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Monolayer graphene is an example of materials with multivalley electronic structure. In such materials, the
valley index is being considered as an information carrier. Consequently, relaxation mechanisms leading to loss of
valley information are of interest. Here, we calculate the rate of valley relaxation induced by charged impurities in
graphene. A special model of graphene is applied, where the pz orbitals are two-dimensional Gaussian functions,
with a spatial extension characterized by an effective Bohr radius aeB. We obtain the valley relaxation rate by
solving the Boltzmann equation, for the case of noninteracting electrons, as well as for the case when the impurity
potential is screened due to electron-electron interaction. For the latter case, we take into account local-field effects
and evaluate the dielectric matrix in the random phase approximation. Our main findings are as follows: (i) The
valley relaxation rate is proportional to the electronic density of states at the Fermi energy. (ii) Charged impurities
located in the close vicinity of the graphene plane, at distance d � 0.3 Å, are much more efficient in inducing
valley relaxation than those farther away, the effect of the latter being suppressed exponentially with increasing
graphene-impurity distance d . (iii) Both in the absence and in the presence of electron-electron interaction, the
valley relaxation rate shows pronounced dependence on the effective Bohr radius aeB. The trends are different
in the two cases: In the absence (presence) of screening, the valley relaxation rate decreases (increases) for
increasing effective Bohr radius. This last result highlights that a quantitative calculation of the valley relaxation
rate should incorporate electron-electron interactions as well as an accurate knowledge of the electronic wave
functions on the atomic length scale.
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I. INTRODUCTION

Certain crystalline solids, such as monolayer and bilayer
graphene, carbon nanotubes, transition-metal dichalcogenides,
silicon, and diamond, possess multivalley electronic structure.
Recently, ways to control and measure the valley degree of
freedom (or valley index, for short) in these materials have
been proposed [1–8] and tested experimentally [9–16]. The
valley index is also being actively considered as a carrier of
quantum information [14,17–27].

The valley index of an electron is linked to its crystal mo-
mentum. The crystal momentum is changed upon scattering,
and consequently, the electron can be moved between different
valleys by scattering processes (intervalley scattering) in
an uncontrolled, random fashion. Therefore, such scattering
processes lead to the loss of information encoded in the valley
index.

In this work, we theoretically study how (classical) valley
information, encoded in an ensemble of electrons, is lost due to
scattering processes. We focus on a specific multivalley mate-
rial, monolayer graphene [28,29], because of its relatively sim-
ple band structure and widespread experimental availability. In
particular, we consider intravalley and intervalley scattering of
graphene’s electrons off nearby charged impurities (Coulomb
scattering), and calculate the corresponding valley relaxation
time, that is, the time scale characterizing the loss of valley
information.

Coulomb scattering is a well-studied mechanism as a
determinant of the electrical conductivity of graphene [29–31],
but to our knowledge, its role in intervalley scattering has not
been studied in detail. In fact, the Coulomb potential of a
charged impurity is expected to be less efficient in inducing
intervalley scattering than in inducing intravalley scattering,

since the Fourier spectrum of the Coulomb potential is peaked
around small wave numbers. Here, we set out to go beyond that
qualitative argument by quantifying the efficiency of Coulomb
scattering for valley relaxation.

At present, the understanding of valley relaxation processes
is rather limited; the various mechanisms, such as electron-
phonon, electron-impurity, and electron-electron scattering,
and their material-specific details, are yet to be systematically
investigated. Note, however, that recent studies have started to
elucidate various aspects of valley relaxation and decoherence
in two-dimensional (2D) transition-metal dichalcogenides
[32–34] and graphene [35,36], as well as carbon-based [19,37]
and silicon quantum dots [38,39].

To describe valley relaxation in graphene due to charged
impurities, we use a special model of graphene’s electrons,
in which the pz orbitals are described by 2D Gaussian
functions, with a spatial extension characterized by an effective
Bohr radius aeB. We obtain the valley relaxation rate �v by
solving the corresponding Boltzmann equation, for the case
of noninteracting electrons, as well as for the case when
the impurity potential is screened due to electron-electron
interaction. For the latter case, we calculate the screened
impurity potential by taking into account local-field effects
and evaluating the dielectric matrix in the random phase
approximation (RPA) [40–43].

Our main findings are as follows. (i) The valley relaxation
rate is proportional to the electronic density of states at the
Fermi energy. (ii) Charged impurities located in the close
vicinity of the graphene plane, at distance d � 0.3 Å, are much
more efficient in inducing valley relaxation than those farther
away, the effect of the latter being suppressed exponentially
with increasing graphene-impurity distance d. (iii) Both in the
absence and in the presence of electron-electron interaction,
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FIG. 1. (Color online) Evolution of a valley-polarized initial state
due to scattering processes. (a) Initial state with a finite valley
polarization nv. (b) Nonequilibrium valley-unpolarized state, which
appears during the relaxation process if the elastic intervalley scatter-
ing is faster than the inelastic processes. (c) Thermal equilibrium,
reached from (a) or (b), due to inelastic scattering processes.
(d) Schematic representation of the time evolution of valley polariza-
tion. The characteristic time scale of the decay is the valley relaxation
time τv.

the valley relaxation rate shows pronounced dependence on
the effective Bohr radius aeB. Remarkably, the trends are
different in the two cases: in the absence (presence) of
screening, the valley relaxation rate decreases (increases) for
increasing effective Bohr radius. This last result highlights
that a quantitative calculation of the valley relaxation rate
should incorporate electron-electron interactions as well as
an accurate knowledge of the electronic wave functions on the
atomic length scale.

It should be emphasized that intervalley scattering has
consequences beyond inducing valley relaxation: It has its
fingerprints on the magnetoconductivity as well as on inelastic
light scattering, i.e., the Raman spectrum. In graphene, the
quantum correction to the conductivity is influenced by elastic
intervalley scattering processes [44,45]: For weak (strong)
intervalley scattering, the correction to the conductivity is
positive (negative), corresponding to weak antilocalization
(weak localization). In experiments, a negative correction can
be observed which is attributed to a significant intervalley
scattering rate [46–48]. In Raman spectra, the D peak in-
tensity increases with increasing intervalley scattering [49].
Furthermore, the intervalley scattering rate can be monitored
in real space via spatially resolved Raman spectroscopy [50],
revealing that the sample boundary can be a strong source of
intervalley scattering.

II. PRELIMINARIES

We define the valley polarization nv as the imbalance of
the electronic populations in the two valleys (nK and nK ′),
i.e., nv = nK − nK ′ . Our aim is to describe the dynamics of
the valley-polarized initial state shown in Fig. 1(a), under the
influence of impurity scattering. It is expected that impurity

(a)

(b)

d

FIG. 2. (Color online) Charged impurities as a source of valley
relaxation. (a) Random spatial arrangement of charged impurities
(red spheres) in the substrate (gray) supporting the graphene sheet.
(b) Schematic representation of the impurity-induced Coulomb
potential in the plane of the graphene sheet.

scattering transfers electrons from one valley to the other
(intervalley scattering), and therefore leads to the decay of
the valley polarization with time [see Fig. 1(d)]. The task is to
quantify the time evolution of this decay.

