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Abstract: The control of physiological systems is a highly demanding task. The requirements
are strict and there is a little margin of error, since failure can directly endanger the patient’s
life. In the same time the performance of the available sensors and actuators are limited in
most cases, leaving even higher burden on the control algorithm. Finally the models themselves,
which can describe the biophysical and biochemical processes that are most significantly linked
to the system we wish to regulate, are rather complex and nonlinear in nature. In general, linear
model-based approaches are used, but linearization gives a first source of errors in the further
development. The aim of this paper is to investigate two frequently used models describing the
metabolism of the human body in case of Type 1 Diabetes Mellitus (T1DM) from nonlinear
control perspective: the model presented by Magni et al. (2009) and Hovorka et al. (2004). These
models will be investigated using differential geometric approach for the first time.
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1. INTRODUCTION

Glucose is the primary source of energy for the human
body. The blood glucose level is maintained through a
complex endocrine system of the human body, and kept in
a narrow range (70 - 110 mg/dL). Insulin pays a key role in
the process, and when insulin secretion or insulin action is
impaired (leading constantly to hyperglycemia), diabetes
is diagnosed Fonyo and Ligeti (2008). Type 1 Diabetes
Mellitus (T1DM) is the former case being characterized by
complete pancreatic β-cell insufficiency, and the treatment
usually involves glucose concentration measurements, and
subcutaneous insulin injections. From an engineering point
of view, the treatment of diabetes mellitus is a control
problem that aims to realize the ”artificial pancreas”,
an automated system that can replace the partially or
totally deficient blood glucose regulation. It has three main
components (Cobelli et al. (2009), Harvey et al. (2010)):
continuous glucose sensor for measurements, insulin pump
for infusion and control algorithm.

Numerous models appeared in the literature to capture the
dynamics of the glucose-insulin household (Bergman et al.
(1981), Sorensen (1985), among others), some already con-
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taining components to represent the subcutaneous route
of glucose and insulin (Magni et al. (2009), Hovorka et al.
(2004), Palumbo et al. (2011a)), since this is where the
commercially available sensors and pumps access the hu-
man body in case of a patient not under direct medical
supervision (Chee and Fernando (2007)).

The nonlinearity in each of the above mentioned models
represent specific control aspects, but the applied control
strategies are usually developed for their linearized (i.e.
working point based) versions. Considering the strict re-
quirements the controller should meet, it would be advan-
tageous to consider an approach using nonlinear control
theory(Isidori (1995)). Differential-geometry based control
has already appeared in the literature (Palumbo et al.
(2011a), Palumbo et al. (2011b)), but the complexity of
these methods applied to systems of 10th order or above
(Kovacs et al. (2011)) has so far limited their use on the
most frequently used T1DM models.

The current paper investigates two of these models pre-
sented by Magni et al. (2009) and Hovorka et al. (2004)
(referred as Type 1 Meal model and Hovorka model), using
differential-geometry based control techniques. The results
presented may further the efforts in controller develop-
ment, leading to more effective control laws. The paper is
structured as follows. First, the two models are presented.
This is followed by the nonlinear control analysis present-
ing certain properties of the models, such as controllability,
observability and relative degree. Section IV concludes the
paper and formulates further research directions.
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2. TYPE 1 DIABETES MODELS

In this Section, the two mostly used T1DM models will
be briefly summerized. Both models were restructured,
and slightly modified, so that they would only contain
continuously differentiable functions. The effect on the
model will be insignificant with well chosen parameters.

