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UVB-dependent changes in the expression of fast-responding early genes is modulated by 

huCOP1 in keratinocytes  
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Abstract 

 

Ultraviolet (UV) B is the most prominent physical carcinogen in the environment leading to the 

development of various skin cancers. We have previously demonstrated that the human ortholog of 

the Arabidopsis thaliana constitutive photomorphogenesis 1 (COP1) protein, huCOP1, is 

expressed in keratinocytes in a UVB-regulated manner and is a negative regulator of p53 as a 

posttranslational modifier. However, it was not known whether huCOP1 plays a role in mediating 

the UVB-induced early transcriptional responses of human keratinocytes. In this study, we report 

that stable siRNA-mediated silencing of huCOP1 affects the UVB response of several genes within 

2 h of irradiation, indicating that altered huCOP1 expression sensitizes the cells toward UVB. 

Pathway analysis identified a molecular network in which 13 of the 30 examined UVB-regulated 

genes were organized around three central proteins. Since the expression of the investigated genes 

was upregulated by UVB in the siCOP1 cell line, we hypothesize that huCOP1 is a repressor of the 

identified pathway. Several members of the network have been implicated previously in the 

pathogenesis of non-melanoma skin cancers; therefore, clarifying the role of huCOP1 in these skin 

diseases may have clinical relevance in the future. 

 

Keywords: Constitutive photomorphogenic protein 1, photobiology, UVB, transcriptional 

regulation, keratinocyte 
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1. Introduction 

 

Ultraviolet (UV) B light is one of the most important physical carcinogens in the 

environment, and the skin is the first and major barrier to protect the body from its harmful effects. 

At the molecular level, UVB causes DNA damage, transcriptional changes and apoptosis. 

Although epidermal keratinocytes, the main site of environmental UVB damage, provide a useful 

model system to study UVB-induced cellular responses, information on the molecular pathways 

mediating these processes is currently limited. UVB irradiation changes the expression of several 

genes in keratinocytes, including the p53 nuclear phosphoprotein [1-3]. This tumor suppressor 

functions as a transcription factor and has a central role in keratinocyte stress responses, including 

UV-induced responses [1-5]. The UVB-dependent molecular network in which p53 plays a pivotal 

role has not been revealed yet. One of the p53-interacting partners, the E3 ubiquitin ligase, COP1 

(constitutive photomorphogenic 1), has been intensively studied in various organisms [6-11]. 

The COP1 protein was first identified as a central negative regulator of light-regulated 

development in A. thaliana [12]. A. thaliana COP1 (AtCOP1) contains three conserved structural 

domains: a RING finger at the amino terminus mediating ligase activity, a coiled-coil domain in 

the middle mediating dimerization and seven WD40 repeat domains at the carboxyl-terminal end 

of the protein implicated in the binding of target proteins [13-15]. AtCOP1 functions as an E3 

ubiquitin ligase targeting selected proteins for proteosomal degradation in plants [15]. Among its 

substrates are important transcription factors, such as the key regulators of photomorphogenesis 

under all light conditions, including UVB [16]. In contrast the negative regulation observed for 

visible-light responses, AtCOP1 is a critical positive regulator of responses to low levels of UVB. 

According to the latest data, UVB triggers the physical and functional disassociation of the 

AtCOP1–SPA core complex from CUL4-DDB1 and the formation of a new complex containing 

the UVB photoreceptor, UV Resistance Locus 8. This UVB-induced machinery is associated with 

the positive role of AtCOP1 in facilitating the stability and activity of key transcription factors.[8] 

Sequence analysis of COP1 orthologs  from arabidopsis, human and mouse indicated that the 

COP1 domain structure is highly conserved in higher plants and vertebrates [16]. The mouse 

(MmCOP1) and human COP1 (huCOP1) sequences are located on chromosome 1 and the high 

degree of sequence conservation with AtCOP1 suggested functional conservation [12]. Both 

MmCOP1 and huCOP1 target bZIP transcription factors of the Jun family and p53 for degradation 

in a similar manner to AtCOP1 [6,17]. Lee et al. discovered that the constitutive 

photomorphogenesis 9 signalosome (CSN) plays a role in the control of DNA damage and 

carcinogenesis caused by UV light [18,19]. CSN components seem to act upstream of COP1 in 
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mammalian cells stimulated by UV. Based on this observation, CSN components might act through 

huCOP1 in the negative regulation of important cancer genes, including p53, MDM2, P27, c-JUN, 

NFKB, SMAD7, RUNX3, ID1, SKP2 and HIFI [18,19].  