The qualitative nature of the dynamics of the electron dis-
tribution depends strongly on the relative time scales of elastic
and inelastic scattering process. In this work, we will describe
how elastic intervalley scattering caused by static impurities
contributes to the decay of valley polarization; hence, we
will disregard inelastic processes. Under the assumption that
inelastic processes are absent, the valley-polarized initial state
shown in Fig. 1(a) evolves to the nonequilibrium, but valley
unpolarized state depicted in Fig. 1(b). If inelastic intravalley
transitions are present, but they are slow compared to the elastic
intervalley processes, then they reinforce thermal equilibrium
[Fig. 1(c)] after the intermediate state in Fig. 1(b) is reached.
However, if inelastic intravalley transitions are faster than
elastic intervalley processess, then the initial state of Fig. 1(a)
evolves directly toward thermal equilibrium [Fig. 1(c)]. Even
though we do not incorporate inelastic processes in our model
below, we expect that our treatment provides an accurate
description of the valley relaxation time in all cases discussed
above.

It is customary to distinguish short-range and long-range
impurities. The short-range label usually refers to crystal-
lographic defects, charge-neutral adatoms, etc. Long-range
refers to charged scatterers that induce a long-range Coulomb
potential for the mobile electrons. These impurities might be
located, e.g., in the substrate supporting the graphene sheet,
as shown in Fig. 2(a). For the present paper, we consider a
model where the relaxation of valley polarization is due to
charged impurities that are randomly positioned in a plane at
a given distance d from the graphene sheet [see Fig. 2(b)].
(Generalization of our methods to other impurity types and
spatial distributions is probably straightforward.)

Figure 2(b) shows a single charged impurity located at
a distance d from the graphene sheet. Assuming this is a
negatively charged impurity with charge −e, it creates a re-
pulsive potential energy landscape Vi(r; d) for the delocalized
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electrons in graphene; here r = (x,y) is the position vector
in the graphene plane. If the impurity is located on the z axis
of the reference frame, then the 2D Fourier transform of the
potential Vi reads

Vi(q; d) = 2πe2
0

q
e−qd , (1)

where we use e2
0 = e2/4πε0. Here, e is the magnitude of the

electron charge and ε0 is the vacuum permittivity.

III. MODEL

A. Boltzmann equation and the valley relaxation time

In this section, we calculate the valley relaxation rate due
to elastic electron-impurity scattering in the framework of
Boltzmann theory. We find that the valley polarization nv

decays exponentially with time, and obtain a simple relation
[Eq. (11)] between the corresponding rate, i.e., the valley
relaxation rate and the momentum-dependent intervalley
scattering rates.

For clarity, we assume that the valence band is filled, and
the distribution function characterizing the occupation of bulk
conduction-band states is denoted by fk, i.e., it is assumed
to be independent of position. Then the Boltzmann equation
reads

∂fk

∂t
=

∑
k′

Wkk′(fk′ − fk), (2)

where Wkk′ is the impurity-induced transition rate from state
k to state k′. Here we assumed detailed balance Wkk′ = Wk′k,
which is reasonable as the scattering rates will be evaluated
using Fermi’s Golden Rule:

Wkk′ = 2π

�
|Vck,ck′ |2δ(εck − εck′). (3)

Here, Vck,ck′ = 〈ck|V |ck′〉 is the matrix element of the impu-
rity potential V (r; d) = ∑Ni

j=1 Vi(r − rj ; d) with the Bloch-
type energy eigenstates |ck〉 of the conduction band (see
below). The impurity potential V (r; d) is the electric potential
energy created by the impurity ensemble with Ni impurities.
The overline denotes disorder average, with the impurity
positions r i assumed to be independently and homogeneously
distributed. εck denotes the energy of the conduction-band state
at momentum k.

The solution of the Boltzmann equation will be facilitated
by the fact that in graphene, the low-energy excitations have
an approximately conical (linear and isotropic) dispersion
relation around the Dirac points [29,51]. Here, we consider
a sample which has a Fermi energy εF that is small com-
pared to the energy width of the π band, the latter being
approximately 16.8 eV. This has the following implications.
First, the dispersion is approximately conical (see Fig. 1) at
energy εF, and the two Fermi lines are approximately circles
with radii κF = εF/�vF, where vF ≈ 9×105 m/s is the Fermi
velocity. Second, the crystal momenta k of the electronic states
participating in the valley relaxation process are close to either
K or K ′, hence we can uniquely relabel their momentum as
k = K + κ or k = K ′ + κ , respectively, with κ ≡ |κ | � K .

Let us briefly and qualitatively discuss the energy range
where the conical (linear and isotropic) approximation of
the electronic dispersion is valid. We have checked that
the error of the conical approximation [see Eq. (18)] with
respect to the tight-binding dispersion [see Eq. (16)] is at
most 10% for wave vectors fulfilling κ < κc = 0.316/aCC =
2.23×109 m−1, i.e., within this wave-vector range the relations
0.9 ε

(lin)
n,K+κ < εn,K+κ < 1.1 ε

(lin)
n,K+κ are fulfilled. The Fermi

energy corresponding to κc is �vFκc ≈ 1.33 eV. Therefore, it is
reasonable to use the conical approximation of the electronic
dispersion as long as

εF � 1.33 eV. (4)

The Boltzmann-type description of carrier dynamics in
graphene in the presence of Coulomb scatterers is expected
to be valid if the carrier density exceeds a threshold set by
the graphene-impurity distance d and the impurity density
ni = Ni/A, where A is the sample area. The theoretical and
experimental grounds of this expectation are summarized in,
e.g., Sec. IIIA of Ref. [52] and in Ref. [31]. There are strong
indications that the Boltzmann-type description is invalid for
very low carrier densities, when the Fermi energy is in the
close vicinity of the Dirac points; see, e.g., Refs. [53,54], and
Sec. IV of Ref. [52].

The zero-temperature thermal equilibrium state of the
electrons in this sample is described by the zero-temperature
Fermi-Dirac distribution f0(εck) = 
(εF − εck). The initial
state we consider is depicted in Fig. 1(a). The distribution
function in the initial state [Fig. 1(a)] can be formulated using
valley-dependent Fermi energies εFK and εFK ′ :

fK+κ (t = 0) = 
(εFK − εc,K+κ ), (5a)

fK ′+κ (t = 0) = 
(εFK ′ − εc,K ′+κ ). (5b)

In line with Fig. 1(a), we assume εFK ′ < εF < εFK ; due to
particle conservation, only two of the three Fermi energies are
independent. Furthermore, we consider an initial state where
the occupation difference in the two valleys is small, in the
sense that all the scattering rates of the states participating in
the dynamics can be approximated by scattering rates at the
Fermi energy εF.

Our aim here is to describe the relaxation dynamics of
the valley polarization density nv(t), which is related to the
distribution function via

nv(t) = 1

A

∑
κ

[fK+κ (t) − fK ′+κ (t)], (6)

where A is the sample area. This relation suggests that in
order to obtain nv(t), it is not necessary to solve the original
Boltzmann Eq. (2). Instead, formulating and solving a time-
evolution equation for the distribution difference,

f (v)
κ = fK+κ − fK ′+κ , (7)

might be sufficient. This can be done if the conditions,

WK+κ,K+κ ′ = WK ′+κ,K ′+κ ′ ≡ W
(KK)
κκ ′ , (8a)

WK+κ,K ′+κ ′ = WK ′+κ,K+κ ′ ≡ W
(KK ′)
κκ ′ , (8b)
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are fulfilled. Equations (8a) and (8b) describe the intravalley
and intervalley transition rates, respectively. From now on,
we rely on these conditions, and in Appendix B we argue that
they are indeed approximately fulfilled under the small-Fermi-
energy condition [Eq. (4)].

