Nuclear Instruments and Methods in Physics Research B xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

The effect of the tramway track construction on the aerosol pollution in Debrecen, Hungary

E. Furu^{a,*}, I. Katona-Szabo^b, A. Angyal^a, Z. Szoboszlai^a, Zs. Török^a, Zs. Kertész^a

^a Hungarian Academy of Science Institute for Nuclear Research, Laboratory of Ion Beam Applications, H-4026 Debrecen, Bem tér 18/C, Hungary ^b University of Debrecen, P.O. Box 51, H-4001 Debrecen, Hungary

ARTICLE INFO

Article history: Received 29 July 2015 Accepted 7 August 2015 Available online xxxx

Keywords: Urban aerosol pollution Tramline construction $PM_{2.5}$ PM_{10} PIXE

ABSTRACT

In this study the effect of a new tramway track construction on the atmospheric aerosol concentration and composition in Debrecen, Hungary, was investigated. The tramway track construction started in 2011 and it was finished in 2013.

 $PM_{2.5}$ and PM_{10} daily samples were collected with a Gent type filter unit in an urban background site 2 times a week. In addition, a sampling campaign direct next to the construction site was performed with 2-stage personal samplers between the 21st and 30th of September, 2011 – four hours a day, during working hours.

We studied the change in concentration and composition of fine and coarse fraction aerosol in comparison with the average of the past 5 years. An additional goal was to investigate the personal aerosol exposure near to the construction sites.

In the urban background site a significant increase could be observed both for the $PM_{2.5}$ and PM_{10} concentrations for 2012 and 2013. In the elemental composition the concentration of Fe, Mn, Ni, and Cr increased significantly for the construction period.

The PM_{10} concentrations measured direct next to the construction site were 10–20 higher than those measured at our urban background site or the data provided by the Hungarian Air Quality monitoring network. Days with very high Pb pollution level (~3000 ng/m³) was also recorded.

© 2015 Elsevier B.V. All rights reserved.

BEAM INTERACTIONS WITH MATERIALS AND ATOMS

1. Introduction

Atmospheric aerosol pollution is one of the most concerned environmental problems in densely populated urban environments [1]. Atmospheric aerosol particles influence the climate, cause several environmental problems, such as air pollution, acidification of ecosystems, damage to buildings and in addition, they have negative effects on human health [2–7]. In order to regulate the particulate matter (PM) level the EU2008/50/EC directive "On ambient air quality and clean air for Europe" is in force in the member states of Europe, including Hungary, since 2008. However, detailed quantitative information is needed on the sources of PM pollution in order to work out effective mitigation strategies.

The main sources of urban air pollution across Europe were reported as traffic, mineral dust, sea salt and regional scale pollution (e. g. sulphate) [8,9]. However, large and medium scale construction and reconstruction works can have significant influence on the air quality level locally, for months or for years.

In this work we study the effect of a new tramline construction in the city of Debrecen, Hungary which took place between 2011 and 2013.

Debrecen is a second largest city in Hungary with about 200,000 inhabitants. It is situated in the Eastern part of the country 230 km from the capital, Budapest. The city is located between two landscapes Hajdúhát and Nyírség. The main activity is agriculture in the surrounding areas. Debrecen had 6 tramlines from 1884 to 1970, but due to the policy of the communist era these were all destroyed but one. From 1970 to 2014 only one tramline was operating. In 2010 the construction of the second tramline was started which was delivered in 2014. The new tramline construction was started with a press conference in March 2010. The ceremony of the kick-off meeting was in September 2010. Thereafter the construction begun with the excavations. The works were paused in 2012. During the pause plants were growing on the excavated track. The abandoned building debris (sand dunes) was exposed to the changing of the weather (wind and rain). After nearly a year of stagnation the building started again in 2013. The test operation of the new trams started in July 2013. Finally the new track was handed over in February 2014 and the new and modern tramcars

http://dx.doi.org/10.1016/j.nimb.2015.08.014 0168-583X/© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

started their works as well. Parallel to the development of the new track the old tram track was also renewed. The map on Fig. 1 shows the old and new tram tracks. Our urban background station is situated 500 m away from the new tramline, so we had a unique possibility to study the effect of the construction work on the concentration and composition of fine and coarse fraction aerosols in comparison with the average of the past 5 years. With the help of a personal sampler we also investigated the personal aerosol exposure near to the construction sites.