The function of huCOP1 has not yet been investigated in detail. We previously 

demonstrated that huCOP1 is expressed in keratinocytes in an UVB-regulated manner and is a 

negative regulator of p53 as a post-translational modifier [10]. The regulation of p53 by huCOP1 in 

keratinocytes is of particular importance, as this role suggests involvement in both cellular UV 

responses and carcinogenesis. MmCOP1 has also been shown to repress c-JUN mediated AP-1 

transcription [11,20].  

The mechanisms by which the skin protects against UV damage have been investigated in 

detail. DNA arrays have been used to examine the UV-induced change in expression of 6800 genes 

in epidermal keratinocytes. Differential expression of 198 genes was detected in three waves 

occurring at 0.5–2 h, 4–8 h and 16–24 h after UV irradiation [1]. Although it is evident from the 

available data that huCOP1 and orthologs are posttranslational regulators of late UV responses in a 

wide range of organisms, it was not known how early huCOP1 acts on transcriptional responses. 

Based on these data and on the results obtained from a UVB-dependent transcriptome analysis 

performed with arabidopsis [21], we raised the question whether huCOP1 plays a role in early 

UVB-induced signaling processes that lead to transcriptional changes in keratinocytes. 

In this study we report that stable siRNA-mediated silencing of huCOP1 sensitises the 

keratinocyte cells toward UVB and affects the UVB response of several genes within 2 h of 

irradiation. Our results suggest that huCOP1 plays a role in modulating the early cellular UVB 

response at the transcriptional level in human keratinocytes. 

 

2. Materials and methods 

 

2.1. Keratinocyte transformation 

 

HPV-immortalized human keratinocytes (HPV-KER clone II/15) were maintained as 

described [22]. Stable transformation of HPV-KER II/15 was performed at approximately 70% 

confluency in supplement-free medium with either the empty vector (pSuperior.puro vector) or a 

vector harboring huCOP1 silencing sequences [10]. Plasmid DNA for transfection was purified 

with the QIAGEN Plasmid Maxi Kit (QIAGEN, Hilden, Germany). Transfection was carried out 

with the X-tremeGENE 9 DNA Transfection Reagent (Roche Applied Science, Mannheim, 

Germany) and the Human Keratinocyte Nucleofector Kit (Lonza Cologne AG, Cologne, Germany) 

according to the manufacturer’s instruction.  
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2.2. Western blot analysis 

 

HuCOP1 protein was detected using previously described standard procedures [10] with the 

exception that anti-mouse IgG-HRP (Dako Thermo Scientific Waban, MA, USA) was used as a 

secondary antibody at a dilution of 1:1000. Membranes were incubated overnight at 4ºC with 

purified rabbit polyclonal anti-huCOP1 antibody. After treating the membrane with the Immobilon 

Western Chemiluminescent HRP substrate (Merck Millipore Corporation, Billerica, MA, USA), 

luminescent signals were detected using a liquid-nitrogen-cooled charge-coupled-device camera 

(Micromax; Roper Scientific Canada). 

 

2.3. Cell viability measurements 

 

Keratinocytes were seeded in 96-well plates at 10,000 cells per well. Growth of the cells 

was followed for 6 days. Cell viability of the established keratinocyte cell lines was measured with 

the xCELLigence RTCA System [39] following the manufacturer’s instructions (Roche Applied 

Science, Mannheim, Germany). See Supplementary Methods online for details.  

 

2.4. Immunocytochemistry 

 

Unirradiated and UVB-irradiated control and siCOP1 cells were immunostained 24 hours 

after UVB exposure. DNA was stained with 4,6-diamidino-2-phenylindole (DAPI). The primary 

antibody used for immunohistochemistry was rabbit polyclonal anti-huCOP1 (Bethyl Laboratories, 

Montgomery, USA). A Zeiss AxioImager fluorescent light microscope (Carl Zeiss MicroImaging, 

Thornwood, NY, USA) fitted with a PixeLINK CCD camera (PixeLINK, Ottawa, ON, Canada) 

was used for detection. The subsequent semiquantitative analysis was carried out using Metamorph 

software (Universal Imaging Corp., Sunnyvale, California, United States). See Supplementary 

Methods online for details. 