A straightforward calculation using Eqs. (2), (8a), and (8b)
shows that the time-evolution equation for f

(v)
κ reads

∂f
(v)
κ

∂t
=

∑
κ ′

W
(KK)
κκ ′

(
f

(v)
κ ′ − f (v)

κ

) −
∑
κ ′

W
(KK ′)
κκ ′

(
f

(v)
κ ′ + f (v)

κ

)
.

(9)

Importantly, the initial distribution difference f
(v)
κ (0), defined

via Eqs. (5) and (7), is approximately isotropic in κ due to
our small-Fermi-energy condition [Eq. (4)]. Therefore the
Boltzmann Eq. (9) is solved by the time-evolving distribution
function,

f (v)
κ (t) = f (v)

κ (0)e−�vt , (10)

with

�v = 2
∑
κ ′

W
(KK ′)
κκ ′ , (11)

provided that the sum on the right-hand side of Eq. (11) is
independent of the direction of κ . This latter condition is
fulfilled in the case we consider, and this becomes apparent
when evaluating the integral in Eq. (26) below.

Combining Eqs. (6), (7), and (10), we find that the valley
polarization density also shows an exponential decay:

nv(t) = nv(0)e−�vt . (12)

Therefore, we call �v the valley relaxation rate and τv = �−1
v

the valley relaxation time. Note that according to Eq. (11),
the valley relaxation rate is twice as large as the intervalley
scattering rate

∑
κ ′ W

(KK ′)
κκ ′ .

B. Dispersion, wave functions, and scattering rates

In the previous section, we established the relation between
the valley relaxation time τv and the intervalley scattering rates
W

(KK ′)
κκ ′ . The latter can be obtained from Fermi’s Golden Rule

in Eq. (3), if the Bloch-type electronic wave functions ψck(r)
and the dispersion relation εck of the conduction band are
known. Here, we outline the model we use to evaluate these
quantities.

We use the standard tight-binding or LCAO (linear combi-
nation of atomic orbitals) model of the π electrons of graphene,
with a special feature that the atomic pz orbitals are represented
by normalized 2D Gaussian-like wave functions,

φ(r) = 1√
2πaeB

e
− r2

4a2
eB , (13)

where aeB is the characteristic length scale of the orbitals, and
the label eB corresponds to “effective Bohr radius”. We use aeB

as a parameter and assume that it is approximately an order of
magnitude smaller than the carbon-carbon distance. Following
Ref. [51], we will disregard the overlap of atomic wave
functions centered on different atoms. This is a reasonable
approximation as long as aeB � 0.3 aCC, as the latter inequality
guarantees that the nearest-neighbor overlap integral is less

than 0.25. (For a free-standing carbon atom, we estimate that
the spatial extension of a three-dimensional 2pz atomic orbital
in the xy plane is approximately 0.28 aCC; see Appendix D.)

With the above simplifications, the electronic Bloch wave
functions are expressed as

|nk〉 = 1√
Nc

∑
R

eikR(
ank

∣∣φA
R

〉 + bnk

∣∣φB
R

〉)
, (14)

where Nc is the number of the unit cells in the sample, 〈r|φA
R〉 =

φ(r − R) and 〈r|φB
R〉 = φ(r − R − τ ), A and B are the two

sublattices, R is a lattice vector, ank and bnk are the sublattice
amplitudes that can be obtained from the tight-binding model
[51] as (

ank

bnk

)
= 1√

2

(
nf(k)
|f(k)|

1

)
, (15)

with f(k) = 1 + e−ika1 + e−ika2 . Here, the band index n ∈
(+1,−1) ≡ (c,v) refers to the conduction (+1 or c) and
valence (−1 or v) bands. Note that the vector τ , and the
primitive lattice vectors a1 and a2, are defined in Appendix A,
and the direct lattice, the reference frame, and the reciprocal
lattice are shown in Fig. 8 of Appendix A. The dispersion
relation reads

εnk = nεk = nγ0|f(k)|, (16)

where γ0 ≈ 2.8 eV is the nearest neighbor hopping matrix
element.

In the vicinity of the two Dirac points, f(k) can be linearized,
yielding the approximate sublattice amplitudes,

(
a

(lin)
nK+κ

b
(lin)
nK+κ

)
= 1√

2

(
ne−iϕ

1

)
(17a)

(
a

(lin)
nK ′+κ

b
(lin)
nK ′+κ

)
= 1√

2

( − neiϕ

1

)
, (17b)

where ϕ = ∠(κ,x̂) is the polar angle of κ , and the linearized
dispersion relation,

ε
(lin)
nK+κ = ε

(lin)
nK ′+κ

= n�vFκ, (18)

where vF = 3γ0aCC/2� ≈ 9×105 m/s is the Fermi velocity in
graphene.

Using the 2D Gaussian-like atomic wave function (13) in
our tight-binding model is a simplification. In principle, one
could use more realistic models, e.g., the linear combination
of three-dimensional hydrogen-type atomic orbitals, or Bloch
wave functions obtained from a numerical density-functional
calculation. As we show below, our choice (13) has the
advantage that it yields simple analytical expressions for the
calculated quantities, including the inverse of the dielectric
matrix at wave vector K . Furthermore, although our simplified
approach might not yield quantitatively accurate results, it
is expected to reveal the qualitative role of the atomic wave
function in the intervalley scattering processes, and to be used
as a benchmark for future numerical approaches.
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IV. RESULTS

A. Unscreened impurities

Here, we consider the case when the screening of the im-
purity Coulomb potential due to electron-electron interaction
is disregarded. Using the scattering rate in Eq. (3) and the
isotropic linear spectrum around the Dirac points in Eq. (18),
we obtain a formula from Eq. (11) for the valley relaxation
rate,

�v = 2εFA

�3v2
F

∫ 2π

0

dϕ′

2π
|Vc,K+κ,c,K ′+κ ′ |2

∣∣∣∣
κ ′=κ=κF

, (19)

where ϕ′ = ∠(κ ′,x̂) is the polar angle of κ ′.
The scattering matrix element can be obtained using the

electronic wave function in Eq. (14). By neglecting the
contributions of integrals involving atomic wave functions
located at different sites, we find

Vc,K+κ,c,K ′+κ ′

= 1

A

∑
G

Sc,K+κ,c,K ′+κ ′(K + �κ + G)

×P (K + �κ + G)V ∗(K + �κ + G; d), (20)

where we use that K ′ − K is equivalent with K on the

reciprocal lattice. (Note that K = 4π/3
√

3aCC ≈ 1.7 Å
−1

,
with aCC ≈ 1.42 Å being the carbon-carbon distance in
the graphene lattice.) Furthermore �κ = κ ′ − κ , P (q) =∫

d2r e−iqr |φ(r)|2 = e− 1
2 a2

eBq2
is the Fourier-transformed

probability density of the atomic orbital (“form factor”),
V (q; d) = ∫

d2r e−iqrV (r; d) is the Fourier-transformed im-
purity potential, and

Snk,n′k′(q) = a∗
nkan′k′ + b∗

nkbn′k′e−iqτ (21)

is a factor from sublattice amplitudes (“structure factor”). We
have also used that P (q) is real-valued, which is implied by
the cylindrical symmetry of the atomic wave function, φ(r) =
φ(r).

