et al. 2009, Solmsen et al. 2011).  364 

Phytophagous butterfly species mostly lay their eggs separately one by one or in 365 

clusters (Stamp 1980 for a review, Vulinec 1990, Dixon and Guo 1993). Both strategies 366 

can influence positively the survival of eggs and larvae. Females can lower the chances 367 

of predation and competition for their offspring by depositing their eggs individually. In 368 

these cases eggs are usually cryptic (light yellow or green) and are laid on protected 369 

parts of the host plants (see Stamp 1980). Laying eggs in clusters can be advantageous 370 

when other factors can affect negatively the reproduction, like the patchy distribution of 371 

host plants, the scarcity of resources for larvae and adults, low population density or 372 

unfavorable weather conditions (Stamp 1980, Karlsson and Johansson 2008,. Karlsson 373 

et al. 2008). Besides, as clusters of eggs and larvae are more protected from desiccation 374 

when clumped together, clusters can ensure higher survivability through lower 375 

sensitivity to ambient conditions (Stamp 1980, Clark and Faeth 1998). During our study 376 

we found a low mean egg density per host plants (0.47 eggs/plant) compared to that 377 

recorded by Czekes et al. (2014) in another population (8.89 eggs/plant). In addition, the 378 

distribution of eggs among host plants showed a clearly aggregated pattern, thus most of 379 

the eggs were concentrated only on a few host plants. This could suggest the patchy 380 

distribution of host ants, however there is no convincing evidence yet that ovipositing 381 
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females can detect the presence of host ants (Van Dyck et al. 2000, Thomas and Elmes 382 

2001, Nowicki et al. 2005a, Fürst and Nash 2010, Wynhoff et al. 2015). 383 

The number of females did not explain the number of new eggs laid, which can 384 

also be attributed to the emigration of females. It is possible that some of the females 385 

present in the study area laid their eggs in the surrounding land fragments. Another 386 

cause of this result could be the perishing of a large amount of eggs during the egg 387 

laying season which can be attributed to an increased level of predation (Bergman 388 

2001), but also to meteorological factors and grazing of host plants. There was a 389 

negative relationship between the number of eggs already present on the plants and the 390 

quantity of newly laid eggs. This result could indicate that females would prefer laying 391 

eggs on empty plants or at least with a small amount of eggs present only. However, 392 

this evidence is very circumstantial, specifically designed study could only clear the 393 

effect of egg abundance on female ovipositing behaviour (see e.g. Kőrösi et al. 2008). 394 

Earlier studies about egg laying preferences showed that the most important 395 

factors influencing oviposition are the morphological characteristics of host plants, such 396 

as the height of the plant, the number, the size and the phenology of buds, and the 397 

number of leaves (Dolek et al. 1998, Nowicki et al. 2005a, Árnyas et al. 2006, 2009, 398 

Czekes et al. 2014, Wynhoff et al. 2015). In concordance with the aforementioned 399 

studies, our research suggests that females preferred the taller shoots with many leaves 400 

for oviposition. A visually conspicuous host plant (i.e. tall ones with many leaves) may 401 

be more attractive or more perceptible for females than smaller ones (Nowicki et al. 402 

2005a, Van Dyck and Regniers 2010, Czekes et al. 2014, Arnaldo et al. 2014, Wynhoff 403 

et al. 2015). The large number of eggs on tall plants with a high number of leaves can 404 

be beneficial for the butterflies due to an increased egg laying surface, decreased larval 405 
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competition, or even better climatic conditions. Wynhoff et al. (2015) suggested that 406 

larger host plants might provide high quantities of food for the caterpillars because of 407 

bearing later many fully developed flower buds. Maculinea alcon ‘cruciata’ females 408 

laid their eggs exclusively on the four top verticils of their host plants, which could be 409 

attractive sites for oviposition presumably also because of the lower predation risk for 410 

adult females (Van Dyck and Regniers 2010) and the better microclimate for larval 411 

development (Alonso 2003). In addition, ovipositing mostly on the 2nd verticil from the 412 

top, as suggested by our results, could ensure better climatic conditions to eggs through 413 

reduced exposure to sun and wind. 414 

Linking population demography data to oviposition preferences could help the 415 

protection of the focal butterfly species not only by offering data to nature 416 

conservationists, but also by revealing that specific management techniques could 417 

ensure better conditions for egg laying. Specifically, sustaining a low grazing pressure 418 

could have a positive effect on the butterfly population (WallisDeVries and Raemakers 419 

2001), and it would also keep shrubs from invading the grassland. 420 
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Table 1. Basic parameters of the investigated Maculinea alcon ‘cruciata’ population as 715 

revealed by the MRR study (95% confidence intervals in brackets). 716 

 Captured 

individuals 

Seasonal 

population 

Survival rate 

[day –1] 

Adult lifespan 

[days] 

Males 152 382 (305–496) 0.63 (0.57–

0.69) 

2.2 (1.8–2.8) 

Females   73 317 (219–480) 0.57 (0.34–

0.77) 

1.8 (1.0–3.8) 

All 225 699 (565–884) 0.62 (0.56–

0.68) 

2.1 (1.8–2.6) 

  717 
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Table 2. Spearman rank correlations (n = 22 in all cases) between the number of eggs 718 

present and the number of newly laid eggs on host plants on different capture dates. 719 

Statistically significant values are bolded. 720 

capture date Spearman r p 

19.06 -0.73 0.001 

22.06 -0.21 0.731 

26.06 -0.51 0.006 

30.06 -0.89 < 0.001 

04.07 0.04 0.861 

08.07 -0.74 < 0.001 

12.07 -0.91 <0.001 

  721 
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Table 3. The supported models according to the results of the automated model 722 

selection procedure. See the text for the explanations of the model variables. 723 

 724 

  725 

Model df logLik AICc ΔAICc  weight 

PC1+PC2 5 -119.61 249.37 0.00 0.25 

PC1+PC2+Height 6 -119.30 250.80 1.43 0.12 

PC1 4 -121.47 251.03 1.66 0.11 

Cover+PC1+PC2 6 -119.51 251.23 1.87 0.10 

Density+PC1+PC2 6 -119.56 251.33 1.96 0.10 

Density+PC1 5 -121.14 252.43 3.06 0.06 

Cover+PC1+PC2+Height 7 -119.16 252.61 3.27 0.05 

PC1+Height 5 -121.28 252.72 3.35 0.05 

Density+PC1+PC2+Height 7 -119.26 252.79 3.43 0.05 

Cover+PC1 5 -121.37 252.89 3.52 0.05 

Cover+Density+PC1+PC2 7 -119.46 253.20 3.84 0.04 
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Fig. 1. Dynamics of male and female adult butterflies throughout the study period based 726 

on mark-recapture estimates. Error bars represent 95% confidence intervals. 727 

Fig. 2. The (a) outline of the study site and the (b) distribution of male (black) and 728 

female (white) butterfly captures (recaptures included). 729 

Fig. 3. The frequency distribution of eggs on host plant shoots. 730 

Fig. 4. Temporal dynamics of eggs laid on the host plants during the flight period. Error 731 

bars represent Standard Deviations. 732 

Fig. 5. The number of butterfly eggs laid on host plants in relation to the host plant 733 

height and number of leaves (the circle area is proportional to the number of eggs laid). 734 
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