 

2.5. UVB irradiation 

For irradiation, the medium covering the keratinocytes was replaced with phosphate-

buffered saline (PBS). In preliminary experiments, 10, 20, 40 mJcm
–2 

UVB
 
doses were used to 

determine the most appropriate dose for further studies. The 40 mJcm
–2 

dose resulted in a decrease 

in cell viability, whereas the 20 mJcm
–2 

did not affect cell viability (data not shown). It was also 

demonstrated that the 20 mJcm
–2 

dose effected the expression of well known UVB-inducible genes 
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(G0S2, JUNB, JUND, data not shown). Cells were irradiated with a 20 mJcm
–2 

dose of 312 nm 

UVB [40] from an FS20 lamp (Westinghouse, Pittsburgh, PA). After UVB treatment, PBS was 

replaced with fresh medium. Control cells were subjected to the identical procedure without UVB 

treatment. 

 

2.6. Real-time RT-PCR array and validation experiments 

 

Real-time RT-PCR was performed with a custom-made StellARray
™ 

Gene Expression 

System (Bar Harbor BioTechnology, Trenton, ME) carrying 30 UVB-regulated genes. The 

validation real-time RT-PCR experiments were carried out with the Universal Probe Library 

system (F. Hoffmann-La Roche AG, Basel, Switzerland). Sequences of the primers used for PCR 

amplification of the FOS, JUND ZFP36 and SIK1 genes are listed in Table S1. The expression of 

each gene was normalized to the signal from the 18S ribosomal RNA gene. Results are averages of 

three parallel experiments. The relative mRNA expression levels were calculated by the ΔΔCt 

method [41]. See Supplementary Methods online for details. 

 

2.7. Pathway analysis 

 

Pathway analysis was performed using Ingenuity Pathway Analysis software (IPA, 

Ingenuity Systems, Stanford, USA). See Supplementary Methods online for details.  

 

3. Results 

 

3.1. Characterization of siCOP1 keratinocyte cell lines 

 

To determine the role of huCOP1 in the early UVB response, we created keratinocyte cell 

lines in which the expression level of huCOP1 was stably decreased. For this purpose, we used an 

HPV-immortalized keratinocyte cell line in which the UVB response of p53 is intact: its UVB 

inducibility resembles that of normal human cultured keratinocytes. However, sequence analysis 

revealed that the p53 gene in this cell line harbours the codon 72 polymorphism of the protein 

(manuscript in preparation). G-banding analyses of the cell line revealed normal human karyogram 

(46, XX) [22]. Four cell lines harboring the empty vector and three cell lines carrying the huCOP1 

silencing sequences were established. To select the most appropriate cell lines for further 

investigation, the degree of huCOP1 silencing and the proliferation of the cell lines were 

compared. Based on the results of these preliminary experiments (data not shown), two cell lines 
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— control and siCOP1 — were selected. Semiquantitative analysis of chemiluminescent western 

blot experiments demonstrated that the expression of huCOP1 in the siCOP1 cell line was 

decreased by 70% compared to the control line (Fig. 1a and b). The silencing of huCOP1 did not 

affect cell proliferation (Fig. 2). 

 

3.2. UVB irradiation decreased huCOP1 protein abundance in transformed cell lines 

 

We previously reported that huCOP1 levels decrease in human keratinocytes after UVB 

irradiation [10]. To confirm that the stably transformed cell lines react similarly to UVB 

irradiation, we compared unirradiated and UVB-irradiated control and siCOP1 cells using the 

semiquantitative immunocytochemical approach to detect huCOP1 expression. The applied UVB 

(20 mJcm
−2

) did not affect the viability or proliferation of the cells (data not shown). An 

approximately 50% decrease in huCOP1 expression was detected in both cell lines 24 hours after 

UVB irradiation (Fig. 3).  

