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Abstract

This paper presents recent developments in using the CVBEM method for
" the study of the incompressible fluid’s non-stationary motion through a network
of profile grids, where the fluid’s non-stationary motion is caused by small vi-
brations of the blades. Based on the theory of linearizability, the non-stationary
motion is decomposed into a basic stationary motion and a non-stationary mo-
tion resulting from the vibrations of the blades with small amplitudes. Using
the fundamental integral equation of the non-stationary motions’s complex con-
jugate velocity, we establish the following two transfer kernels: G{z,() describ-
ing stationary effects and H(z, () describing non-stationary effects. We argue
that the integral equation can be solved using the indirect BEM method of the
non-stationary motion. 1

1 Introduction

The fluid’s motion through turbomachines is in general non-stationary due to the
vibration of hydraulic machinery blades or to the influence of the fluid viscosity.
Indeed, the workflow in a turbomachine can be regarded stationary only in the sense
that it is repeated cyclically over a full rotation of the rotor. However, according
to Samoilovitsch {1975), even this basic cycle is disrupted by various non-stationary
phenomena, for the following reasons. (a) The network layer is formed by a contour
whose radius varies along the flow. These variations lead to essential irregularities
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in velocity and pressure. {b) Further, as the stream’s structure is determined also
by the viscosity, the boundary layer at infinity yields irregularities in the velocity
around the network profiles. (c) Finally, the non-stationary components of the fluid’s
motion are caused also by the oscillations (vibrations) of the network profiles.

The perturbations introduced by these factors is manifested by the existence of
vortices in the network profiles. These perturbations are practically transmitted in
the profile traces and are preserved only on finite distances, after which they are
amortized. Even though the attenuation of the vortex intensity is asymptotic, from
the mathematical point of view it is safe to consider that the layers of free vortices
resulting from high intensity profiles are of finite length — see e.g. Kovics (2005,
1997); Popescu (1967); Samoilovitsch (1975},

Following this observation, in this paper we study the incompressible fluid’s
non-stationary motion through a network of profile grids, where the fluid’s non-
stationary motion is caused by small vibrations of the blades. IFor doing so, we
use the theory of linearizability in conjunction with the boundary element method
(BEM), as follows. Based on the theory of linearizability, we split the fluid’s non-
stationary motion in two parts: a basic stationary motion (Section 3) and a non-
stationary motion resulting from the vibrations of the blades with small amplitudes
(Section 4). Based on Kovées (2005, 1997), we establish the fundamental integral
equation of non-stationary motion’s velocity and apply the BEM method to solve the
non-stationary part of the fluid’s motion. To this end, we analyze the free vortices
around the network profiles and consider the fluid’s motion through the network
profiles variable over time.

2 Preliminaries

We consider the motion of an ideal and incompressible fluid through an infinite
network of profiles in the complex plane z = z + iy, with periodicity w = te'Z. We
assume a constant average stream at infinity upstream and downstream, and denote
respectively by Vi and Vi, the upstream and downstream velocities. Further,
the oscillations (vibrations) of network profiles are considered to be synchronous
harmonic, with a frequency f and a phase angle « from profile to profile. The
vibrations’ amplitude is assumed to be small. Finally, we consider a planar motion
relative to the xOy Cartesian coordinate system, where the Ox axis is oriented in
the flow direction such that it is perpendicular to the network’s director lane.

Definition 2.1 The compler coordinates zp are called the congruent points of the
network profiles if they satisfy the following condition:
2=z + ikt +af(2)efETFO . p=0,41,42,.., (1)

where T denotes the time, t is the network’s step, k is the number of network
profiles, a is the vibrations’ amplitude, the function f(z) = fo(z,y) +ify(z,y) de-
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fines the shape of vibrations, and j denotes the imaginary unit linked to the time
periodicity of processes that do not inferact with the imaginary unit 4.