2. Sampling

The aerosol sampling was carried out at two locations. One was the garden of the Atomki which is situated about 500 m from the new tramline (see station no 1 on Fig. 1). Here we collect aerosol samples two times a week since 1988. The samplings were executed with a 2 stage Gent type samplers [10] equipped with Nuclepore polycarbonate filters of 8 μ m and 0.4 μ m pore diameters. This way two size fractions were separated: the fine fraction

Fig. 1. Map of the track of the old and the new tramlines, and the locations of the sampling sites. Red line: old tramline; blue line: new tramline, (1) sampling station at Atomki (urban background site), (2–4) sampling stations of the Hungarian Air Quality network (2 and 3 are urban background, 4 is a traffic site). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

E. Furu et al./Nuclear Instruments and Methods in Physics Research B xxx (2015) xxx-xxx

Table 1

Yearly average PM_{10} concentrations (in $\mu g/m^3$) measured at the 3 stations of the Hungarian Air Quality Network, PM_{10} , $PM_{2.5}$ and $PM_{10-2.5}$ annual mean concentrations (in $\mu g/m^3$) measured at the Atomki station, $PM_{2.5}/PM_{10}$ ratios and the annual precipitation (mm) for the years 2006–2014.

	2006	2007	2008	2009	2010	2011	2012	2013	2014
4.HAQN – PM ₁₀	34	30	33	28	32	35	29	30	34
2.HAQN – PM ₁₀	32	28	30	28	26	33	28	26	26
3.HAQN – PM ₁₀	36	28	28	29	30	34	29	27	29
Atomki – PM ₁₀	26	24	25	25	16	25	37	21	22
Atomki – PM _{10-2.5}	11	11	11	10	7	9	13	7	7
Atomki – PM _{2.5}	15	13	14	15	9	15	24	14	14
Atomki – PM _{2.5} /PM ₁₀	0.59	0.56	0.57	0.58	0.58	0.62	0.65	0.67	0.66
Precipitation	633	551	551	485	845	442	427	545	456

Fig. 2. Monthly average concentrations of PM_{2.5} (a) and PM_{10-2.5} (b) for the years 2006–2014. The dotted line corresponds to the moving average of 3 months.

 $(PM_{2.5}; particles with aerodynamic diameter smaller than 2.5 µm)$ and the coarse fraction $(PM_{10}-PM_{2.5}; particles with aerodynamic$ diameter between 2.5 µm and 10 µm). The sampler is installed at4 m above ground level, on the roof of the IBA Laboratory building.

Table 2

PM mass concentrations measured next to the construction by the personal sampling and the PM_{10} concentrations measured by the Hungarian Air Quality Network stations in 21–30 September, 2011.

	The constr	ruction	Hungarian Network s	Air Quality tations PM ₁₀	
	PM _{coarse} (μg/m ³)	PM _{2.5} (μg/m ³)	2HAQN (µg/m ³)	3HAQN (µg/m ³)	4HAQN (µg/m ³)
21.09.2011	269	24	26	28	24
22.09.2011	255	36	45	63	40
23.09.2011	196	36	34	51	26
26.09.2011	283	39	33	48	33
27.09.2011	596	51	45	57	43
28.09.2011	365	43	48	49	28
29.09.2011	584	33	26	24	15
30.09.2011	519	40	28	41	21

The air was pumped through the system with 16–18 l/min flow rate. The total volume of the infiltrated air was measured with a gas-meter. There were no sampling in September and October 2012 due to the reconstruction of the roofs and buildings of Atomki. The other type of aerosol collection was personal sampling. The sample collection was made by walking on the pavement next to the construction on 21–30. September 2011 – four hours a day. The weather was dry and warm on the sampling days. The samplings were carried out with a 2-stage Nuclepore personal sampler equipped with Nuclepore polycarbonate filters with 25 mm diameter and with 8 μ m and 0.4 μ m pore sizes. Thus the fine (PM_{2.5}) and coarse (particles with aerodynamic diameter larger than 2.5 μ m) particles were collected separately. For this purpose a Buck Elite personal pump was used. The air was pumped through the system with about 3 l/min flow rate.

