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Shape-sensitive Pauli blockade in a bent carbon nanotube

Gábor Széchenyi1 and András Pályi1,2
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Motivated by a recent experiment [F. Pei et al., Nat. Nanotechnol. 7, 630 (2012)], we theoretically study the
Pauli blockade transport effect in a double quantum dot embedded in a bent carbon nanotube. We establish
a model for the Pauli blockade, taking into account the strong g-factor anisotropy that is linked to the local
orientation of the nanotube axis in each quantum dot. We provide a set of conditions under which our model
is approximately mapped to the spin-blockade model of Jouravlev and Nazarov [O. N. Jouravlev and Y. V.
Nazarov, Phys. Rev. Lett. 96, 176804 (2006)]. The results we obtain for the magnetic anisotropy of the leakage
current, together with their qualitative geometrical explanation, provide a possible interpretation of previously
unexplained experimental results. Furthermore, we find that in a certain parameter range, the leakage current
becomes highly sensitive to the shape of the tube, and this sensitivity increases with increasing g-factor anisotropy.
This mutual dependence of the electron transport and the tube shape allows for mechanical control of the leakage
current, and for characterization of the tube shape via measuring the leakage current.
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I. INTRODUCTION

Recent advances enable the fabrication of ultraclean indi-
vidual carbon nanotubes (CNTs) with exceptional electronic
and mechanical quality [1–11]. Transport experiments [12]
in such devices are aiming at, e.g., establishing strongly
correlated electronic phases [13,14], controlling the CNT’s
electronic and mechanical degrees of freedom and their
interactions [6,11,15–17], and electron-spin-based quantum
information processing [1,9,18–20].

Characteristic of CNTs is the coexistence of mechan-
ical flexibility and strong spin-orbit interaction [3,21–23].
In combination with electrical confinement in CNT quan-
tum dots (QDs), their interplay allows for strong spin-
phonon coupling [18,24,25], bend-induced and electrically
controlled g-tensor modulation [26], electrically driven spin
resonance [9,20,27–30], spin-based motion sensing [31], and
mechanical readout of spin-based quantum bits [32].

In this work, we provide a theoretical description of a
recently realized experimental setup [1], where the Pauli
blockade transport effect was measured in a double QD (DQD)
embedded in a bent CNT. A schematic of the setup is shown in
Fig. 1(a). In the Pauli blockade [33–36], electronic transport
through the serially coupled DQD proceeds via the (1,1) →
(0,2) → (0,1) → (1,1) cycle of transitions, where (NL,NR)
denotes the numbers of electrons in the neighboring QDs.

First, consider the case when the only internal degree of
freedom of the electrons is the spin, and hence the current flow
is influenced by the spin selection rules of the transitions of the
transport cycle. This case is relevant for, e.g., III-V semicon-
ductors [33,34,37], and CNTs with strong disorder [36,38].
In the absence of singlet-triplet mixing, the (1,1) → (0,2)
transition is forbidden for the triplet states by Pauli’s exclusion
principle, hence the current is zero. This blockade is lifted
by spin perturbations causing singlet-triplet mixing (e.g.,
spin-orbit interaction, hyperfine interaction, inhomogeneous
magnetic field), inducing a nonzero leakage current. In turn,
measurement of the leakage current can be used to characterize
the spin Hamiltonian governing the current-carrying
electrons. The Pauli-blockade mechanism is also utilized

for qubit initialization and readout in experiments [39–41]
demonstrating coherent control of few-electron quantum bits.

In ultraclean CNT DQDs, the valley degree of freedom
of the electrons and the large spin-orbit interaction play
essential roles in Pauli blockade. In the limit of vanishing
valley mixing, and in the absence of an external magnetic
field, the ground-state doublet in each QD is a Kramers pair,
usually denoted by |K ↑〉 and |K ′ ↓〉, with opposite spin
orientation and different valley index. The phenomenology
of Pauli blockade, also called spin-valley blockade [42,43]
or valley-spin blockade [1] in this context, remains similar
to the spinful case: triplet-like two-electron states composed
from |K ↑〉 and |K ′ ↓〉 block the current in the absence of
singlet-triplet mixing, and this blockade can be lifted by spin-
or valley perturbations acting differently in the two QDs.