 

3.3. Array analysis of selected genes differentially expressed in early UVB response revealed a 

transcriptional regulatory role for huCOP1 in keratinocytes 

 

To understand the role of huCOP1 in the UVB-induced early signaling processes of human 

keratinocytes, we performed an expression profile analysis. For this purpose, the siCOP1 and 

control cell lines were evaluated using the StellArray™
 
Gene Expression System. Based on 

published data [1-3], we selected a set of genes showing a 2–4 fold change in gene expression 

within 2 h after UVB irradiation (14 up- and 16 down-regulated genes). The expression of the 

selected genes was compared in unirradiated and UVB-irradiated cells 2 hours after treatment. 

Changes in gene expression in the control cells were in good agreement with published results for 

most genes. The decreased abundance of huCOP1 protein in the siCOP1 cells further modulated 

this UVB effect, resulting in an overall higher gene expression level. Expression of the genes was 

similar in unirradiated siCOP1 and control lines, indicating that the silencing of COP1 had no 

direct effect on the expression of these genes in the absence of UVB (Table 1). 

To verify the array results, we performed real-time RT-PCR analyses of four genes, FBJ 

murine osteosarcoma viral oncogene homolog (FOS), JUND, zinc finger transcriptional regulator 

(ZFP36), and SIK1 (salt-inducible kinase 1) based on the robust UVB-induced changes in gene 

expression observed in the array experiment. The real-time RT-PCR assay of independent 

biological samples confirmed that the detected differential expression was a transcriptional 

consequence of huCOP1 silencing (Supplementary Fig. S1). 
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3.4. A UVB regulatory network identified by pathway analysis was modified by huCOP1 

expression 

 

Using the Ingenuity Pathway Analysis software (IPA, Ingenuity Systems, Stanford, USA), 

we identified a regulatory network of UVB-regulated genes in which 13 of the selected 30 genes 

participated (Fig. 4a). Mitogen-activated protein kinase (ERK1/2), cAMP responsive element 

binding protein (CREB) and ubiquitin (not included in the array experiment) were identified as 

central organizers of this network. Expression of all 13 selected genes increased after UVB 

irradiation in the siCOP1 cell line, indicating that huCOP1 modulates the expression of these 

genes. To clarify whether the gene expression of ERK1/2 and CREB is UVB-regulated, we carried 

out real-time RT-PCR experiments. UVB irradiation reduced the mRNA level of the central 

organizers in the control cell line and this affect was moderated by huCOP1 silencing (Fig. 4b). 

The pathway analysis also revealed the following upstream regulators of the identified network: 

epidermal growth factor (EGF), nerve growth factor, fibroblast growth factor 2, interferon gamma, 

interleukin-1 beta, interleukin 6 cytokines and nuclear factor of kappa beta (NFKB) (Fig. 5a). 

According to the analysis, these regulators are in an activated state to trigger the UVB response 

through the identified network but the relationships among the upstream regulators were not 

assessed. We choose three upstream regulator molecules (IL1B, IL6 and NFKB) to test wheather 

the corresponding genes exhibit UVB-induced changes in expression. In agreement with published 

data [2,4,23], our results demonstrated that the transcription of these genes is UVB sensitive and 

that huCOP1 silencing had an effect on their transcription levels after UVB irradiation (Fig. 5b). 

 

4. Discussion 

 

UVB light is undoubtedly the most important carcinogenic environmental stressor of 

human skin, and UV-induced changes in keratinocytes have been widely studied [3,24]. HuCOP1 

has been implicated in the negative regulation of important cancer-related genes acting in the 

cellular response to UVB [11,25]. Nevertheless, the possible role of huCOP1 in the keratinocyte 

UVB response has not yet been investigated in detail. 