3. Analysis

Mass concentration of the PM samples was determined by gravimetry. The polycarbonate filters were weighted before and

3

E. Furu et al./Nuclear Instruments and Methods in Physics Research B xxx (2015) xxx-xxx

Table 3 Yearly average, 1	ninimu	m and	maximum	i eleme	ntal cor	ncentrations	(in ng/.	m³) in fi	ne fraction	n from	2006 tc	o 2014 at 1	the Ato	mki.			2			¢	-		5	;	
2006			2007			2008			2009			2010			2011		7	112		70	13		17	14	
Average	Min	Мах	Average	Min	Мах	Average	Min	Max	Average	Min	Max	Average	Min	Max	Average	Min	Max An	/erage	Min N	1ax Av	'erage 1	Min N	1ax Av	/erage	\leq

	×))) 22			×	0 0 0 0 0
	Ma:	47(72(302 302 20 14(10 20 20 20 20 10 10 10 10 10 10 20 2 2 2 2			Ma	72(115: 133 135 135 135 15 15 15 15 15 15 15
	Min	10			Min	60 40 22 22 22 20 20 20 20 20 20 20
2014	Average	140 6 5 8 80 8 80 8 80 1 1 1 1 1 1 1 25 1 1 1 25 5 5 1 0		2014	Average	280 490 110 150 110 15 230 230 5 5 -
	Мах	1020 3055 2560 25660 1115 970 970 970 970 980 880 66 6 40			Max	1090 50 700 310 535 535 11550 1110 5 5 225 1310
	Min	10 170 170 110 111 111 111 111			Min	4 9 7 8 7 1 2 4 9 7 8 7 8 7 1 1 8 7 1 1 1 1
13	'erage	<u>899999999</u>		113	/erage	
20	AV AV	5 15 50 23 50 23 51 50 23 51 50 21 55 25 55 25 55 25 55 25 55 25 7 3 8 8 8 8		20	ax Av	805 22 120 45 70 11 70 11 70 15 810 95 810 95 810 95 810 95 810 95 810 95 810 95 810 95 810 95 810 15 15 15 15 15 15 15 15 15 15 15 15 15 1
	1in M.	20 25 25 25 25 26 20 20 20 20 20 20 20 20 20 20			1in M.	
	ge N	- 4 m ÷ m 4 0 − − − 0 0 − − − m 0 1 m			ge N.	
2012	Avera	175 250 8 8 1055 6 9 5 26 9 5 20 3 3 3 20 3 3 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		2012	Avera	235 510 150 150 35 95 240 15 15 240 55 240
	Max	730 1540 60 4440 75 375 50 100 825 825 60 60 160 160 160 65 65			Max	1200 4890 300 170 170 635 1345 90 60 1440 1440 20
	Min	040400005-000			Min	150 5 20 15 15 20 20 1 1 1 1
2011	Average	210 280 8 8 8 300 1110 110 110 110 115 110 20 20 320 33 33 9 33	יאנ	2011	Average	410 890 10 35 35 360 360 35 36 420 8 8
	Max	440 5560 555 50 655 655 655 300 3 300 3 300 50 50 51 10 110	he Atom		Мах	750 500 500 500 500 780 60 3 890 890 890
	Min	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)14 at ti		Min	30 40 25 25 25 25 25 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20
010	verage	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06 to 20	010	Werage	290 1355 65 65 11 15 30 30 1 1 1 1
2	fax A	90 260 555 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	irom 20	2	1ax A	670 5 335 5 335 5 335 1 335 1 410 1 70 2 330 2 230 2 230 2 230 2 25 2 25 2 25 2 25 2
	Min N	212 212 222 222 222 222 222 222 222 222	Faction 1		Min N	115 222 335 1 335 1 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6	rage l		.oarse fr	6	rage	
200	K Ave	15(0 285 0 986 0 986 11(11(110 1140 1140 115 5 5 5 5 5 5 5	in the c	200	(Ave	136 136 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 177 176 176 176 176 176 177 176 176 176 176 176 176 176 176 176 176 176
	n May	735 100 241 295 241 295 29 20 29 20 20 20 20 20 20 20 20 20 20 20 20 20	ng/m ³)		n Max	106 2955 2113 2113 257 257 113 257 113 257 113 257 113 257 257
	ge Mi	0 0 1 7 7 1 3 3 7 7 1 8 2 2 1 2 9 8 8 8 7 7 9 8 8 8 7 7 9 8 8 8 8 9 8 9	ons (in		ze Mi.	10 55 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2008	Avera	140 235 930 930 112 110 110 110 160 11 160 11 160 11 160 110	centrati	2008	Avera§	300 860 10 75 75 160 460 20 380 380 1
	Мах	670 1505 2870 35 770 770 7700 20 60 110 110 110	ital conc		Max	1090 3010 50 730 760 1560 80 3 3 1315 1315
	Min	8 4 4 25 25 25 25 15 10 21 2 10 10 10 10 10 10 10 10 10 10 10 10 10	elemen		Min	20 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2007	Average	170 2000 1010 100 100 100 1140 1140 20 20 20 20	aximum	2007	Average	325 870 10 170 45 440 20 21 1 380 380
	Max	365 690 40 750 180 180 180 330 3300 5 5 5 70	L and m.		Max	970 3245 35 35 370 370 560 1180 1180 55 55 55 33
	Min	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ini mumu		Min	20 90
2006	Average	90 150 210 11180 65 65 111 110 1110 25 5 5 5	erage, m	2006	Average	245 800 10 215 40 40 370 20 20 370 370 370 350
		PBBPR Zhun Zun Zun Zun Zun Zun Zun Zun Zun Zun Z	able 4 early av			Si F Mu Si F Mu Si Si Carona Si