Because of our small-Fermi-energy assumption [Eq. (4)],
the condition κ,κ ′ � K holds and therefore �κ � K . That
implies that Eq. (20) can be well approximated by taking the
limit �κ → 0:

Vc,K+κ,c,K ′+κ ′ ≈ 1

A

∑
G

S
(lin)
c,K+κ,c,K ′+κ ′(K + G)

×P (K + G)V ∗(K + G; d). (22)

Here, we kept κ and κ ′ in the lower index of the structure factor;
using the approximated sublattice amplitudes Eqs. (17a) and
(17b) we obtain

S
(lin)
c,K+κ,c,K ′+κ ′(K + G) = e−i(K+G)τ − ei(ϕ+ϕ′)

2
. (23)

The next step is to perform the disorder average in Eq. (19).
Note that V (q; d) = Vi(q; d)

∑Ni
j=1 e−iqrj , and the assumption

of homogeneously and independently positioned impurities
implies

V ∗(K + G)V (K + G′) = NiV
2

i (K + G; d)δGG′ . (24)

Using Eq. (24), we find

|Vc,K+κ,c,K ′+κ ′ |2 = Ni

A2

∑
G

∣∣S(lin)
c,K+κ,c,K ′+κ ′(K + G)

∣∣2

×P 2(K + G)V 2
i (K + G; d). (25)

Using Eq. (23) to evaluate the integral over the polar angle ϕ′
of κ ′, yields∫ 2π

0

dϕ′

2π

∣∣S(lin)
c,K+κ,c,K ′+κ ′(K + G)

∣∣2 = 1

2
, (26)

which implies that the valley relaxation rate reads

�v = niεF

�3v2
F

∑
G

P 2(K + G)V 2
i (K + G; d). (27)

Here, ni = Ni/A is the sheet density of the impurities.
Equation (27) is one of the three key results of this work.

Let us now discuss the parameter dependence of the valley
relaxation rate �v. First, we note that its dependence on ni

is linear as expected. Second, the valley relaxation rate �v is
proportional to the Fermi energy εF. This linear relation is
a simple consequence of the fact that the number of final
states in the K ′ valley, that can be reached by scattering
from the K valley, is proportional to the density of states
D(εF) = εF/2π�

2v2
F per spin per valley, which, in graphene, is

proportional to εF itself. The property that the valley relaxation
rate is proportional to the density of states at the Fermi energy is
expected to be true for other multivalley materials as well. For
example, in 2D monolayer transition-metal dicalcogenides,
where the low-energy dispersion relation in the conduction
band is parabolic, we expect a Fermi-energy-independent
valley relaxation rate (for unscreened impurities).

Another characteristic feature of the result (27) is the
G sum, where squared Fourier components of the impurity
potential are summed up with the weight function P 2. The
appearance of the Fourier components Vi(K + G) is not
surprising, since in our model, the bulk wave functions |ck〉
are not plane waves but Bloch-type wave functions, i.e.,
superpositions of plane waves with wave numbers k + G.
Note also that the number of relevant terms in the G sum
of Eq. (27) is controlled by the effective Bohr radius aeB. If
the effective Bohr radius is increased, the momentum-space
weight function P 2(q) = e−a2

eBq2
becomes narrower, and the

number of Fourier components that contribute significantly to
the valley relaxation rate decreases. Consequently, the valley
relaxation time grows with increasing effective Bohr radius.

This trend is seen in Fig. 3, where the valley relaxation
time corresponding to the unscreened result (27), for graphene-
impurity distance d = 0, is shown as the blue line. The result
was obtained by numerically computing the sum in Eq. (27),
which converges due to the Gaussian decay of P 2(k). The unit
on the vertical axis of Fig. 3 is defined as the G = 0 term of
the sum in Eq. (27), i.e.,

τv,0(d) ≡
[

niεF

�3v2
F

V 2
i (K ; d)

]−1

= �
2v2

FK
2

4π2e2
0niεF

e2Kd, (28)

where Eq. (1) was used, furthermore, �v,0(d) = τ−1
v,0 (d). For

example, using the realistic parameter set ni = 1011 cm−2,
εF = 0.1 eV, and d = 0, we find τv,0 ≈ 10 ps. Note that the
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FIG. 3. (Color online) Valley relaxation time as a function of
the effective Bohr radius. The charged impurities are assumed to
be located in the graphene plane (d = 0). The cases of unscreened
impurities (blue) and screened impurities (red) are shown. The green
curve corresponds to a screened calculation where the off-diagonal
matrix elements of the inverse dielectric matrix are disregarded
(“diagonal screening”). The unit of the vertical axis is defined
in Eq. (28). The unit of the horizontal axis is the carbon-carbon
distance aCC.

corresponding transport lifetime for the same parameter set is
τtr ≈ 5 fs.

For a given d, the value of τv,0(d) can be regarded as
an order-of-magnitude estimate of the valley relaxation time.
Equation (28) reveals that this estimate grows exponentially
with graphene-impurity distance d, τv,0 ∝ ed/�, where the
characteristic length scale of the growth is � = 1/2K ≈ 0.3 Å.
This approximately exponential dependence of the valley
relaxation time, and the above-estimated characteristic length
scale, are illustrated in Fig. 4(a), where �v is shown as the
function of the graphene-impurity distance d. One implication
of this approximately exponential behavior is as follows. If the
graphene layer is lying directly on a substrate, then charged
impurities in the latter might be at a few-angstrom distance
from the graphene plane, and can cause a relatively short valley
relaxation time. For example, if ni = 1011 cm−2, εF = 0.1 eV,
and d = 3 Å, then τv,0 ≈ 200 ns. However, if the graphene
layer is suspended at a finite distance above the substrate,
then the valley relaxation time improves exponentially with
the distance; e.g., if d = 3 nm, then τv,0 improves with a factor
of ≈2×104.

A further thing to note about the G sum of Eq. (27) is
that the three terms corresponding to G = 0, G = −b1, and
G = b2 are equal (see Fig. 8 for the definitions of b1 and
b2), because the corresponding three wave vectors K , K − b1,
and K + b2 are equal in length, and Vi(q) and P (q) are both
cylindrically symmetric. In fact, these three terms dominate
the G sum in the case of large graphene-impurity distance,
d � aCC, as the remaining terms corresponding to longer wave
vectors are suppressed due to the relation V 2

i (q; d) ∝ e−2qd

[see Eq. (1)]. As a consequence, τv(d) ∝ τv,0(d) holds for
d � aCC. This relation is demonstrated in Fig. 4(b), where
the ratio τv(d)/τv,0(d) is indeed shown to saturate for d �
aCC. Figure 4(b) also shows that, in the case of d � aCC, the
proportionality relation τv ∝ τv,0 breaks down, especially for
smaller values of the effective Bohr radius aeB.