To address these issues we produced transgenic cell lines in which the expression of 

huCOP1 was stably silenced (siCOP1). For this purpose, we used an HPV-immortalized 

keratinocyte cell line carrying the codon 72 polymorphism of the p53 gene, a well-known and 

common polymorphism with yet unconfirmed significance in cancer risk. Since this cell line 

exhibited a normal p53 UVB response, we considered it suitable for our purposes. After 
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establishing the huCOP1 silenced transgenic keratinocyte cell line, we examined the expression of 

selected UVB-regulated genes with or without UVB irrradiation. Our experiments revealed that (i) 

the silencing of huCOP1 did not affect cell viability, (ii) the expression level of the selected genes 

was not affected by huCOP1 silencing in unirradiated cells, and (iii) DNA array and validating 

real-time RT-PCR experiments confirmed that transcript levels of the selected genes exhibited 

changes as early as 2 hours after UVB irradiation and that these changes were in good agreement 

with previously published data [1-4]. However, very importantly, we found that (i) the residual 

huCOP1 level was further reduced by UVB and (ii) the significantly reduced huCOP1 level 

resulted in more pronounced UVB-induced changes in the expression of genes as compared to non-

transgenic keratinocytes. These data demonstrate that this cell line is a particularly suitable tool for 

studying huCOP1-dependent UVB-induced changes in early gene expression responses. 

The possible interactions among the examined genes were analyzed using Ingenuity 

Pathway Analysis software. This software uses published interaction data for composing potential 

new networks based on novel experimental data. The pathway analysis identified a network in 

which 13 of the 30 examined genes were organized around three central molecules, ERK1/2, 

CREB and ubiquitin.  

Functional connections between certain members of the identified network have already 

been described [26-29]. All 13 genes were differentially expressed after UVB irradiation, and their 

expression was increased in siCOP1 cells compared to control. Similar changes have been detected 

in ERK1/2 and CREB gene expression, affirming their central role in the identified network.  

Some of the components of the identified network have already been implicated in huCOP1-

mediated processes: Liu et al. [30] have recently demonstrated that huCOP1 promotes the 

ubiquitilation and degradation of the cAMP responsive CREB-regulated transcription coactivator 

2. COP1 has also been shown to play a role in the degradation of the c-Jun protein [9,11,20,25].  

Our array identified two other functional components of the activator protein-1 (AP-1) 

transcription factor complex: JUNB and JUND. HuCOP1 might regulate these two genes through 

an as yet unidentified mechanism. On the basis of these data, we hypothesize that huCOP1 might 

contribute to the regulation of the AP-1 transcription complex at different levels: by altering the 

expression of the JUNB and JUND genes and by promoting the degradation of c-Jun via its E3 

ubiquitin ligase activity. Such functional interactions were suggested as early as 2003, when 

Bianchi and co-workers identified huCOP1 as the human ortholog of AtCOP1 and performed the 

primary functional characterization of the gene and its protein product [20]. Subsequently 

Migliorini et al. (2011) demonstrated the direct c-Jun-COP1 interaction.  

AP-1-related transcription factors have long been implicated in tumorigenesis; therefore, 

the putative role of huCOP1 in the pathogenesis of human cancers emerged early [11,20]. Much 
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evidence demonstrating that COP1 plays a major role in tumorigenesis has since accumulated [25]. 

However, it is still unclear whether COP1 is a tumor suppressor or an oncogene. Marine speculated 

in this recent review that COP1 may have a ―dual face,‖ functioning either as an oncogene or as a 

tumor suppressor, depending on the cellular context. 

Our results and the data available in the literature indicate that decreased huCOP1 levels 

sensitize the cells to UVB damage or oxidative stress and modify the UVB-induced stress response 

of keratinocytes. The loss of some members in the identified network increases the sensitivity of 

the cells to UVB. Maeda et al. [31], for example, demonstrated that GADD45A -/- keratinocytes 

are more sensitive to UVB than GADD45A +/+ cells due to reduced DNA repair and lack of G2/M 

arrest. It is also well known that the symptoms of systemic lupus erythematosus are exacerbated by 

sun exposure. Pflegerl et al. [32] reported that challenging JUNB
∆ep

 mice with UVB irradiation 

enhanced the severity of their lupus-like lesions. It has also been published that DAXX-depleted 

fibroblasts are resistant to UVB- and oxidative-stress-induced cell death [33]. Presumably, the 

absence of certain members of the huCOP1-mediated transcriptional cascade leads to an abnormal 

UVB response. 