Here, we present a model for the Pauli-blockade transport
effect in a DQD embedded in a bent CNT. We take into
account the strong g-factor anisotropy, which is linked to
the local orientation of the nanotube axis in each QD [see
Fig. 1(a)]. We provide a set of conditions under which
our model can be mapped to the spin-blockade model of
Jouravlev and Nazarov [34]. We calculate the dependence of
the leakage current on the orientation of the external magnetic
field. The results we obtain, see, e.g., Fig. 1(c), provide a
possible interpretation of previously unexplained experimental
results [1]. Furthermore, we find that in a certain parameter
range, the leakage current becomes highly sensitive to the
shape of the tube, and this sensitivity increases with increasing
g-factor anisotropy. This mutual dependence of the electron
transport and the tube shape allows for mechanical control of
the leakage current, and for characterization of the tube shape
via measuring the leakage current.

II. MAGNETIC ANISOTROPY OF THE
LEAKAGE CURRENT

Our aim in this work is to quantify the relation between
the Pauli-blockade leakage current and the system parameters,
including the shape of the CNT and the magnetic field vector.
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GÁBOR SZÉCHENYI AND ANDRÁS PÁLYI PHYSICAL REVIEW B 91, 045431 (2015)

FIG. 1. (Color online) Pauli blockade in a bent carbon nanotube.
(a) Double quantum dot in a bent CNT in a homogeneous magnetic
field B. The direction of the magnetic field is characterized by the
polar and azimuthal angles θ and ϕ. The geometry of the CNT
is characterized by the deflection angle α. (b) Level diagram in
the inelastic interdot tunneling regime [cf. Eq. (17)]. Dashed lines
represent matrix elements mixing the triplet states with the singlet
S̃. (c) Theoretical result for the magnetic anisotropy of the leakage
current I (ϕ,θ ) at B = 0.5 T, showing features similar to the measured
data (Fig. S7 in the Supplementary Information of Ref. [1]). Dashed
grey line shows the position of the antiresonance as described by
the analytical formula Eq. (22). Parameter values: α = 3◦, g‖ = 32,
ES̃ ≡ t2/� = 5 μeV, g

(L)
⊥ = 1.125, g

(R)
⊥ = 0.75, γ = 0. See Sec. IV

for more details.

A schematic of the setup, along with the reference frame, is
shown in Fig. 1(a). The magnetic field vector is characterized
by its magnitude B and its usual polar θ and azimuthal ϕ

angles, B = B(sin θ cos ϕ, sin θ sin ϕ, cos θ ).
For our analysis, experimental guidance is provided by the

data of Ref. [1]. There, an especially useful data set is presented
in Fig. S7 of the Supplementary Information of Ref. [1] (to
be referred to as S7 from now on). In S7, the dependence of
the leakage current on the magnetic field direction is plotted,
in the case where the (1,1)-(0,2) energy detuning (defined
below) � ∼ 1 meV and the magnetic field strength B = 0.5 T
are held fixed. Importantly, the detuning � was chosen such
that it exceeds the Zeeman splittings for any magnetic field
direction in the angular range covered in S7. Furthermore, the
current shown in S7 is presumably the result of inelastic, e.g.,
phonon-emission-mediated, energetically downhill (1,1) →
(0,2) charge transitions [as depicted by the wavy arrow in
Fig. 1(b)], as suggested by the detuning asymmetry of the
current in the corresponding data shown in Fig. 4(a) of Ref. [1].

This measurement setting of S7 simplifies the interpretation
of the data: it suggests that the rate �in of the inelastic downhill
(1,1) → (0,2) tunneling process is hardly sensitive to the
magnetic field direction, hence the observed field-direction
dependence of the leakage current is caused by the field-
direction-induced variations of the four energy eigenstates of
the (1,1) charge configuration, and not by variations of the
tunnel rate �in.