2.1 The Type 1 Meal model

The 13th-order model presented by Magni et al. (2009) is
the following:

ẋ1(t) = f1(x(t)) = −kscx1(t) +
ksc
VG

x2(t)

ẋ2(t) = f2(x(t)) = −k1x2(t) + k2x3(t) +
kabsfgutx13(t)

BW
−

−Uii +
(
kp1 − kp2x2(t)− kp3x5(t)

)
·

·
(

1
2

+
1
π
atan

(
M(kp1 − kp2x2(t)− kp3x5(t))

))
−

−ke1
(
x2(t)− ke2

)(1
2

+
1
π
atan

(
M(x2(t)− ke2)

))
ẋ3(t) = f3(x(t)) = k1x2(t)− k2x3(t)− Vmxx3(t)x4(t)

Km + x3(t)
−

− Vm0x3(t)
Km + x3(t)

ẋ4(t) = f4(x(t)) = −p2x4(t) +
p2

Vi
x7(t)− p2Ib

ẋ5(t) = f5(x(t)) = −kix5(t) + kix6(t)

ẋ6(t) = f6(x(t)) = −kix6(t) +
ki
Vi
x7(t)

ẋ7(t) = f7(x(t)) = −(m2 +m4)x7(t) +m1x8(t)
+ka2x9(t) + ka1x10(t)
ẋ8(t) = f8(x(t)) = m2x7(t)− (m1 +m3)x8(t)
ẋ9(t) = f9(x(t)) = −ka2x9(t) + kdx10(t)

ẋ10(t) = f10(x(t)) +
u(t)
BW

= −(ka1 + kd)x10(t) +
u(t)
BW

ẋ11(t) = f11(x(t)) + d(t) = −kgrix11(t) + d(t)
ẋ12(t) = f12(x(t)) = −kempt(t)x12(t) + kgrix11(t)
ẋ13(t) = f13(x(t)) = −kabsx13(t) + kempt(t)x12(t)

(1)

where the state variables are: x1(t) subcutaneous glucose
concentration [mg/dL], which represents also the output
of the system, x2(t) and x3(t) glucose in plasma and
rapidly equilibrating tissues, and slowly equilibrating tis-
sues respectively [mg/kg], x4(t) insulin in interstitial fluid
[pmol/L], x5(t), x6(t) state variables of the delayed insulin
signal [pmol/L], x7(t) and x8(t) insulin mass in plasma
and liver [pmol/kg], x9(t) monomeric insulin in the sub-
cutaneous tissue [pmol/kg], x10(t) polymeric insulin in
the subcutaneous tissue [pmol/kg], x11(t) amount of solid
phase glucose in stomach [mg], x12(t) amount of liquid
phase glucose in stomach [mg], x13(t) glucose mass in the
intestine [mg]. u(t) injected insulin flow [pmol/min] is the
input of the system, while d(t) amount of ingested glucose
[mg/min] is considered as disturbance. The parameters of
the model are ksc rate parameter [1/min], VG distribution
volume of glucose [mg/dL], k1, k2 rate parameters [1/min],
kabs rate constant of intestinal absorption [1/min], fgut
fraction of intestinal absorption which actually appears in
plasma [-], BW body weight [kg], EGPb basal value of
endogenous glucose production [mg/kg/min], Uii insulin-
dependent glucose utilization [mg/kg/min], kp2 liver glu-
cose effectiveness [1/min], kp3 indicator of effect of a

delayed insulin signal
[

mg·L
kg·pmol·min

]
, Gpb basal value of

glucose mass in plasma and rapidly equilibrating tissues
[mg/kg], Idb basal value of delayed insulin signal [pmol/L],
ke1 renal glomerular filtration rate [1/min], ke2 renal
threshold [mg/kg], Km0, Vm0, Vmx model parameters for
insulin-dependent glucose utilization, kgri rate of grinding
[1/min], kempt(t) rate of gastric emptying [1/min], p2 rate
constant of insulin action [1/min], VI insulin distribution
volume [L/kg], ki model parameter of the delayed insulin
signal [1/min], m1, . . . ,m4 rate parameters of the insulin
subsystem [1/min], ka1, ka2 absorption constants [1/min]
and kd degradation constant. The parameter kempt(t) is
time-varying, and can be computed from:

kempt(t) = kmin +
kmax + kmin

2
·

·
(
tanh(α(x11(t) + x12(t)− b ·D) + 1

) (2)

where kmin and kmax stand for the minimal and the
maximal value of kempt(t) respectively. D is the total
amount of carbohydrate the meal contained [mg]. The
rate of gastric emptying is on its minimal value when the
amount of ingested glucose (x11(t) + x12(t)) is zero, but
as it increases, kempt(t) starts rising with the rate α and
reaches the value (kmin + kmax)/2 at the b percentage of
D. Finally kempt(t) = kmax if x11(t) + x12(t) = D.