Using the theory of linearizability, we conclude that the non-stationary motion
through profile grids can be studied as the composition of a basic stationary motion
and a non-stationary motion of perturbations. We thus have:

V{z) = wo(z) +w(z), (2)

where V(z) denotes the non-stationary motion’s complex conjugate velocity, Wo(z)
is the stationary motion’s complex conjugate velocity, and W(z} is the complex
conjugate velocity of the non-stationary motion of perturbations. Using Eq. (2),
in order to determine the non-stationary motion’s complex conjugate velocity V{z),
we thus need to establish and solve the integral equations of Wg(z) (see Section 3)
and W(z) (see Section 4). To this end, we make the following considerations.

Proposition 2.2 The complex conjugate velocity w(z) of the non-stationary motion
of perturbations satisfies the following conditions:

o W(z) is periodic w.r.t. the time T and step t of the network, and we thus have:
Wz +ikt,T) = w(z)edTTFD k= 0,41, +2,... (3)

o W(z) — 0 when £ — oo, that is, the non-stationary motion of perturbations
disappears at infinity, before and after the network.

Due to the non-stationary nature of the fluid’s motion, the circulation around
each profile depends on time. However, this time dependency contradicts Thomp-
son’s theorem according to which the circulation along a closed curve (e.g. along
the base profile Lg) is constant if the acceleration potential is uniform — see Kovics
(2005); Samoilovitsch (1975). For this reason, it is necessary to assume the exis-
tence of velocity discontinuities after each profile — see Fig. 1. These discontinuities
are in fact free vortex layers which continually emerge from the top of each profile.
Moreover, under the assumption that the fluid is incompressible and continuous,
these discontinuities modify only the tangential components w, of the w(2) velocity,
and the normal components wy, of the non-stationary motion of perturbations re-
main continuous. Similarly, the pressure fields are continuous and we conclude the
following property.

Proposition 2.3 The intensity nr(x, ) of free vortex layers is defined as

where 'w( ) £k) respectively denote the tangential velocities of the discontinuities

along the proﬁle Ly.
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When compared to the overall velocity, the non-stationary motion occurs with rel-
atively low velocities. We thus assume that the asymptotic downstream velocity of
vortex layers is Vaoce™ ¥ — see Fig. 1(b). Using Samoilovitsch (1975), we also assume
that the vortex traces are rectilinear, with high intensity and of finite length.

Proposition 2.4 [Kovdes (2005); Samotlovitseh (1975)] The intensity iz, 7) of
Jree vortices is determined by the bound vortices vy (x,T), that is by the circulation
amund the profiles, as follows:

1 /dT; .
ez, 7) = 2w, = _-TT(_) ) (5)
200 =T%
where T — T, = TZ% and Ty = Tox - e=*7 denotes the circulation’s stationary

part around Ly,

3 Integral Equation of the Stationary Motion’s Velocity

In Kovécs and Kovécs (2009) we showed that the hydrodynamics of network profiles
admits precisely four boundary problems, as listed below.

Problem 1 (P1): The motion of an incompressible fluid through profile grids,
where the complex potential is a holomorphic function and the domam is
infinite-connex;

Problem 2 (P2): The motion of a compressible fluid through an isolated profile,
where the complex potential is not a holomorphic function and the domain is
simple-connex; _

Problem 3 (P3): The motion of a compressible fluid through profile grids, where
the complex potential is not a holemorphic function and the domain is infinite-
connex;

Problem 4 (P4): The motion of a compressible fluid through profile grids on an
axial-symmetric flow-surface, in variable thickness of stratum, where the com-
plex potential is not a holomorphic function and the domain is infinite-connex.

The above listed problems can be solved using BEM — see Kovédcs and Kovécs
{2009). Moreover, solving problem P4 yields also solutions for problems P1, P2, and
P3. That is, by appropriately adjusting the fluid’s density p and stratum thickness
h, problems P1, P2, and P3 become special cases of P4.