The main features seen in S7 are as follows. (E1) In a narrow
range of θ ∈ [85◦,95◦], i.e., for magnetic field directions
almost perpendicular to the CNT axis, the leakage current is
much higher (∼10 pA) than outside that range (�1 pA). (E2)
Apparently, the high-current region is defined by the condition
|θ − π/2| < A cos ϕ, where A ≈ 5◦. (E3) The high-current
regions are separated by low-current gaps at ϕ ≈ 90◦ and ϕ ≈
270◦. Two weaker features of S7: (E4) there are two narrow
lines of reduced current (antiresonances) around θ ≈ 90◦,
approximately horizontal at ϕ ≈ 0 (ϕ ≈ 180◦) but bending
downward (upward) as ϕ is moved away from 0 (180◦). (E5)
There are two narrow lines of increased current (resonances),
at (ϕ,θ ) ≈ (0◦,98◦) [(ϕ,θ ) ≈ (180◦,82◦)], bending downward
[upward] as ϕ is moved away from 0 [180◦].

Among the theoretical works addressing few-electron
physics in CNT DQDs [29,42–49], Refs. [43,49] described the
Pauli blockade transport effect in the case of a straight CNT.
In Ref. [49], we found that the Pauli blockade can be lifted if
the external magnetic field is perpendicular to the CNT axis.
That finding is in line with the experimental feature (E1) seen
in the bent CNT. However, for the straight CNT, the current
is independent of the azimuth angle ϕ of the field, because
of the cylindrical symmetry of the straight geometry. This
is in contrast with the experimental features (E2)–(E5), which
motivates the present study accounting for the bent shape of the
CNT. The model we present will provide possible explanations
of the features (E1)–(E4) observed in S7, as demonstrated by
Fig. 1(c).

III. MODEL

The setup, consisting of an electrostatically defined DQD in
a bent CNT, is shown in Fig 1(a). In our model, the shape of the
CNT is characterized by the unit vectors tD (D = L,R) along
the local CNT axes in the two QDs L and R. The reference
frame [see Fig. 1(a)] is chosen such that these unit vectors
span the x − z plane and are characterized by a single angle
parameter α, which we refer to as the deflection angle:

tL = (− sin α,0, cos α), (1a)

tR = (sin α,0, cos α). (1b)

The deflection angle is assumed to be small [9], α � 1. We
also introduce the unit vectors nL = (cos α,0, sin α), nR =
(cos α,0, − sin α), and n′

D = tD × nD , see Fig. 1(a).

A. Single-electron Hamiltonian

The 4 × 4 Hamiltonian describing a single electron oc-
cupying the nominally fourfold (spin and valley) degenerate

045431-2



SHAPE-SENSITIVE PAULI BLOCKADE IN A BENT . . . PHYSICAL REVIEW B 91, 045431 (2015)

ground-state orbital of QD D reads [20,24]

HD = −�
(D)
SO

2
tD · s τ3 + �

(D)
KK ′

2

(
cos γ (D)τ1 + sin γ (D)τ2

)
+HB,D, (2)

where

HB,D = 1
2gsμB Bs + 1

2g(D)
v μB tD · B τ3. (3)

Furthermore, s = (sx,sy,sz) and τ = (τ1,τ2,τ3) are the vectors
of Pauli matrices in the spin and valley spaces, respectively,
�

(D)
SO is the spin-orbit splitting in QD D, �

(D)
KK ′eiγ (D)

is the
complex valley-mixing matrix element in QD D, and the last
two terms describe the Zeeman splittings, where gs (g(D)

v ) is
the spin (orbital) g factor (in QD D). We assume �

(D)
SO > 0 and

g(D)
v > 0. In Eq. (2), the unit matrices in spin (s0) and valley

(τ0) space are suppressed.
The 8 × 8 single-electron Hamiltonian of the DQD incor-

porates spin- and valley-conserving interdot tunneling:

HDQD = HLηL + HRηR + Htun, (4)

where ηL/R = (η0 ± η3)/2,

Htun = t√
2
s0τ0η1, (5)

and η0,1,2,3 are the Pauli matrices acting on the spatial degree
of freedom (L,R). Furthermore, t is real-valued.