Table 5	
PM coarse and PM _{2.5} elemental concentrations at the construction site by the personal samplin	ıg.

	PM coarse (n	g/m ³)			PM fine (n	g/m ³)		
	Min	Max	Average	SD	Min	Max	Average	SD
Al	2710	9820	5360	±2270	170	460	325	±110
Si	13,600	94,800	35,360	±25,280	655	4720	1600	±1325
Р	40	445	190	±120	9	100	20	±30
S	490	1240	780	±2902	440	2720	1430	±730
Cl	380	1020	645	±210	30	550	190	±180
К	2090	6530	3790	±1450	250	550	385	±90
Ca	6960	37,500	17,695	±11,860	320	1850	810	±480
Ti	305	1110	700	±265	15	50	30	±10
V	15	40	25	±10	-	-	-	-
Cr	10	190	90	±50	2	6	3	±1
Mn	105	350	210	±90	10	20	15	±3
Fe	3930	14,400	8205	±3530	310	875	470	±195
Со	15	50	30	±10	4	10	5	±3
Ni	20	50	35	±20	-	-	-	-
Cu	20	70	50	±20	6	35	20	±10
Zn	70	390	125	±110	20	40	30	±8
Br	20	30	20	±5	20	25	20	±3
Sr	50	155	90	±30	-	-	-	-
Ba	150	600	310	±145	20	25	20	±2
Pb	30	470	125	±145	8	3255	420	±1150

after the collection. The filters were conditioned for at least 24 h before weighing in the weighing box at \sim 25 °C temperature and \sim 60% relative humidity. The elemental composition of the aerosol samples were measured by particle induced X-ray emission (PIXE) analytical method in the Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI). The measurement were performed using the PIXE chamber of the IBA Laboratory installed on the left 45° beamline of the 5 MV Van de Graff accelerator [11]. The irradiation was performed with a H^+ beam of 2 MeV energy. The beam current was usually 20-50 nA and the measurement time was approximately 15-20 min. The accumulated charge was 40 µC on each sample. The obtained X-ray spectra were evaluated with the PIXYKLM program package [12,13]. Concentration of the following elements were assigned: Al, Si, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ba, Pb. The values of the concentration were given in ng/m^3 . For calculating the elemental concentration values blank corrections were carried out. The error of the determination of the elemental concentration varied between 3% and 10%, and the detection limit was between 0.2 and 20 ng/m³, depending on the element and its concentration.

4. Results

4.1. Mass concentration

Table 1 shows the annual average mass concentration of $PM_{2.5}$, $PM_{10-2.5}$ and PM_{10} measured at Atomki, and the annual PM_{10} concentrations measured by the Hungarian Air Quality Network (stations No. 2–4 on Fig. 1) before and after the years of the construction from 2006 to 2014.