For computing the stationary motion’s velocity wg(z) in Eq. (2), in this paper
we are interested in solving P1. As argued in Kovécs and Kovécs (2009), when both
p and h are constant, then P4 becomes P1. Using the theory of p-analytic functions
~ from Polojii (1973) and the Cauchy integral equation of p-analytic functions, the
integral equation of the complex conjugate velocity @5 (z) is derived in Kovacs (1997);
Kovécs and Kovacs (2003) as given below:
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T5(2) = Vo + /L GO, G50 =5actai (-0, (©)

where V,,, = Ll—"&igE is the asymptotic mean velocity and G(z, () defines the kernel
of the stationary motion. Let y(s) denote the intensity of bound vortices and g(s)

the intensity of profile sources. Using the hydrodynamic relation wW(()d{ = (fy(s) +
féq(s)) ds, from Eq. (6) we get:
w(z) =Vt [ G 0)(2(6) +ia(s)) ds(0) %
Lo

and conclude the following thecrem.

Theorem 3.1 In the case of the incompressible fluid’s stationary motion, the sta-
tionary compler velocity Wo(z) in point z € D™ results from the composition of the
following two complex velocities:

o the stationary velocity of the asymptotic motion, determined by Vp,;
e the stationary velocity resulting from the sources v(s}+iq(s) elong the profile Lg.

We note that Theorem 3.1 allows one to solve problem P1 by using the BEM
method. To this end, in Kovécs and Kovacs (2003) a calculus algorithm for deriving
the fluid’s stationary veloeity was given.

4 Integral Equation of the Non-Stationary Motion’s Ve-
locity

Let Cr,k € Z denote the closed curves around the profiles and their [ree vorfex
layers. In what follows, Ly, k € Z denote the profile contours, L} the free vortex
lines, and D: and D;: the Internal and, respectively, the external domain of the
profiles L, situated in a periodical strip with width ¢ — see Fig. 1(a). Due to the
periodic nature of the fluid’s motion, it is sufficient to study the fluid’s motion in
the external domain Dy of the principal periodical strip containing the base profile
Ly — see Fig. 1({b).

We make the following observations over Fig. 1(a). The contour C, enclosing the
field point z € D, is composed by slices and we have: C = Loo— 3> 5o _ ., C. Using
the Cauchy integral equation for multiple-connex domains, the following equation
then defines the perturbation’s complex velocity (z):

W(Cx )k
Z 2m,/c Cph—2z (8)

By Proposition 2.2, we have w(z) — 0 when z — $oo. That is, the complex
velocity of the perturbations’ non-stationary motion disappears at infinity, before

— 1 w(()d¢
w(z) = % w 2
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Figure 1: (a) Velocity discontinuities on profiles. (b) Velocity discontinuities on Lg.

and after the network. Based on Liouville’s theorem, we conclude that the integral
entity over Lo in Eq. (8) becomes constant, and thus zero. We further note the
motion’s periodicity w.r.t. the network’s step £. From Proposition 2.2, we have
w({ + ikt) = w(¢)e~7**. Based on these cbservations, Eq. (8} becomes as follows:

_ oo w(()e Tk
w(z) = %35‘00 (Ek:foo%)dc

’ oo jka e ko _ (9)
= 2 e, (leg + 2 ke (z—eg—e—z'kt + z—gjikt)) w(()d¢.

From the Euler relations, we have e¥7%* = coska + jsinkae. Using the series

representation of the cotangent function, we obtain ctgz = % 1 m + ﬁ)

and ctgz = icthiz. According to Samoilovitsch (1975), Eq. (9) then becomes:

1 oo jha —jko h(‘-‘l’*—&}(z—ﬁ) {:lr—a!!zgc}
z—C+Z( : T e ) = - D) i 3 (10)
Nz —C+i z—( — ikt ' ¢ sh=&: Sh‘rr(zt—c _

By using Eq. (10) in conjunction with the curvilinear integral properties on
Co = LoULj and applying the indirect BEM method to the integral equation Eq. (9)
of the perturbation’s complex velocity, we derive the following relation:

BE) = He GO+ f (GO, (11)

here H L [ enlz=ede=0) sp{F=@)(z=0)
_ 1 iy ) : .
where H(z,{, @) = 5= D ij e |- Consider now a point ¢ € Lg.