2.2 The Hovorka model

The 11-th order model presented by Hovorka et al. (2004),
and later updated by Wilinska et al. (2010), can be
described by the following differential equations:

ẋ1(t) = f1(x(t)) = −ka,intx1(t) +
ka,int
VG

x2(t)

ẋ2(t) = f2(x(t)) = −
(

F s01
x2(t) + VG

+ x4(t)
)
x2(t)+

+k12x3(t) +
x10(t)
tmax

− Phy(t)−Rcl(x2(t)−

−RthrVG)
(

0.5 +
1
π
atan

(
M(x2(t)−RthrVG)

))
+

+EGP0(1− x6(t))
(

0.5 +
1
π
atan

(
M(1− x6(t))

))
+

+
(
UG −

x10(t)
tmax

)
ω1(t)

ẋ3(t) = f3(x(t)) = x4(t)x2(t)−
(
k12 + x5(t)

)
x3(t)

ẋ4(t) = f4(x(t)) = −kb1x4(t) + SIT kb1x7(t)
ẋ5(t) = f5(x(t)) = −kb2x5(t) + SIDkb2x7(t)
ẋ6(t) = f6(x(t)) = −kb3x6(t) + SIEkb3x7(t)

ẋ7(t) = f7(x(t)) =
ka
VI
x8(t)− kex7(t)

ẋ8(t) = f8(x(t)) = −kax8(t) + kax9(t)
ẋ9(t) = f9(x(t)) + u(t) = −kax9(t) + u(t)

ẋ10(t) =
(
UG

(
x11(t)
x10(t)

− 1
)
− x11(t)− x10(t)

tmax

)
·

·ω1(t) +
x11(t)− x10(t)

tmax
ẋ11(t) = f11(x(t)) +Bio ·D(t) = Bio ·D(t)−

−x11(t)
tmax

−
(
UG

x11(t)
x10(t)

− x11(t)
tmax

)
ω1(t)

(3)

where the state variables are: x1(t) glucose concentration
in the subcutaneous tissue [mmol/L] representing also the

8th IFAC Symposium on Biological and Medical Systems
August 29-31, 2012. Budapest, Hungary

56



output of the system, x2(t) and x3(t) represent the masses
of glucose in accessible and non-accessible compartments
[mmol], x4(t), x5(t) and x6(t) remote effect of insulin on
glucose distribution, disposal and endogenous glucose pro-
duction respectively, x7(t) insulin concentration in plasma
[mU/L], x9(t) and x8(t) insulin masses in the accessible
and non-accessible compartments [mU], x10(t) and x11(t)
glucose masses in the non-accessible and accessible com-
partments of the gut [mmol]. u(t) injected insulin flow of
rapid-acting insulin [mU/min] is the input of the system,
while D(t) amount of ingested carbohydrates [mmol/min]
is considered as disturbance. Phy(t) effect of physical
activity [mmol/min] does also act as a disturbance, but
will be considered as a slowly changing time-variant pa-
rameter. The parameters of the model are ka,int transfer
rate constant between the plasma and the subcutaneous
compartment [1/min], VG distribution volume of glucose
in the accessible compartment [L], F s01 parameter of the
total non-insulin dependent glucose flux [mmol/min], k12

transfer rate constant from the non-accessible to the ac-
cessible compartment [1/min], Rcl renal clearance con-
stant [1/min], Rthr glucose threshold [mmol/L], EGP0

endogenous glucose production extrapolated to the zero
insulin concentration [mmol/min], tmax time-to-maximum
appearance rate of glucose in the accessible compart-
ment [min], UG maximum glucose flux from the gut
[mmol/kg/min], kb1 and kb2 deactivation rate constants
[min