FIG. 4. (Color online) Valley relaxation rate as a function of
graphene-impurity distance (unscreened impurities). (a) Approxi-
mately exponential decay of the valley relaxation rate with graphene-
impurity distance. Valley relaxation rate �v(d) is shown for three
different values of the effective Bohr radius. The unit of the vertical
axis is �v,0 at d = 0 [see Eq. (28)]. (b) Deviations from exponential
decay: same data as in (a), but here the ratio of the valley relaxation
rate and the d-dependent �v,0(d) ∝ e−2Kd [see Eq. (28)] is plotted.
The plot indicates that for d � aCC, the decay of the valley relaxation
rate with d does not follow ∝e−2Kd exactly, and the deviation becomes
less significant as the effective Bohr radius is increased.

B. Screening within the random phase approximation

So far, we have evaluated the valley relaxation time in
the presence of unscreened impurities. Next, we improve on
this result by taking into account electron-electron interaction,
which screens the impurity-induced Coulomb potential. In this
subsection, we use the RPA approach to evaluate the dielectric
matrix of graphene at the intervalley wave number, εGG′(K );
then we use that to calculate the valley relaxation time in
Sec. IV C.

We note that most of the preceding theoretical works
studying dielectric screening by the π electrons of graphene
[30,55,56] apply jellium-type descriptions, where the charge
density corresponding to the Bloch-type wave functions is
assumed to be homogeneous, the electronic dispersion relation
is approximated by the Dirac cones, the two valleys are treated
independently, their contributions to screening are simply
added up, and screening is described by a dielectric function
ε(q) instead of the dielectric matrix we use below. This
method might be appropriate as long as one is interested in the
screening of the long-wave-length Fourier components of the
impurity potential. This is the case, e.g., when the conductivity
is calculated, since that is largely determined by intravalley
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scattering processes. However, here we consider intervalley
scattering, which involves a momentum transfer comparable to
the inverse of the atomic length scale. Therefore, it is required
that the atomic-scale structure of the electronic wave functions
of the crystal, as well as the atomic-scale structure of the
electrostatic potential (a.k.a. local-field effects), are taken into
account, and that the wave-vector summations are performed
for the Brillouin zone. We do these following the approach
of Adler [40] and Wiser [41]. We note that the dielectric
response of graphene has been described, with local-field
effects included, to characterize intervalley plasmons [43], and
the macroscopic static dielectric function [42].

To characterize how the impurity Coulomb potential is
screened by the electrons in graphene, we need to express
the total (or screened) potential Vtot that has two contributions:
the external potential Vext created by the impurities, and the
induced potential created by the rearranged electrons. This
relation is customarily expressed via the inverse dielectric
function ε−1(r,r ′) as

Vtot(r) =
∫

d2r ′ ε−1(r,r ′)Vext(r ′). (29)

Graphene, being crystalline, has discrete translational in-
variance. This implies that an external potential with wave
vector q induces a total potential which is a superposition
of Fourier components with wave vectors q + G, where G
is a reciprocal lattice vector. Hence the relation between the
Fourier components of the external and induced potential reads

Vtot(q + G) =
∑

G′
ε−1

GG′(q)Vext(q + G′), (30)

where q is defined in the first Brillouin zone and G, G′

are reciprocal vectors. The quantity ε−1(q) is called the
inverse dielectric matrix, its matrix elements are denoted by
ε−1

GG′ (q), and these matrix elements are related to the Fourier
components of the inverse dielectric function via

ε−1
GG′(q) = ε−1(q + G,−q − G′). (31)

We emphasise that the inverse dielectric matrix is a matrix-
valued function whose domain is the first Brillouin zone. The
dielectric matrix ε(q) is also a matrix-valued function on the
first Brillouin zone, fulfilling [ε(q)]−1 = ε−1(q) for all q.

The dielectric matrix is related to the polarizability matrix
�(q) as (see Appendix C):

εGG′(q) = δGG′ − VC(q + G)�GG′(q), (32)

where δGG′ is the Kronecker delta, and VC(q + G) =
2πe2

0/|q + G| is the 2D Fourier transform of the Coulomb
potential of the electron-electron interaction.

In the RPA, the polarizability matrix is approximated with
that of the noninteracting electron system. The latter can be
obtained from first-order static perturbation theory, and is
expressed via the Adler-Wiser formula [40,41],

�GG′(q) = gs

A

∑
nn′k

f (εnk) − f
(
εn′k+q

)
εnk − εn′k+q

〈nk|e−i(q+G)r |n′k + q〉

× 〈n′k + q|ei(q+G′)r |nk〉, (33)

where gs = 2 accounts for the twofold spin degeneracy. Note
that Eq. (33) is a generalization of the Lindhard formula [57].
The latter expresses the polarizability of a homogeneous non-
interacting system, whereas the former generalizes that to the
case of an inhomogeneous system with discrete translational
invariance. Furthermore, as we describe the regime of small
Fermi energies, we will calculate and use the polarizability
matrix of charge-neutral graphene (at zero temperature), which
corresponds to f (ε) = 
(−ε) in Eq. (33).

Neglecting the contributions of integrals involving atomic
wave functions at different sites, the matrix elements in
Eq. (33) can be simplified to

〈nk|e−i(q+G)r |n′k + q〉 = P (q + G)Snk,n′k+q(q + G), (34)

where P (q + G) and Snk,n′k′(q + G) are defined above.
Recall that our goal is to use the inverse dielectric matrix

for calculating the valley relaxation rate. To this end, we need
to know the Fourier components of the total potential in the
vicinity of the wave vectors K + G only. Therefore, we need
to evaluate the inverse dielectric matrix in the vicinity of
K . Assuming that the inverse dielectric matrix is a smooth
function, we will calculate ε−1(K ) explicitly and use the
approximation ε−1(K + �κ) ≈ ε−1(K ) whenever K + �κ is
close to K or an equivalent wave vector. Note that by using
the notation ε−1(K ) above, we have implicitly defined K to be
part of the first Brillouin zone. Furthermore, we will call ε(K ),
ε−1(K ), and �(K ) the intervalley dielectric matrix, the inverse
intervalley dielectric matrix, and the intervalley polarizability
matrix, respectively.

The intervalley polarizability matrix �(K ) can be ex-
pressed by invoking Eqs. (34), (33), (21), and (15), respec-
tively. The result is

�GG′(K ) = �K P (K + G)P
(
K + G′)[1 + ei(G′−G)τ ], (35)

where we defined

�K = gs

4A

∑
nn′k

f (εnk) − f (εn′k+K )

εnk − εn′k+K
. (36)

Note that the quantity f is absent from the result (35),
even though f appears in Eq. (15) describing the sublattice
amplitudes; the reason is that the k sum [in Eq. (33)] of the
terms containing f vanishes.

The quantity �K is evaluated assuming zero temperature
T = 0 and charge neutrality εF = 0 implying f (ε) = 
(−ε).
That is, the conduction band is empty and the valence band
is fully occupied, hence only the interband (n 
= n′) terms
contribute to the n, n′ sum in Eq. (36):

�K = − gs

2A

∑
k

1

εk + εk+K
, (37)

where εk was defined in Eq. (16). To evaluate the summation
over k, we first convert it to a momentum-space integral.
Despite the ∼1/k divergence of the integrand, the integral
is well defined due to its 2D nature. Numerical integration

yields �K ≈ −0.143/γ0a
2
CC ≈ −2.53×10−2 1/eVÅ

2
.