At zero magnetic field B = 0 and zero interdot tunnelling
t = 0, the energy eigenstates of HDQD form four Kramers

doublets at energies ±
√

[�(D)
SO ]2 + [�(D)

KK ′]2. Here we focus
on the low-energy doublets in both dots, to be denoted by

|⇑̃D〉 = cos
χ (D)

2
|K ↑D〉 − sin

χ (D)

2
eiγ (D) |K ′ ↑D〉, (6a)

|⇓̃D〉 = cos
χ (D)

2
|K ′ ↓D〉 − sin

χ (D)

2
e−iγ (D) |K ↓D〉, (6b)

where K and K ′ are the valley basis states, ↑D (↓D) is the
spin-up (spin-down) state in QD D with spin quantization axis
tD , and χ (D) = arctan(�(D)

KK ′/�
(D)
SO ) ∈ [0,π/2).

In order to provide an approximate mapping of our model
of the CNT DQD to the model of Ref. [34] (see next section),
we introduce the following gauge-transformed states:

|⇑L〉 = eiξ/2|⇑̃L〉, (7a)

|⇓L〉 = e−iξ/2|⇓̃L〉, (7b)

|⇑R〉 = e−iξ/2|⇑̃R〉, (7c)

|⇓R〉 = eiξ/2|⇓̃R〉, (7d)

where

ξ = arctan

(
sin γ ′ sin χ (L)

2 sin χ (R)

2

cos χ (L)

2 cos χ (R)

2 + cos γ ′ sin χ (L)

2 sin χ (R)

2

)
, (8)

and γ ′ = γ (R) − γ (L). The states defined in Eqs. (7a) and (7b)
[Eqs. (7c) and (7d)] will be referred to as the Kramers-qubit
basis states in QD L [R].

B. Low-energy single-electron Hamiltonian

We assume conditions when only the four lowest-energy
single-particle energy levels of the DQD, i.e., |⇑L〉, |⇓L〉,
|⇑R〉, and |⇓R〉, participate in the (1,1)→(0,2)→(0,1)→(1,1)
Pauli-blockade transport cycle. The effects of interdot tunnel-
ing and the external magnetic field are treated in first-order
perturbation theory. That is, we project the 8 × 8 single-
electron Hamiltonian HDQD to the 4 × 4 subspace spanned
by the four states above, i.e.,

H ′
DQD ≡ PHDQDP, (9)

where

P =
∑

D=L,R

(|⇑D〉〈⇑D | + |⇓D〉〈⇓D |). (10)

The low-energy Hamiltonian H ′
DQD provides a good approxi-

mation for the dynamics as long as the spin and orbital Zeeman
splittings and the interdot tunneling t are all much smaller

than the energy splittings 2
√

[�(D)
SO ]2 + [�(D)

KK ′ ]2 induced by
spin-orbit interaction and valley mixing.

Omitting a constant diagonal term in H ′
DQD, it can be written

as H ′
DQD = H ′

B + H ′
tun. As shown below, the homogeneous

magnetic field is felt by the Kramers-qubit in QD D as a local
effective magnetic field [20,49] BD . This is made explicit by
casting the low-energy magnetic Hamiltonian for the DQD in
the following form:

H ′
B ≡ PHBP = 1

2 [BLσL + BRσR]. (11)

Here, σD is the vector of Pauli matrices corresponding to the
Kramers-qubit basis states in QD D, e.g., σL,3 = |⇑L〉〈⇑L | −
|⇓L〉〈⇓L |. The effective magnetic field BD is related to the
external magnetic field B via

BD1 = −g
(D)
⊥ μBRe

[
(BDn + iBDn′)ei(γ (D)+Dξ )], (12a)

BD2 = −g
(D)
⊥ μBIm

[
(BDn + iBDn′)ei(γ (D)+Dξ )

]
, (12b)

BD3 = g
(D)
‖ μBBDt , (12c)

where D ∈ (L,R) ≡ (+1, − 1), and

g
(D)
⊥ = gs sin χ (D), (13a)

g
(D)
‖ = gs + g(D)

v cos χ (D), (13b)

and we introduced the projections of the the external magnetic
field on the local coordinate axes via

BDt = tD · B, (14a)

BDn = nD · B, (14b)

BDn′ = n′
D · B. (14c)

Henceforth, we will refer to BD1 and BD2 (BD3) as
the transverse components (longitudinal component) of the
effective field, and g

(D)
⊥ (g(D)

‖ ) as the transverse (longitudinal)
g factor.