−2

mU/L ], kb3 deactivation rate constant for the insulin effect

on endogenous glucose production [min
−1

mU/L ], ka1, ka2 and
ka3 activation rate constants [1/min], SIT = ka1/kb1,
SID = ka2/kb2 and SIE = ka3/kb3 insulin sensitivities for
transport, distribution and endogenous glucose production
[ 10

−4min−1

mU/L ] and [ 10−4

mU/L ], ka insulin absorption rate con-
stant [1/min], Vi volume of distribution of rapid-acting
insulin [L], ke fractional elimination rate from plasma
[1/min], Bio carbohydrate bioavailability of the meal [-].
ω1(t) denotes

(
0.5 + 1

πatan
(
M(x10(t)− UGtmax)

))
.

For both models a second order linear system has been
added (4) to the meal intake input, with adequately fast
dynamics (faster than the rest of the systems), that must
be treated as unknown when designing a controller. It will
have significance when determining the relative degree of
each model. This is justified by the fact that there are
several processes during a meal intake, that for practical
reasons were not considered while formulating the above
presented models (chewing, swallowing, etc.). It is also
encouraging, that the same model can be used for both
systems. In equation (4), n stands for the order of the
investigated T1DM model, ŷ(t) is the glucose flux that will
provide the amount of ingested glucose/amount of ingested
carbohydrates input for the models in the prescribed units.
The û(t) input of the added dynamics has the same units
as the output ŷ(t). The pr parameters represent rate
transitions [1/min].

(
ẋn+1(t)
ẋn+2(t)

)
=
[
−pr pr

0 −pr

](
xn+1(t)
xn+2(t)

)
+
(

0
1

)
û(t)

ŷ = prxn+1(t)
(4)

y(t)

d(t)

u(t)

û(t)

Psc Pcore Pins

Pmeal Pa

Fig. 1. Structure of the investigated models

3. CONTROLLABILITY AND OBSERVABILITY

Both model can be divided into 5 subsystems: Pcore
core glucose dynamics, Pins - insulin subsystem, Pmeal -
meal ingestion/absorption subsystem, Psc - subcutaneous
glucose dynamics subsystem and Pa - added meal intake
dynamics. This structure is displayed in Fig. 1.

To determine the controllability and observability of linear
systems, examining the rank of Mc = [ A0B · · · An−1B ]
and Mo = [ (AT )0CT · · · (AT )n−1CT ]T controllability
and observability matrices are enough. In case of a nonlin-
ear model (5), where f(x) = ( f1(x) · · · fn(x) )T vector-
space consists of f1(x) · · · fn(x) smooth scalar-valued
functions, h(x) is a smooth scalar valued function, further-
more g(x) and hd(x) are smooth vector-spaces, the rank of
the smallest f-involutive distribution, containing g(x) and
hd(x) must be investigated for reachability, and the rank
of distribution (6) to determine local observability, where
Ljfh(x) notes the j-th Lie-derivative of h(x) scalar-valued
function along the vector space f(x) (Isidori (1995)).

ẋ(t) = f(x(t)) + g(x(t))u(t) + hd(x(t))u(t)
y(t) = h(x(t)) (5)

∆o(x) =



∂h(x)
∂x1

∂h(x)
∂x2

· · · ∂h(x)
∂xn

∂Lfh(x)
∂x1

∂Lfh(x)
∂x2

· · · ∂Lfh(x)
∂xn

...
...

...
∂Ln−1

f h(x)
∂x1

∂Ln−1
f h(x)
∂x2

· · ·
∂Ln−1

f h(x)
∂xn


(6)

Another important attribute of nonlinear and linear sys-
tems is their relative degree (Isidori (1995)). This property
tells that when investigating the time derivatives of the
output of a system, in which order of derivative does the
input signal appear. Let us assume that the system is given
in the form of (5), and its relative degree is r. Then the
following statements apply (Isidori (1995)):

• LgLifh(x) = 0 for every i < r − 1
• LgLr−1

f h(x) 6= 0

In order to determine the reachability, observability and
relative degree of the systems, a few things must be
considered:

• Both models are rather complex and nonlinear. Using
the above mentioned methods directly might be too
difficult to handle.