The intervalley dielectric matrix ε(K ) can be obtained using
Eqs. (32) and (35). To determine the screened potential, we
need to find the inverse intervalley dielectric matrix ε−1(K ),
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fulfilling the relation
∑

G′′ εGG′′ (K )ε−1
G′′ G′ (K ) = δGG′ . We find

that the matrix elements of ε−1(K ) are

ε−1
GG′(K ) = δGG′ + VC(K + G)�GG′(K )

εK
, (38)

where we introduced the dimensionless quantity,

εK = 1 − �K

∑
G

P 2(K + G)VC(K + G). (39)

The analytical formula (38) for the inverse intervalley dielec-
tric matrix is the second one of the three key results of this
work.

Let us close this subsection by discussing the qualitative
features of the results.

First, focus on the intervalley polarizability matrix �(K )
given in Eq. (35). (1) The characteristic scale of its matrix
elements is given by the quantity �K , which is independent
of the effective Bohr radius aeB. (2) The diagonal elements of
�(K ) are real; however, the off-diagonal elements are complex
in general, because of the factor in the square brackets.
(3) The dependence of �GG′ (K ) on aeB can be interpreted
as follows. First, recall that the weight function P (q) is a
2D Gaussian function with a characteristic momentum-space
width of 1/aeB. Therefore, Eq. (32) testifies that an external
potential of wave vector K + G′ can effectively create an
induced electron density of wave vector K + G, if and only if
both wave vectors are below 1/aeB. If either K + G or K + G′

are longer than 1/aeB, then either P (K + G) or P (K + G′)
suppresses the matrix element �GG′(K ). This makes sense:
On the one hand, if the wave vector K + G′ characterising
the external potential is much longer then 1/aeB, then the
corresponding wave length is much shorter than aeB, hence
the effect of the potential on the electronic wave functions
“averages out” and is therefore small indeed. On the other
hand, the induced electron density is composed of atomic
orbitals, hence it cannot accommodate spatial variations with
smaller wave length than aeB. Therefore its Fourier spectrum is
constrained to the wave vectors shorter than 1/aeB, explaining
the suppression factor P (K + G) in Eq. (32).

Second, we consider the quantity εK relevant for the inverse
intervalley dielectric matrix. By approximating the sum in
Eq. (39) to an integral, we find

εK ≈ 1 − �K

∫
d2k

|b1 × b2|P
2(k)VC(k) ≈ 1 + 1.19

aeB/aCC
,

(40)

where |b1 × b2| is the momentum-space area of the Brillouin
zone. In Fig. 5, we show εK as a function the effective Bohr
radius, as obtained via numerical evaluation of Eq. (39) (solid
line) and via the integral approximation in Eq. (40) (dashed
line); the two results show a reasonable qualitative agreement.

C. Screened impurity

Here, we use our result (38) for the inverse dielectric
matrix to calculate the valley relaxation rate corresponding to
screened charged impurities. That is, the disordered potential
V (r; d) appearing in the scattering rate (3) is assumed to take

FIG. 5. Effective intervalley dielectric constant as a function of
the effective Bohr radius. The unit of the horizontal axis is the
carbon-carbon distance aCC. The results of numerical summation and
analytical approximation are shown.

the form [cf. Eq. (29)],

V (r; d) =
∫

d2r ′ε−1(r,r ′)
Ni∑

j=1

Vi(r ′ − rj ; d). (41)

Repeating the calculation presented in Sec. IV A with this
disorder potential, we find

�v = niεF

�3v2
F

∑
GG′ G′′

1 + ei(G′−G)τ

2
P (K + G)P (K + G′)

× [
ε−1

GG′′(K )
]∗

ε−1
G′ G′′(K )V 2

i (K + G′′; d). (42)

Substituting the formula of the intervalley dielectric matrix
from Eq. (38), we obtain the following, remarkably simple
analytical formula for the valley relaxation rate:

�v = niεF

�3v2
F

∑
G

P 2(K + G)

[
Vi(K + G; d)

εK

]2

. (43)

Equation (43) is the last one of the three key results of this
work.

Note that the screened result (43) can be obtained from
the unscreened result (27) by substituting Vi(K + G; d)/εK

for Vi(K + G; d). On the one hand, it is remarkable that the
matrix character of the inverse dielectric matrix in Eq. (38)
does not appear explicitly in Eq. (43); instead, the effect
of screening on the valley relaxation rate is described by a
single scalar εK in Eq. (43). On the other hand, we emphasize
that the role played by the quantity εK in the intervalley
scattering rate is analogous to the role played by the dielectric
constant in the screening of a long-wave-length potential in a
dielectric material. Accordingly, εK can be called the effective
intervalley dielectric constant. Importantly, the derivations of
Eqs. (27) and (43) rely on our specific model for the electronic
wave function (LCAO wave functions built from 2D Gaussian
atomic wave functions) and the specific type of disorder
(random, uncorrelated Coulomb impurities); therefore, it is
possible that the notion of the effective intervalley dielectric
constant is restricted to the present model only.

In Fig. 3, the red curve shows the valley relaxation time for
screened Coulomb impurities, according to Eq. (43), as a func-
tion of the effective Bohr radius aeB, for a graphene-impurity
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FIG. 6. (Color online) Valley relaxation rate as a function of
graphene-impurity distance (screened impurities). See caption of
Fig. 4 for more details.

distance d = 0. The G sum of Eq. (43) was evaluated numeri-
cally. The valley relaxation time is much longer in the screened
case (red) than in the unscreened case (blue): Apparently,
screening is effective in weakening the Coulomb potential
of the impurities even at the intervalley wave vector K , and
therefore significantly prolongs the valley relaxation time.

Figure 3 also shows that for screened impurities, τv is
decreasing with increasing effective Bohr radius, whereas for
unscreened impurities τv shows an opposite trend. As the only
difference between the corresponding results (27) and (43)
is the appearance of εK in the latter, the different trends are
explained by the relatively fast decay of εK with increasing
effective Bohr radius.

At this point, the relative importance of the diagonal
and off-diagonal matrix elements of the inverse intervalley
dielectric matrix for the screened result (red) of Fig. 3 is not
known. Using the hypothesis that only the diagonal matrix
elements of ε−1(K ) are important, we calculate the valley
relaxation rate (42) of a screened impurity with an “artificial,”
diagonal inverse intervalley dielectric matrix, whose diagonal
(off-diagonal) elements are given by ε−1

GG(K ) of Eq. (43) (are
zero). The obtained valley relaxation rate is shown in Fig. 3 as
the green curve. The apparent qualitative difference between
the screened result (red) and the diagonally screened result
(green) reveals that the off-diagonal matrix elements of the
inverse intervalley dielectric matrix do play an important role
in the screening of the charged impurities.

Finally, Fig. 6 shows the valley relaxation rate due to
screened impurities as a function of the graphene-impurity
distance, for three different values of the effective Bohr radius.

The behavior is very similar to the unscreened case (see Fig. 4
and the corresponding discussion in Sec. IV A).

V. DISCUSSION AND CONCLUSIONS

(1) In this work, we described the effects of screening using
a model for the π electrons of graphene, and we applied the
linear-response framework of the RPA. It is a relevant, and, to
our knowledge, open question how strongly the other (e.g., σ )
bands influence the dielectric matrix at wave vector K . The
substrate might also contribute to the screening of the short-
wavelength Fourier components of the Coulomb scatterers. It
is also an interesting future direction to describe how the effects
beyond linear-response behavior, e.g., bound-state formation
around the Coulomb impurity [58–60], influence the valley
relaxation time. In a related recent theory work, intervalley
scattering due to a combined long-range–short-range scatterer
was studied, using a method where the effect of the long-range
potential component was described nonperturbatively [36].