The data of the mass concentration and the precipitation are inverse [14–15]. 2010 was an extremely rainy year, therefore the mass concentration was reduced compared to the other years. In 2006 – 2011 we measured lower PM_{10} concentrations in the Atomki than the HAQ at their stations. In 2012, the time of the abandoned work site and of the intensive field work, this tendency was reversed. This increase could be explained by the tramline construction. In addition, the contribution of $PM_{2.5}$ to PM_{10} increased from 56–58% to 62–67% in the years of the construction works. Time series of monthly average $PM_{2.5}$ and $PM_{10-2.5}$ are shown in Fig. 2. In 2006–2011 the seasonal variation the $PM_{2.5}$ concentration shows a maximum in winter and a minimum in

summer. In 2012 and 2013 this seasonal trend turned around with summer maximums. Then in 2014 it was again the normal, as before the construction. The concentration of $PM_{10-2.5}$ shows maximums in autumns and springs for the period of 2006–2011. In 2012 and 2013 summer maximums appeared too. In 2014 it was again the same, as before the construction.

In Table 2 we present the $PM_{2.5}$ and PM_{coarse} mass concentrations measured next to the construction site between 21 and 30. September 2011 by the personal sampling. The concentration of $PM_{2.5}$ varied between $24 \,\mu g/m^3$ and $51 \,\mu g/m^3$. Although the sampling time was only approximately 4 h, as a comparison we mention that the 24 h limit value of the WHO guideline for $PM_{2.5}$ is 25 $\mu g/m^3$ [16].

The concentration of the coarse fraction varied between 196 $\mu g/m^3$ and 596 $\mu g/m^3$. In the second week of the sampling the concentration values were nearly double as the values measured in the previous week. This can be attributed to the windy weather conditions on the second week. We compared our data with the PM₁₀ values measured for the same sampling periods by the Hungarian Air Quality Network at their 3 sampling stations. The distance of these sites were about 4 km from the tramline construction. In every case our values were 8–20 times higher along the construction than the official PM₁₀ data at the distant stations.

4.2. Elemental concentrations

For the period of 2006-2014 yearly average, minimum and maximum elemental concentrations are shown in Tables 3 and 4 for the coarse and fine fractions at the Atomki, respectively. Significant changes in the concentration of Cr and Ni could be observed in both size fractions. The concentration of Cr was increased about 40-50-fold in 2011 and about 20-fold in 2012 in both the coarse and the fine fractions. In case of Ni the increase of the concentration was about 8 times in 2011 and 5 times in 2012. The concentration of iron and manganese also increased. although with much less extent. Time series of Cr on the coarse fraction and Fe concentrations on the fine fraction can be seen on Fig. 3. The concentration increase appeared with the start of the field works, there was a significant decrease during the stop, and it increased again - to a lesser extent - for the finishing of the construction. The same tendency was observed in the case of coarse fraction Ni, and fine fraction Mn too. A slight increase (about

Fig. 3. Variation of Fe concentration between 2006 and 2014 on the PM_{2.5} fraction (a) and variation of Cr concentration between 2006 and 2014 on the PM_{10-2.5} fraction (b).

1.5–2 folds) in the concentration of Cu could be also observed for 2011–2013 in both size fractions. The variation of the other elements were not significant in this period.

Average elemental concentrations, minimum and maximum values are presented in Table 5 for the fine and coarse fractions measured next to the construction site by personal sampling.

In case of the coarse fraction Si and Ca were dominant. High concentration of Al, K, and Fe was also measured. In case of the coarse fraction we measured about 10 times higher elemental concentrations next to the construction than in the Atomki. These elemental concentration increases were 1.5-2 folds in the case of the fine fraction. The composition of the dust next to the construction was similar to the "usual" urban aerosol pollution, only it appeared in much higher concentrations. However, there were few exceptions. *P* is typically natural element but in this case it appeared in the anthropogenic fraction with higher enrichment factor. In the fine fraction the concentrations of Pb was usually under detection limit. However, one day, on 26. September we measured extremely high Pb concentration: 3255 ng/m^3 . The origin of this is not clear, one working phase could inject this high amount of

lead into the atmosphere. In the case of the coarse fraction the Pb/Br ratio was similar to that of the leaded gasoline, thus its origin could be the resuspended dust, despite the fact that leaded gasoline was not used for 15 years.

5. Summary and conclusions

In this study we have investigated the effect of a large scale construction work on urban aerosol pollution in the city of Debrecen, Hungary. We have compared the concentration data measured at several air quality monitoring stations situated at different distances from the construction. At the nearby station we have seen increase in both PM_{10} and $PM_{2.5}$ concentrations, however, at the more distant stations no or negligible effect was detected in the PM_{10} . In addition to the increase of the mass concentration, the contribution of $PM_{2.5}$ increased significantly at the nearby sampling site for the years of the construction work. The seasonal variation of both the $PM_{2.5}$ and the $PM_{10-2.5}$ fractions changed too; it showed summer maximums during the period of the building.