We further define the symmetric Bs = 1
2 (BL + BR) and

the antisymmetric Ba = 1
2 (BL − BR) combinations of the

effective magnetic fields, and the component Ba,‖ (Ba,⊥) of
the antisymmetric combination that is parallel (perpendicular)
to Bs .
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The single-electron tunneling Hamiltonian in the low-
energy subspace reads H ′

tun ≡ PHtunP . We focus on cases
where our model, at least approximately, can be mapped
to that of Ref. [34]. To see when that can be done, let
us recall a key feature of the model of Ref. [34]: there is
no tunneling between the (1,1) triplet states and the (0,2)
singlet state. This is ensured by the fact that tunneling is
assumed to be spin-conserving, i.e., in any spin basis, the
single-electron tunnelling matrix elements are the same for
the up-spin and down-spin electrons. In order to have the
analogous feature, at least approximately, in our model,
our tunneling Hamiltonian H ′

tun should satisfy the following
two conditions. (i) Qubit-flip tunneling should be much
weaker than qubit-conserving tunneling, i.e., |〈⇑L |Htun|⇓R〉|,
|〈⇑R |Htun|⇓L〉| � |〈⇑L |Htun| ⇑R〉|,|〈⇓L |Htun|⇓R〉|. (ii) The
qubit-conserving tunnel amplitudes should be equal, 〈⇑L

|Htun|⇑R〉 = 〈⇓L |Htun|⇓R〉. Condition (i) is ensured if
�

(D)
SO � �

(D)
KK ′ and α � 1, which we assume from now on.

By explicit evaluation of the matrix elements of Htun, we find
that the relation �

(D)
SO � �

(D)
KK ′ guarantees that the ratio of the

qubit-flip and qubit-conserving matrix elements fulfills

|〈⇑L |Htun|⇓R〉|
|〈⇑L |Htun|⇑R〉| �

√
2 tan α � 1, (15)

hence the qubit-flip matrix elements can indeed be neglected to
a good approximation. Condition (ii) is ensured by the gauge
choice specified by Eqs. (7) and (8). (See also the discussion
in Appendix C of Ref. [29].) In fact, this gauge also guarantees
that the qubit-conserving tunnel amplitudes 〈⇑L |Htun|⇑R〉 and
〈⇓L |Htun|⇓R〉 are real-valued, but that is not essential.

C. Two-electron Hamiltonian

We consider the Pauli blockade occurring in the DQD
in the transport cycle (0,1) → (1,1) → (0,2) → (0,1). We
denote the energy detuning between the (1,1) and (0,2) charge
configurations by �. Together with the preceding assumptions,
this provides the 5 × 5 two-electron Hamiltonian

H ′ = H ′
B + t(|S〉〈Sg| + |Sg〉〈S|) − �|Sg〉〈Sg|. (16)

Here, H ′
B is the two-electron generalisation of the single-

electron Hamiltonian in Eq. (11). Furthermore, |S〉 [|Sg〉] de-
notes the singlet state in the (1,1) [(0,2)] charge configuration,
formed from the local Kramers-qubit basis states. Note that
through the preceding steps, we mapped the Pauli blockade
problem in the bent CNT to the model of Jouravlev and
Nazarov [34], originally developed to describe spin blockade
in GaAs in the presence of nuclear spins.

As discussed in Sec. II, the current shown in S7 is
presumably the result of inelastic (1,1) → (0,2) charge transi-
tions. Therefore we focus on the large-detuning case � � t ,
and introduce the inelastic tunneling rate �in characterizing
qubit-state-conserving incoherent transitions from the (1,1)
to the (0,2) charge configuration. We eliminate the coherent
tunnel coupling t from the Hamiltonian via perturbation theory,
resulting in “dressed” singlet states |S̃〉 and |S̃g〉. The resulting
4 × 4 Hamiltonian describing the (1,1) charge configuration

reads

H ′′ =

⎛
⎜⎜⎝

Bs 0 0 −Ba,⊥/
√

2
0 0 0 Ba,‖
0 0 −Bs Ba,⊥/

√
2

−Ba,⊥/
√

2 Ba,‖ Ba,⊥/
√

2 ES̃

⎞
⎟⎟⎠ .