(2) In order to simplify calculations and to reveal the role
of the atomic structure of the electronic wave function in the
valley relaxation process, we have used 2D Gaussian wave
functions [Eq. (13)] as building blocks of our model. This
choice provided two advantages: (i) The 2D character of
these atomic wave functions allows for a 2D description of
screening effects. (ii) The Gaussian character allows one to
derive simple analytical results. We wish to emphasize that
advantage (i) is rather substantial. Without (i), the description
of screening would become much more involved: Graphene
has discrete translation invariance within its plane, but has no
translational invariance in the out-of-plane direction. Hence,
if 3D wave functions are used, then a “hybrid” theory should
be developed for screening, which would then incorporate
a special dielectric linear response function ε(q + G,−q −
G′,qz,q

′
z) [cf. Eq. (31)], where G and G′ are 2D reciprocal

lattice vectors, q is a wave vector from the 2D Brillouin zone,
and qz and q ′

z are out-of-plane wave numbers. Developing such
a hybrid theory would be a welcome development, but we do
not attempt that in the present work. Advantage (ii) is not that
substantial. In fact, all our results expressed with the form
factor P (q) hold for any other 2D atomic wave function as
well, as long as the latter is cylindrically symmetric.

(3) Here, we described valley relaxation due to scattering
off long-range Coulomb impurities. In general, the valley
relaxation time is set by the interplay of a number of
mechanisms (e.g., electron-phonon scattering, scattering off
short-range impurities, etc.).

(4) Our calculation is restricted to zero temperature. At
finite temperature, the valley relaxation rate is expected to
change. One possible reason for a temperature-dependent
valley relaxation rate is temperature-dependent screening: The
temperature-dependent electronic distribution f (ε) appears in
the formula for the polarizability matrix [see Eqs. (35) and
(36)]. Another possible reason causing temperature-dependent
τv is the thermal population of phonons with large wave
vectors, that are capable of scattering electrons between the
valleys upon being absorbed.

(5) Here we assumed spatial homogeneity of the electronic
distribution function f , and used the Boltzmann equation
to describe the relaxation dynamics of a valley-polarized
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FIG. 7. (Color online) Valley-flip length as a function of the
impurity sheet density and graphene-impurity distance. The effective
Bohr radius is set to aeB = 0.2aCC. The unit of horizontal axis is the
carbon-carbon distance aCC.

initial state. A complementary task is to describe the valley
dynamics in a spatially inhomogeous structure, where, e.g.,
valley-polarized electrons are injected to a nanostructure from
a localized source [1]. We expect that our Boltzmann-equation-
based approach can be used as a starting point in that case,
to derive macroscopic transport equations describing valley
diffusion, in analogy to the spin-diffusion equations developed
in spintronics [61].

(6) The robustness of the valley index against scattering
processes can be characterized by the valley-flip length or
intervalley scattering length Li: this is the typical distance an
electron can travel without having its valley index flipped. In
our case of charged impurities, intravalley scattering happens
more often than intervalley scattering, hence the motion
of the electron between two valley flips is diffusive. Our
results for the valley relaxation time τv allow us to estimate
the dependence of the valley-flip length as a function of
system parameters. The diffusion coefficient is estimated
as D = τtrv

2
F/2, where τtr is the transport lifetime. Then

the valley-flip length is Li = √
Dτi, where τi = 2τv is the

intervalley scattering time [see Eq. (11)]. As τtr ∝ εF/ni (see
Ref. [30]) and τv ∝ 1/niεF [see Eqs. (27) and (43)], the
valley-flip length is independent of the Fermi energy εF and
inversely proportional to the impurity sheet density ni. In
Fig. 7, we show the valley-flip length Li as a function of
the impurity sheet density and the graphene-impurity distance
d, with the effective Bohr radius set to aeB = 0.2aCC; to
obtain this result, Eq. (3.23) of Ref. [30] was used for
τtr and our result (43) was used for τv. Note that besides
impurities, the rough edges of a real graphene sample can
also induce intervalley scattering [50]. The relative importance
of edge-induced and Coulomb-impurity-induced intervalley
scattering can be judged by comparing the sample size and the
valley-flip length evaluated in Fig. 7. For example, for a sample
size of 10 microns and graphene-impurity distance of d = aCC,
Fig. 7 suggests that Coulomb scattering gains importance over
edge scattering if ni � 3×1011 cm−2.

(7) In a recent measurement of the valley Hall effect in
graphene [15], the length scale characterizing the spatial decay
of the nonlocal resistance was found to be ≈1.0 μm. This
length scale can be identified [62] as the valley-flip length
Li we defined above. Charged impurities are thought to be
present in the measured device (see Sec. 6 of the Supplemental
Material of Ref. [15]), hence it is motivated to relate this
measured length scale to our theoretical results. Assuming
that the charged impurity sheet density in the sample is in the
range shown in our Fig. 7, the following interpretations can be
suggested: The measured length scale Li ≈ 1 μm is set by (i)
charged impurities that are very close to the graphene plane
(d < 0.5aCC), or (ii) sources other than charged impurities,
e.g., edges or short-range impurities.

In conclusion, we have presented a model for valley
relaxation due to randomly positioned charged impurities
in graphene. We described the dependence of the valley
relaxation rate of an ensemble of valley-polarized electrons on
the model parameters (Fermi energy, impurity sheet density,
graphene-impurity distance, spatial extension of the atomic pz

wave functions). The static screening of the charged impurities
was described by, as required for crystalline materials, the
dielectric matrix, which we evaluated in the RPA. Our
results highlight that a quantitatively accurate description
of valley relaxation is more challenging than that of the
electrical conductivity: The former requires that screening due
to electron-electron interaction is described in terms of the
dielectric matrix, and that the spatial variation of the electronic
wave functions on the atomic length scale is precisely known.
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APPENDIX A: CONVENTIONS

In this Appendix, the reference frame is specified and the
vectors characterizing the direct and reciprocal lattices are
defined. The direct lattice is shown in Fig. 8(a). Atoms of the
A and B sublattices are depicted as black points and circles,
respectively. The shaded rhombus shows the unit cell of the
direct lattice. The primitive vectors of the direct lattice are

a1 = aCC

2

(−√
3

3

)
, a2 = aCC

2

(√
3

3

)
, (A1)

and the vector connecting the A and B sites within a unit cell
is

τ = aCC

(
0
1

)
. (A2)

The primitive vectors of the reciprocal lattice are

b1 = 2π

3aCC
(
√

3,1), b2 = 2π

3aCC
(−

√
3,1). (A3)
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FIG. 8. (Color online) Direct and reciprocal lattices. (a) Direct lattice of graphene, showing the unit cell (shaded rhombus), the A (points)
and B (circles) sublattices, the primitive lattice vectors a1 and a2, the vector τ connecting the A and B sites within a unit cell, and the reference
frame. (b) Reciprocal lattice of graphene (black points), showing the Brillouin zone (shaded hexagon), the primitive reciprocal lattice vectors b1

and b2, the special points K and K ′ of the Brillouin zone, the shifted reciprocal lattices consisting of points K + G and K ′ + G (blue upward
triangles and red downward triangles, respectively). The dashed circle shows the reciprocal-space extension of the Gaussian atomic electron
density, i.e., the set of momentum vectors where the Fourier-transformed atomic electron density is P(k) = 1/2, for an effective Bohr radius
of aeB = 0.2aCC.