The elemental composition of atmospheric particulate matter did not change significantly, considerable increase in Mn, Cr, Fe and Ni concentrations was observed in our samples which could be attributed to the railroad building. However, at the construction site occasionally very high concentrations of heavy metals and toxic elements could be measured. In summary we can conclude that the effect of the tramline construction was local, did not expand to the whole city, only to about few streets nearby. However, those who lived or worked next to the construction were exposed to increased $PM_{2.5}$ and PM_{10} levels with high heavy metal contents continuously for years.

Acknowledgement

This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001, "National Excellence Program – Elaborating and operating an inland student and researcher personal support system convergence program". The project was subsidized by the European Union and co-financed by the European Social Fund.

This work was carried out in the frame of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program'.

References

 M. Amman, I. Bertok, J. Cofala, F. Gyarfas, C. Heyes, Z. Klimont, W. Schöpp, W. Winiwater, Baseline Scenarios for the Clean Air for Europe (CAFÉ) Programme, Final Report. <http://www.iiasa.ac.at/rains/CAFE_files/Cafe-Lot1_FINAL(Oct). pdf>, 2005.

- [2] N. Künzli, R. Kaiser, S. Medina, M. Studnicka, O. Chanel, P. Filliger, M. Herry, F. Horak Jr., V. Puybonnieux-Texier, P. Quénel, J. Schneider, R. Seethaler, J.-C. Vergnaud, H. Sommer, Lancet 356 (2000) 795–801.
- [3] N. Mahowald, S. Albani, J.F. Kok, S. Engelstaeder, R. Scanza, D.S. Ward, M.G. Flanner, Aeolian Res. 15 (2014) 53–71.
- [4] Gy. Varga, J. Kovács, G. Újvári, Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979–2011, Global Planet. Change 100 (2013) 333–342.
- [5] Climate Change 2007 The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Susan Solomon, Dahe Qin, Martin Manning, Melinda Marquis, Kristen Averyt, Melinda M.B. Tignor, Henry LeRoy Miller, Jr., Zhenlin Chen (Eds.), Published for the Intergovernmental Panel on Climate Change, Cambride University Press, 2007.
- [6] Ian M. Kennedy, Proc. Combust. Intstitute 31 (2007) 2757-2770.
- [7] I. Ozga, A. Bonazza, E. Bernardi, F. Tittarelli, O. Favoni, N. Ghedini, L. Morselli, C. Sabbioni, Atmos. Environ. 45 (2011) 4986–4995.
- [8] A. Wróbel, E. Rokita, W. Maenhaut, Sci. Total Environ. 257 (2000) 199–211.
 [9] C.A. Belis, et al., European Guide on Air Pollution Source Apportionment with
- Receptor Models, Report EUR 26080 EN, JRC, European Union, 2014.
- [10] W. Maenhaut, F. Francois, J. Cafmeyer, The "Gent" stacked filter unit (SFU) sampler for the collection of atmospheric aerosols in two size fractions: description and instructions for installation and use, IAEA, Vienna, 1994, pp. 249–263. IAEA-NAHRES-19.
- [11] Borbély-Kiss, E. Koltay, S. László, Gy. Szabó, L. Zolnai, Experimental and theroretical calibration of a PIXE setup for K and L X-rays, Nucl. Instr. Meth. Phys. Res., Sect. B 12 (1985) 496–504.
- [12] Gy. Szabó, I. Borbély-Kiss, PÍXYKLM computer package for PIXE analyses, Nucl. Instr. Meth. Phys. Res. Sect. B 75 (1993) 123–127.
- [13] Gy. Szabó, PIXEKLM Program, User Guide, ATOMKI, Debrecen, 2009.
- [14] Hungarian Central Statistical Office. http://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_met002b.html.
- [15] Hungarian Central Statistical Office. http://www.ksh.hu/docs/hun/xstadat/xstadat_evkozi/e_met002.html>.
- [16] WHO Air quality guidelines for particulate matter, ozone, nitrogen, dioxide and sulfur dioxide, Global update 2005, Summary of risk assessment, WHO/ SDE/PHE/OEH/06.02. http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf>.