• The series of reachable and observable nonlinear SISO
systems form a reachable system from the input of
the first system to the output of the last system.
This can be proven in the following way: if a system
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is reachable, then all of its state variables can be
influenced through its input, and they can be driven
to a x(t) desired value from any given x0(τ) point of
the state-space under finite t−τ time with adequately
chosen u(.) function as input. All of these state
variables have distinguishable effect on the output
of the system due to its observability. If this output
provides input for a second reachable and observable
system, then all state variables of the second system
can be influenced through the output of the first
system. Through iteration, all state variables of all
the nonlinear systems of the series can be reached.

• Only the reachability of the subsystem consisting of
Pins, Pcore, and Psc, is necessary for blood glucose
control. This is a series of SISO systems.

• The arctan (atan(.)) functions in (1) and (3) cause
a “switching” effect, which must be treated directly
when controlling the system, but from observability
point of view one need only to determine observability
between the switches. This way four and eight differ-
ent nonlinear systems can be distinguished for each
models respectively, which are easier to handle.

• The state variables of subsystem Pa cannot be ob-
served, since it is considered as unknown dynamics.

3.1 Analysis of the Type 1 Meal model

Let us investigate each subsystem separately. The addi-
tional component of the meal intake was chosen to be
controllable and observable. The first order system of the
subcutaneous glucose dynamics is also controllable and
observable. The third investigated model is the insulin sub-
system with linear dynamics (7). It contains the equations
belonging to state variables x7(t), . . . , x10(t).

ẋ(t) =

−(m2 +m4) m1 ka2 ka1
m2 −(m1 +m3) 0 0
0 0 −ka2 kd
0 0 0 −(ka1 + kd)

 ·
x(t) +

(
0 0 0 BW−1

)T
u(t)

y(t) = ( 1 0 0 0 ) x(t)

(7)

The Mc controllability matrix of the subsystem has full
rank as long as |Mc| (8) does not equals zero. The Mo

observability matrix of the subsystem has full rank as long
as |Mo| (8) does not equals zero.

|Mc| = −
kdm2

BW
(k2
a2(ka1 + kd)2 − ka1ka2(ka1 + kd)·

·(m1 +m2 +m3 +m4) + k2
a1(m1m4 +m2m3 +m3m4))

|Mo| = ka2m1(ka1 + kd)(ka1 − ka2)(m1 − ka2 +m3)·
·(ka1 + kd −m1 −m3)

(8)

|∆c(x)| = k3
i p2(ki − p2)2

V 3
i

((
∆c,(1,4)∆c,(2,3)(3k2

i + 2kip2+

+p2
2) + ∆c,(1,5)∆c,(2,3)(2ki + p2)−∆c,(1,4)∆c,(2,5)+

+∆c,(1,5)∆c,(2,4)

)
−
((

k2
i

∂f2(x)
∂x5

+ k2p2
∂f3(x)
∂x4

)
·

·
(

∆c,(2,4)(3k2
i + 2kip2 + p2

2) + ∆c,(2,5)(p2 + 2ki)
)
−

− kip2

Vi

∂f3(x)
∂x4

(
2∆c,(1,4)(ki + p2)2 + ∆c,(1,5)(2p2 + ki)

))
+
k2
i p2

V 2
i

∂f3(x)
∂x4

(
k2
i

∂f2(x)
∂x5

+ k2p2
∂f3(x)
∂x4

)
·

·(k2
i + 2kip2 + 3p2

2)
)

(9)

The final subsystem is the core of the model, the glucose
dynamics combined with insulin effect subsystem, result-
ing in a fifth order nonlinear system, since the equations
belonging to states x2(t), . . . , x6(t) are used. It has inputs
coming from the insulin subsystem (7) and the glucose
absorption subsystem. From control point of view, we can
only access the signal coming from the insulin subsystem,
hence we have to reduce the investigated model into a SISO
system. The reachability distribution will not be presented
here due to lack of space, but it spans R5 space if the
determinant (9) does not equals zero:

When investigating the global observability of the system,
the following four cases must be considered:

(1) x2(t) ≥ ke2, kp1 − kp2x2(t)− kp3x5(t) ≥ 0,
(2) x2(t) ≥ ke2, kp1 − kp2x2(t)− kp3x5(t) < 0,
(3) x2(t) < ke2, kp1 − kp2x2(t)− kp3x5(t) ≥ 0,
(4) x2(t) < ke2, kp1 − kp2x2(t)− kp3x5(t) < 0,

The first inequality (x2(t) ≥ ke2) pays little role in observ-
ability, it has only significance when certain relations exist
between the parameters, which never occurs in practical
cases. In case of kp1 − kp2x2(t) − kp3x5(t) ≤ 0 however
state variables x10(t), . . . , x4(t) have no effect on the out-
put of the system if x3(t) = 0. Since x3(t) corresponds
with glucose concentration in slowly equilibrating tissues,
this practically never occurs. In general we can conclude,
that in practice, with the exception of a finite number
of singular points of the state-space, the model is locally
observable.

Finally, the relative degree of the model for both input
and disturbance is investigated. Let us consider the model
without the subcutaneous glucose dynamics, described by
the mapping f̃(x) = ( f2(x) · · · f15(x) )T with h̃(x) =
x2(t) as output. The relative degree for both input and
disturbance is 5, since:

LgL3
f̃
h̃(x) = Lhd

L3
f̃
h̃(x) = 0 (10)

LgL4
f̃
h̃(x) =

k2ka1p2

ViBW

∂f3(x)
∂x4

ka1k
2
i

ViBW

∂f2(x)
∂x5

(11)

Lhd
L4

f̃
h̃(x) =

fgutkabsp
2
r

BW

∂f11(x)
∂x13

(12)

The relative degree of the complete system is therefore 6.

3.2 Analysis of the Hovorka model

Similarly to the Type 1 Meal model, 5 subsystems can be
distinguished in a similar manner. The additional compo-
nent of the meal intake is the same, and the subcutaneous
glucose dynamics is a first order linear system as well.
However, the insulin subsystem in this case consists of
parts of the insulin action subsystem and the subcuta-
neous insulin absorption/kinetics subsystem, which were
presented in Hovorka et al. (2004) and Wilinska et al.
(2010). The resulting fifth order system is linear, with 3
outputs (13), constructed by the equations that belong to
state variables x4(t), x5(t) and x7(t), . . . , x9(t).
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ẋ(t) =


−kb1 0 SIT kb1 0 0

0 −kb2 SIDkb2 0 0

0 0 −ke
ka
VI

0

0 0 0 −ka ka
0 0 0 0 −ka

 x(t) +


0
0
0
0
1

u(t)

y(t) =

( 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
x(t)

(13)

The Mc controllability and Mo observability matrix of the
subsystem has full rank as long as the following expressions
(14) do not equal zero:

|Mc| = −
SITSIDk

7
akb1kb2(kb1 − kb2)
V 3
I

|Mo,(1,2,3,6,9)| =
k3
a

V 2
I

(14)

Let us investigate the Pcore subsystem, that captures glu-
cose dynamics and insulin effect. It is a third order nonlin-
ear system with the outputs of the Pins insulin subsystem
as input (u1(t), u2(t), u3(t)), and x2(t) as output (15).