The Dirac points are

K = 4π

3
√

3aCC

(1,0), K ′ = 2π

3
√

3aCC

(1,
√

3). (A4)

APPENDIX B: PROOF OF EQS. (8a) AND (8b)

First, we prove Eq. (8a), which corresponds to the intraval-
ley transition probability. The formula of the matrix element
Vc,K+κ,c,K+κ ′ can be approximated by keeping only those terms
that are proportional to V (�κ), and dropping all other terms
involving V (�κ + G) with G 
= 0 terms. This is a reasonable
approximation as our small-Fermi-energy condition implies
V (�κ) ∼ 1/�κ � 1/G ∼ V (�κ + G). With this simplifica-
tion, we find

Vc,K+κ,c,K+κ ′ ≈ 1

A
Sc,K+κ,c,K+κ ′(�κ)P (�κ)V ∗(�κ). (B1)

A similar formula holds for valley K ′ with Sc,K ′+κ,c,K ′+κ ′ . The
transition probabilities are equal in the valleys if the structure
factor has the property,

|Sc,K+κ,c,K+κ ′(�κ)|2 = |Sc,K ′+κ,c,K ′+κ ′(�κ)|2, (B2)

which can be proven by substituting Eqs. (17a) and (17b)
to the definition of structure factor (21) and approximating
e−i�κτ ≈ 1 due to �κ → 0. This argument can be reused
for the case of screened impurities, assuming that long-wave-
length screening is appropriately described by the frequently
used jellium-type RPA description [30,55,56].

To prove Eq. (8b), which corresponds to the intervalley
transition rates, we rewrite Eq. (8b) as

WK+κ,K ′+κ ′ = WK+κ ′,K ′+κ = WK ′+κ,K+κ ′ , (B3)

where the second equality expresses detailed balance, which
arises here as the transition rates are evaluated from Fermi’s
Golden Rule and hence are invariant for the exchange of the

initial and the final states. Thus, to confirm the first equality,
it is enough to investigate the dependence of the intervalley
transition rate WK+κ,K ′+κ ′ on the angles ϕ and ϕ′ of κ and
κ ′, respectively. The transition rate depends on ϕ and ϕ′ only
through S

(lin)
c,K+κ,c,K ′+κ ′(K + G), which is invariant under the

exchange of ϕ and ϕ′ polar angle of κ and κ ′ as seen from
Eq. (23). This proves the first equality in Eq. (B3), and hence
(8b), for both unscreened and screened impurities.

APPENDIX C: RELATION OF THE DIELECTRIC MATRIX
AND THE POLARIZABILITY MATRIX

In this Appendix, we establish the relation (32) between the
dielectric matrix and the polarizability matrix.

First, recall that the real-space dielectric function ε(r,r ′)
describes the relation between the external and total potentials
[cf. Eq. (29)],

Vext(r) =
∫

d2r ′ε(r,r ′)Vtot(r ′), (C1)

whereas the real-space polarizability function �(r,r ′) de-
scribes the relation between the induced electron density and
the total potential,

nind(r) =
∫

d2r ′ �(r,r ′)Vtot(r ′). (C2)

For our purposes, r,r ′ are 2D position vectors, since the model
we use to describe graphene’s electrons is 2D.

Next, we apply Fourier transformation on the definitions
(C1) and (C2), exploiting their invariance with respect to lattice
translations: e.g., �(r + R,r ′ + R) = �(r,r ′) for any lattice
vector R. Recall that we use the following definition for Fourier
transformation:

f (k) =
∫

d2r f (r)e−ikr , (C3)
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where f (r) is an arbitrary 2D position-dependent function.
We evaluate the Fourier transforms of Eqs. (C1) and (C2) at
an arbitrary wave vector k = q + G, where q is within the
Brillouin zone and G is a reciprocal lattice vector; we obtain

Vext(q + G) =
∑

G′
εGG′ (q)Vtot(q + G′), (C4)

nind(q + G) =
∑

G′
�GG′(q)Vtot(q + G′). (C5)

Here, we used the fact that the invariance of the real-space
response function with respect to lattice translations implies,
e.g., �(q + G,q ′ + G′) ∝ δq,−q ′ and introduced the dielectric
matrix ε(q) and the polarizability matrix �(q) as εGG′(q) =
ε(q + G,−q − G′) and �GG′(q) = �(q + G,−q − G′), re-
spectively.

Having these definitions at hand, the dielectric matrix and
the polarizability matrix can be connected using Coulomb’s
law. Coulomb’s law implies that the induced potential, i.e., the
potential created by the induced electron density, reads

Vind(r) =
∫

d2r ′ VC(r − r ′)nind(r ′), (C6)

where VC(r − r ′) = e2
0/|r − r ′| is the 2D Coulomb potential.

Applying Fourier transform with respect to r yields

Vind(q + G) = VC(q + G)nind(q + G), (C7)

where VC(q + G) = 2πe2
0/|q + G| is the 2D Fourier trans-

form of the Coulomb potential. Inserting Eq. (C7) to the
relation,

Vtot(q + G) = Vext(q + G) + Vind(q + G), (C8)

and eliminating nind via Eq. (C5), one finds

Vext(q + G)

=
∑

G′
[δGG′ − VC(q + G)�GG′(q)]Vtot(q + G′), (C9)

proving Eq. (32).

APPENDIX D: ESTIMATION OF THE EFFECTIVE
BOHR RADIUS

In the main text, the atomic pz orbital is represented by
the 2D Gaussian-type wave function φ(r), defined in Eq. (13).
The 2D spatial extension of this wave function in the xy plane
is characterized by the effective Bohr radius aeB. Here, we
estimate the 2D spatial extension of a three-dimensional 2pz

orbital of a free-standing carbon atom, to provide an estimate
for aeB.

To this end, we invoke those results of Ref. [63] that
correspond to a free-standing carbon atom. In Ref. [63], the
three-dimensional single-electron orbitals are approximated
by Slater-type orbitals; in particular, the 2pz orbital of a carbon
atom is approximated by

φpz
(r,z) = z√

32π (a0/Zeff)5
e
−

√
r2+z2

2a0/Zeff , (D1)

where r = (x,y), r =
√

x2 + y2, a0 = 0.53 Å is the Bohr
radius, and Zeff = 3.14 is the effective charge of the nucleus.
(The latter is denoted in Ref. [63] as Z − σ .)

We characterize the 2D spatial extension of φpz
in the xy

plane via

〈
φpz

∣∣r∣∣φpz

〉 = 15π

16
a0/Zeff ≈ 0.50 Å. (D2)

The same quantity for our 2D Gaussian-type wave function is

〈φ|r|φ〉 =
√

π

2
aeB. (D3)

From the requirement 〈φpz
|r|φpz

〉 = 〈φ|r|φ〉, we obtain the
estimate,

aeB = 15

8

√
π

2
a0/Zeff ≈ 0.40 Å. (D4)

Expressing this result in units of the carbon-carbon distance
aCC, we find aeB ≈ 0.28 aCC.
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[23] G. Széchenyi and A. Pályi, Phys. Rev. B 89, 115409 (2014).
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