Several members of the identified huCOP1-mediated UVB-responsive network have 

already been correlated with non-melanoma skin cancers, such as basal cell carcinoma (BCC) and 

squamous cell carcinoma (SCC). Immunohistochemical studies recently performed by our 

workgroup [34] indicated that huCOP1 expression is altered in both non-melanoma skin cancers. 

Moreover, well established data are available on the differential expression of several members of 

the identified huCOP1-mediated UVB-responsive network both in BCC and SCC (
34-38

). 

We demonstrated that huCOP1 contributes to the transcriptional regulation of the 

keratinocyte UVB response by the downregulation of an UVB inducible network operating through 

three newly identified central organizers. This network is under the control of upstream regulators 

also showing UVB response. We hypothetise that huCOP1 operates as a negative factor of the 

identified transcriptional network by modifying the function of the upstream regulators. 

Mechanism underlying the UVB-induced cellular events may include a re-distribution of huCOP1 

to different molecular complexes. Such a mechanism has recently been demonstrated for 

arabidopsis [8]. The expression of huCOP1 is altered in non-melanoma skin cancers [34] and 

several members of the identified regulatory network have been implicated in the pathogenesis of 

these skin diseases [35-38]. Thus, huCOP1 emerges as a potential target molecule for BCC and/or 

SCC. Since COP1 possibly acts both as an oncogene and as a tumor suppressor, further studies 

should clarify the role of huCOP1 for human keratinocytes in photo-damaged skin and these skin 

diseases. 
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Figure captions 

 

Fig. 1. HuCOP1 protein expression in keratinocytes. a: HuCOP1 protein levels from control and 

siCOP1 cell lines were detected by chemiluminescent western blot analysis; b: The huCOP1 

expression was subjected to semiquantitative analysis. The expression of huCOP1 was normalized 

to the expression of α-actin. The average of three independent experiments is shown. 

 

Fig. 2. Dynamic proliferation curves for siCOP1 and control cells. Cell viability of the established 

keratinocyte cell lines was measured with the xCELLigence RTCA System. Black line: control 

cells; gray line: siCOP1 cells. 

 

Fig. 3. UVB irradiation decreases huCOP1 protein level in keratinocytes. a: Unirradiated and 

UVB-irradiated control and siCOP1 cells 24 hours after treatment. b: Semiquantitativ analysis of 

huCOP1 protein level detected by immunocytochemistry before and at 24 hours after UVB 

irradiation. Results are the averages of the huCOP1 expression after UVB irradiation from 30 

independent cells normalized to the control cell line.   

 

Fig. 4. The UVB-regulatory network identified by the Ingenuity Pathway Analysis. a: Arrows with 

continuous lines indicate well established direct regulatory connection between the members of the 

network. Arrows with dashed lines refer to well established indirect connections between the 

members of the network. Grey ovals: UVB-upregulated genes; white ovals: UVB-downregulated 

genes; white rectangles: predicted key regulatory molecules. Single-headed arrows: one-way 

connection. Double-headed arrows: determined interaction. Lines without arrows: connection with 

yet undetermined direction; b: Relative transcript levels of ERK and CREB are compared for 

UVB-irradiated siCOP1 (white bars) and control (black bars) cells. Expression levels were 

normalized to the 18S ribosomal RNA gene. Values reflect the fold change between the untreated 

and irradiated control and siCOP1 cells from three independent irradiation experiments. The 

applied statistical analysis (Student’s two-tailed heteroscedastic t test) did not reveal significant 

difference in UVB-induced gene expression between the control and siCOP1 cells, however the 

tendency is clearly demonstrated. 

 

Fig. 5. Predicted upstream regulators of the identified network. a: White ovals: upstream 

regulators; gray rectangles: UVB-upregulated genes of identified network; white rectangles: UVB-

downregulated genes of the identified network. All of the upstream regulators were in an activated 

state, but the relationships among them were not investigated; b: Relative transcript levels of IL1B, 
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IL6 and NFKB are compared for UVB-irradiated siCOP1 (white bars) and control (black bars) 

cells. Expression levels were normalized to the 18S ribosomal RNA gene. Values reflect the fold 

change between the untreated and irradiated control and siCOP1 cells in three independent 

irradiation experiments. The applied statistical analysis (Student’s two-tailed heteroscedastic t test) 