(17)

The basis we use here is T+,T0,T−,S̃, where the triplet states
are defined as usual, but in a rotated qubit reference frame [34]
where the third axis is aligned with Bs and the first axis is
aligned with Ba,⊥. Furthermore, ES̃ = t2/�.

The structure of the Hamiltonian H ′′ is visualized in
Fig. 1(b). The symmetric combination of the effective mag-
netic fields Bs splits the three triplet states, whereas the
antisymmetric combination Ba is responsible for mixing the
triplet states with the dressed (1,1) singlet S̃. The Hamiltonian
H ′′ allows us to identify special cases where the current is
zero [34,50]. If Ba,⊥ = 0 (Ba,‖ = 0), then T+ and T− (T0)
decouple from S̃, and hence block the current. Another special
case with zero current is Bs = 0: in this case, a certain
superposition of the three triplets forms a dark state which
is decoupled from S̃, and this dark state will block the current.

D. Rate equation for the leakage current

The leakage current is calculated as follows. First, we
diagonalize H ′′ to obtain its eigenstates |i〉 (i = 1,2,3,4).
Then, since qubit-flip tunneling is negligible, the (1,1) →
(0,2) transition rate �i for each eigenstate |i〉 is assumed to be
proportional to its |S̃〉 weight: �i = �in|〈S̃|i〉|2. After reaching
the (0,2) singlet state, one electron from QD R exits to the
drain, and one enters to QD L from the source. These steps
are characterized by the filling rate �f and a corresponding
probability p0 of being either in the (0,2) or in the (0,1) charge
configuration. These considerations result in the following rate
equations:

ṗi = −�ipi + 1
4�fp0 (i = 1,2,3,4), (18a)

ṗ0 = −�fp0 +
4∑

i=1

�ipi, (18b)

where pi (i = 1,2,3,4) is the occupation probability of the
(1,1) eigenstate |i〉. Normalization condition p0 + ∑4

i=1 pi =
1 also applies.

We focus on the case when the bottleneck is the in-
elastic interdot tunneling, i.e., �in � �f . Then, the steady-
state probabilities are p0 ≈ 0 and pi ≈ 1

�iT with T =∑4
i=1 �−1

i . The steady-state leakage current is obtained via
I = e

∑4
i=1 pi�i = 4e/T .

IV. RESULTS

In this section, we provide and discuss the results for
the magnetic anisotropy of the leakage current, and provide
the corresponding geometrical interpretations based on the
effective magnetic field vectors BD . The effective magnetic
fields BD given in Eq. (12) apparently depend explicitly
on the complex phases γ (D) of the valley-mixing matrix
elements as well as the phase ξ used for fixing the gauge.

045431-4



SHAPE-SENSITIVE PAULI BLOCKADE IN A BENT . . . PHYSICAL REVIEW B 91, 045431 (2015)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. (Color online) Magnetic anisotropy of the leakage cur-
rent: dependence on transverse g factors and the phase γ . The
transverse g factors g

(L,R)
⊥ are shown at the top of each vertical block.

The phase γ is shown at the right end of each horizontal block. Further
parameters: B = 0.5 T, α = 3◦, g‖ = 32, and ES̃ = 0.

However, it can be shown that the only combination of these
parameters that influences the current through the DQD is
γ ≡ γ (R) − γ (L) − 2ξ . Therefore, for our forthcoming results,
we specify the value of the parameter γ . Similarly, instead
of specifying the values of the parameters �

(D)
KK ′ , �

(D)
SO , g(D)

v

of our original model, we specify the values of the derived
parameters g

(D)
⊥ , g

(D)
‖ , and ES̃ . For simplicity, we choose

identical longitudinal g factors in the two QDs, g‖ ≡ g
(L)
‖ =

g
(R)
‖ .