The perturbation’s complex velocity in ¢ is then:

w(¢) = (¢} +T(¢), - (12)
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where T(() is the perturbation’s velocity on the contour, that is the perturbation’s
relative velocity; and Tg(z) is the velocity resulting from the profile oscillations, that
is the perturbation’s transfer velocity. By replacing Eq. (7), Eq. (11) and Eq. (12)
in Eq. (2), the fundamential integral equation corresponding to the complex velocity
V(z) of fluid’s non-stationary motion is given below:

V) = Vit Ji, G Q0s) +iglsNds(Q) + i, Bz, 6, 2)(0(s) +ig())ds(6)
+ Jos Hiz, G o) (n(s) +ig(s))ds(Q) + [1) H(z (s a)mo(()dS,

where (s) + ig(s) represents the bound sources intensity on Lo, and 5(s) -+ ig(s)
the sources intensity on the discontinuity lane L. Following Eq. (13), we derive the
following theorem.

Theorem 4.1 In the case of the incompressible fluid’s non-stationary motion, the
fluid’s complex velocity V(z) in point z € D™ results from the composition of the
following five complex velocities: '

o the stationary velocity of the asymptotic motion, determined by Vp,;

e the stationary velocity resulting from the sources v(s) + ig(s) along Lo;

o the perturbation velocity resulting from the sources v(s) + ig(s) along Lo;

o the perturbation velocity resulting from the sources n(s} +iq(s) along the discon-
tinuity lane LY of the free vortices n(s);

o the transfer velocity resulting from the oscillations of Ly, determined by the ve-
loeity T(().

¥rom Theorem 4.1, we conclude that the fluid’s non-stationary motion is deter-
mined by the following two kernels: G{z, () defining the transfer kernel of stationary
effects, and H(z, (,«) characterizing the transfer kernel of the perturbations.

5 Conclusions

Using the theory of linearizability, we showed that the fluid’s non-stationary motion
through a network of profile grids is determined by a basic stationary motion and a
non-stationary perturbation motion resulting from the vibrations of the blades and
the fluid’s viscosity. Using the BEM method, the fundamental integral equation of
the fluid’s non-stationary motion was derived. We argued that the fluid’s motion is
characterized by the transfer kernel G(z, {} of stationary effects in conjunction with
the transfer kernel H(z, {,a) of perturbations.
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IMPROVEMENT OF THE FORECAST OF
STATIC ECONOMIC PROCESSES

Yuri MENSHIKOV
Dnepropetrovsk University, Ukraine

Abstract

In work the problem of synthesis of mathematical model of economic process
is oxamined in deterministic statement. It is supposed that the amount of
measurements by each variable minimally and coincides with number of variable
in model. Such problem can also be named as fast identification of parameters
of mathematical model of economic processes. The some possible variants of
statement of such problem are considered. The retrospective test calculation
on real measurements were executed for comparison with known ruethods. 1

1 Imntroduction

The classical problem of parameters identification of linear stationary many-dimensional

model consists in synthesis of linear connection between the chosen characteristics
of process qi, ¢z, gs..-, ¢» Grop (1979). For simplicity we shall consider only problem
of construction of linear model:

g1 = 2192 + %293 + - + Zn—1Gn T 2, (1)

where 21, 22, ..., 2, - unknown coeflicients of stationary mathematical model.

Let’s denote 2T = (21,722,273, 2a),(.)7 - the mark of transposition. It is
supposed that for everyone variable ¢;(i = 1,2, ..,n) we have m of measurements
gie(k = 1,2, ...,m),n < m. Let’s designate of = (g, @2, Gizs s Qim )-

This problem can be reduced to the solution of the redefined linear non-uniform
system of the algebraic equations which are being executed, as a tule, by method
of least, squares Grop (1979). It is supposed that statistical characteristics for all
variables are given. However, the similar information can he received only on the
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