revealed a significant (p<0.05) difference in the expression of the IL6 gene after UVB irradiation 

of control and siCOP1 cells and demonstrated a non-significant but tendencious difference in the 

case of IL1B and NFKB gene expression. 
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Table 1. Changes in gene expression of unirradiated and UVB-irradiated control and siCOP1 

keratinocytes 

Gene symbol 

Entrez 
Gene 

ID Gene name Without UVB 
UVB irradiated  
Change, fold P-values 

Upregulated 
genes     Control siCOP1 Control siCOP1 Control siCOP1 

FOS 2353 
FBJ murine osteosarcoma viral 
oncogene homolog 13,53 14,20 4,95 10,14 0,004 0,006 

DUSP1 1843 Dual specificity phosphatase 1 11,99 11,94 6,62 6,35 0,004 0,020 

BTG2 7832 
Antiproliferative DNA damage 
response 11,77 12,28 3,43 5,65 0,038 0,021 

BTG1 694 
Antiproliferative DNA damage 
response 16,13 16,45 2,27 3,35 0,047 0,084 

ZFP36 7538 
Zinc finger transcriptional 
regulator 14,02 14,33 2,39 4,15 0,050 0,073 

JUNB 3726 Jun B proto-oncogene 10,42 11,30 2,05 2,58 0,058 NS 

JUND 3727 Jun D proto-oncogene 10,54 11,32 1,85 4,92 NS NS 

G0S2 50486 G0/G1 switch gene 10,38 10,52 1,56 2,68 NS NS 

GADD45A 1647 
Growth arrest and DNA-
damage-inducible 12,10 11,28 2,39 2,19 NS NS 

ID3 3399 
HLH1R21 helix-loop-helix 
protein 12,63 13,08 1,41 1,91 NS NS 

NOS1 4842 Neuronal nitric oxide synthase 19,78 19,51 1,23 1,65 NS NS 

SERPINA1 5265 
Serine (or cysteine) proteinase 
inhibitor A1 12,65 11,75 1,10 1,60 NS NS 

IFI27 3429 IFN-inducible 18,14 18,41 1,04 2,14 NS NS 

TAF10 6881 Transcription factor tafII30 10,78 10,70 1,08 1,58 NS NS 

Downregulated 
genes                 

SIK1 150094 
SWI/SWF complex 170 kDa 
subunit (BAF170) 12,17 12,54 -2,59 -1,48 0,019 0,055 

PDLIM5 10611 LIM domain 11,33 12,13 -1,98 1,04 0,043 NS 

KLF5 688 GC box binding protein BTEB2 9,92 11,00 -1,96 1,40 0,057 NS 

SRF 6722 Serum response factor 12,99 13,37 -1,75 -1,10 NS 0,061 

MLL 4297 
Translocation T(4:11) of ALL-1 
gene to chr,4 13,50 13,56 -1,75 -1,20 NS NS 

FKBP5 2289 
Progesteron receptor-associated 
FJBP54 11,28 11,40 -1,67 1,08 NS NS 

CSNK2A1 1457 Casein kinase II A 11,13 10,82 -1,58 1,07 NS NS 

CSNK1A1 1452 Casein kinase 1A 11,31 11,16 -1,52 1,05 NS NS 

METAP2 10988 
Methionin aminopeptidase, 
translation inhibitor 10,57 10,50 -1,48 1,22 NS NS 

HES1 3280 Transcription factor HRY 10,21 10,70 -1,09 1,67 NS NS 

PPARG 5468 PPAR gamma 14,31 13,80 -1,21 1,47 NS NS 

PKMYT1 9088 
Myt1 kinase (preferentially 
phosphhorylates Cdc2) 14,48 14,36 -1,13 1,44 NS NS 

DAXX 1616 FAS binding protein 12,54 12,67 -1,26 1,51 NS NS 

H2AFZ 3015 Histone 8,36 8,03 -1,07 1,70 NS NS 

PCNA 5111 Proliferating cell nuclear antigen 9,23 9,49 -1,15 1,89 NS NS 

ARF6 382 
ADP ribosilation factor 6 GTP 
binding 10,64 10,23 -1,20 1,12 NS NS 

*NS: not significant 
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