ẋ2(t) = − F s01
x2(t) + VG

x2(t) + k12x3(t)− x2(t)u1(t)−
−Rcl(x2(t)−RthrVG)·

·
(

0.5 +
1
π
atan

(
M(x2(t)−RthrVG)

))
+

+EGP0(1− x6(t))
(

0.5 +
1
π
atan

(
M(1− x6(t))

))
ẋ3(t) = −k12x3(t) + x2(t)u1(t)− x3(t)u2(t)
ẋ6(t) = −kb3x6(t) + SIEkb3u3(t)

(15)

This system is definitely controllable, since the three in-
puts directly effect each and every state variables sepa-
rately. The inputs however are not independent, since x4(t)
and x5(t) are merely the filtered signals of x7(t). To take
this into consideration, we can approximate (15) with the
following nonlinear SISO system:

ẋ2(t) = − F s01
x2(t) + VG

x2(t) + k12x3(t)− x2(t)SIT ũ(t)−
−Rcl(x2(t)−RthrVG)·

·
(

0.5 +
1
π
atan

(
M(x2(t)−RthrVG)

))
+

+EGP0(1− x6(t))
(

0.5 +
1
π
atan

(
M(1− x6(t))

))
ẋ3(t) = −k12x3(t) + x2(t)SIT ũ(t)− x3(t)SIDũ(t)
ẋ6(t) = −kb3x6(t) + SIEkb3ũ(t)
y(t) = x2(t)

(16)

Let us introduce the following notation:

f2 = − F s01
x2(t) + VG

x2(t) + k12x3(t)−
−Rcl(x2(t)−RthrVG)·

·
(

0.5 +
1
π
atan

(
M(x2(t)−RthrVG)

))
+

+EGP0(1− x6(t))
(

0.5 +
1
π
atan

(
M(1− x6(t))

)) (17)

The system (16) is reachable, as long as the following
expression does not equals zero:

S2
ID

(
∂f2(x)
∂x2

+ k12 + kb3

)
k12kb3x

2
3 + SIDSIT ·

·
(
∂f2(x)
∂x2

(
∂f2(x)
∂x2

kb3x2 + f2(2k12 − kb3)+

+(k12 − kb3)2x2

)
x3 − x6

∂f2(x)
∂x6

(k12 + kb3)kb3x3+

+f2

(
4k2

12 − (k12 − kb3)2 − ∂2f2(x)
∂x2

2

kb3x2

)
x3+

+2k12(k2
12 − k2

b3)x2x3 − k2
12(k12 + kb3)x2

3

)
− SIE ·

·SID
(
∂f2(x)
∂x2

∂f2(x)
∂x6

+
∂2f2(x)
∂x2

6

x6kb3

)
k2
b3x3+

+S2
IT

((
∂f2(x)
∂x2

)2 (
2f2 + (k12 − kb3)x2

)
x2+

+
∂f2(x)
∂x2

(
x2

(
kb3

(
2f2 − x6

∂f2(x)
∂x6

)
− k2

12x3

)
−

−2f2
2 − f2k12x2

)
− ∂2f2(x)

∂x2
2

f2
2x2 + (k12 − kb3)·

·
(
∂f2(x)
∂x2

kb3 −
∂2f2(x)
∂x2

2

f2

)
x2

2

)
+ SITSIE ·

·
(
∂f2(x)
∂x6

(
∂f2(x)
∂x2

(
x2(kb3 − k12)− 2f2

)
+
∂f2(x)
∂x6

·

·x6kb3 + f2(kb3 − 2k12) + k2
12(x3 − x2) + k12kb3x2

)
·

·kb3 +
∂f2(x)
∂x6

(
x2(kb3 − k12)− f2

)
x6k

2
b3

)

(18)

The most important conclusion that can be drawn from
(18) is that the core subsystem is controllable as long as the
state variables belonging to insulin effect (x4, x5 and x6)
do not equal zero. This always occurs when insulin is given
to the patient. Apart from this only distinct singular points
can be found, and certain relationship between parameters
must be avoided.

When investigating the observability of the system, the
following cases must be considered:

(1) x2(t) ≥ RthrV G, x6(t) ≤ 1,
x10

tmax
≤ UG

(2) x2(t) < RthrV G, x6(t) ≤ 1,
x10

tmax
≤ UG

(3) x2(t) ≥ RthrV G, x6(t) > 1,
x10

tmax
≤ UG

(4) x2(t) < RthrV G, x6(t) > 1,
x10

tmax
≤ UG

(5) x2(t) ≥ RthrV G, x6(t) ≤ 1,
x10

tmax
> UG

(6) x2(t) < RthrV G, x6(t) ≤ 1,
x10

tmax
> UG

(7) x2(t) ≥ RthrV G, x6(t) > 1,
x10

tmax
> UG

(8) x2(t) < RthrV G, x6(t) > 1,
x10

tmax
> UG

To determine the observability of the system, the rank
of the matrix (6) must be computed. Instead of using
the transformed model (3), the observability will only be
investigated for the eight cases mentioned earlier, and the
switching of the system will be neglected. Due to lack
of space, neither the Lie-derivatives, nor the respective
matrices and determinants will be presented here. General
remarks will be given instead:

(1) State variables x1(t), x2(t) and x3(t) are observable,
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(2) x9(t), x8(t) and x7(t) are observable if at least one of
x4(t), x5(t) or x6(t) is observable.

(3) x4(t) is observable if x4(t) 6= 0, which always apply
as long as there is injected insulin flow.

(4) x5(t) is observable if x5(t) 6= 0 and x3(t) is observable,
which always apply as long as there is injected insulin
flow.

(5) x6(t) is observable if x6(t) ≤ 1.
(6) x10 and x11 are observable if x10

tmax
< UG,ceilBW

Apart from these, there are several points of the state-
space and certain parameter configurations, where the
system is locally not observable. The most important con-
straints however, that need to be taken into consideration
when constructing a state estimator for the model, is the
above mentioned six.

Finally the relative degree of the system is investigated
from both inputs (insulin and meal). Let us consider
the model without the subcutaneous glucose dynamics,
described by the mapping f̃(x) = ( f2(x) · · · f13(x) ) with

˜h(x) = x2(t) as output. The relative degree for both input
and disturbance is 5 on this reduced system, therefore it
is 6 on (3).

LgL3
f̃
h̃(x) = Lhd

L3
f̃
h̃(x) = 0 (19)

LgL4
f̃
h̃(x) =

k2
a

VI

(
SIEkb3

∂f2(x)
∂x6

− SIT kb1x2

)
(20)

Lhd
L4

f̃
h̃(x) = Bio · p2

r

∂f2(x)
∂x10

∂f10(x)
∂x11

(21)

3.3 Discussion

Previously, for both models, after dividing them into
subsystems, the controllability and observability has been
investigated for several components. Pins, Pcore and Psc
are controllable/reachable through their inputs, as long as
|Mc| in (8), (9), (14) and (18) do not equal zero. It is easy
to recognize, that the series of these subsystems are also
controllable/reachable, and that agrees with physiological
facts. The observability of these subsystems separately also
apply, as long as |Mo| (8) and (14) do not equal zero.

Local observability of both models were also investigated,
although due to lack of space the complete analysis were
not presented. The specific cases were investigated sep-
arately, and conclusions were drawn, which can be used
when creating state observer for the models, especially in
case of the Hovorka model. There at least two observer is
needed, one for all state variables and one that excludes
the states linked to meal ingestion when the glucose flux
from the gut saturates.

Finally the relative degree of the models allows exact
linearization, asymptotic output tracking and partial dis-
turbance rejection as long as adequate state observer is
present and the zero dynamics of the systems are asymp-
totically stable in Ljapunov sense.

Due to lack of space, numerical values are not presented
as parameters differ from patient to patient and are also
time-varying. Hence, the paper was structured to give a
general view of the presented approach.

4. CONCLUSION

The controllability, observability and relative degree prop-
erties of two frequently used and complex T1DM models
have been investigated. The findings can be used as a
stepping stone to implement controllers using nonlinear
methodologies. As long as an adequate state estimator is
present, exact linearization and asymptotic output track-
ing (Isidori (1995)) can be performed on the systems. Since
these methods are sensitive to parameter and modeling
inaccuracies, robustness must be investigated.
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