A. Analytical results for the ES̃ = 0 case

In the special case ES̃ = 0, the following analytical result
is obtained [34] for the leakage current:

I = 1
4e�in(B̂L × B̂R)2, (19)

where B̂D = BD/BD . This result implies that the maximal
current is e�in/4, and the current has this maximal value if
BL ⊥ BR , i.e., BL · BR = 0.

The magnetic anisotropy of the leakage current (19) for a
certain parameter set is shown in Figs. 2(a)–2(f). Focus on
Figs. 2(a), 2(d), and 2(g) first, which correspond to relatively
small transverse g-factor values.

To understand the results shown in Figs. 2(a), 2(d), and 2(g),
it is instructive to consider the case of infinitesimally small
transverse g factors (i.e., infinitesimally weak valley mixing).
In that limit, after expanding the maximal-current condition
BL · BR = 0 up to second order in θ − π/2 � 1 and α � 1,
we obtain

θ = π/2 ± α cos ϕ, (20)

i.e., the maximal current e�in/4 is flowing for magnetic field
directions (ϕ,θ ) fulfilling Eq. (20). This makes sense, e.g., for

ϕ = 0 and θ = π/2 + α, the external magnetic field is aligned
with nL, hence the effective field BL is purely transversal,
whereas BR is dominated by its longitudinal component, i.e.,
these two vectors are indeed perpendicular.

Moreover, in the limit of infinitesimal transverse g factors,
current is finite only in the infinitesimal vicinity of the two
maximal-current curves described by Eq. (20). Otherwise,
the current is suppressed for the following reason. If θ �=
π/2 ± α cos ϕ, then the longitudinal effective fields are finite
in both dots and they dominate over the infinitesimally small
transverse effective fields. Then the effective field vectors are
almost parallel, hence, according to Eq. (19), the current is
almost zero. This is exemplified in Figs. 2(a), 2(d), and 2(g),
where the transverse g factors are set to relatively small values,
and hence the leakage current is significant only in the close
vicinity of the lines given by Eq. (20).

If the transverse g factors are gradually increased, as shown
in Figs. 2(a)–2(c), then the narrow maximal-current lines
become broader, eventually leading to an I (ϕ,θ ) pattern that
is very similar to feature (E2) of S7. [Note the remarkable
similarity between Fig. 2(c) and S7.] Another way to phrase
this is that in the (ϕ,θ ) points in the vicinity of the lines θ =
π/2 ± α cos ϕ, the leakage current increases with increasing
transverse g factors. This effect is due to the fact that
the increasing transverse g factors increase the transverse
components of the effective fields BD [cf. Eq. (12)], driving
these fields away from their infinitesimal-transverse-g-factor
limit where BL ‖ BR and the current is zero.

Another feature seen in Figs. 2(a)–2(c) is a low-current
gap around ϕ = 90◦ and ϕ = 270◦ between the high-current
regions. This gap is getting larger as valley mixing is increased
from Fig. 2(a) to Fig. 2(c). This gap is absent in Figs. 2(d)–2(f),
where the phase γ is set to γ = 90◦. Also, the gap is not seen
in Figs. 2(g)–2(i), where γ = 180◦. There the I (90◦,θ ) and
I (270◦,θ ) cuts show high-current peaks for θ ≈ 90◦ ± 1◦.

These effects have straightforward geometrical interpreta-
tions based on Eq. (19). Furthermore, a quantitative description
of these is obtained if the maximal-current condition BL ·
BR = 0 is expanded up to second order in θ − π/2 � 1,

α � 1, and g
(D)
⊥
g‖

� 1, yielding the maximal-current condition

θ = π

2
±

√√√√(α cos ϕ)2 − g
(L)
⊥ g

(R)
⊥

g2
‖

cos γ . (21)

Note that this refined version (21) of Eq. (20) depends on the
phase γ . The second term under the square root in Eq. (21),
proportional to cos γ , accounts for the above described γ -
dependent qualitative changes in Fig. 2.

The above observations, together with the experimental
data in S7, can be utilized to gain information on the
experimental setup of Ref. [1]. In S7, the lines of maximal
current are given approximately by θ ≈ 3◦ cos ϕ, implying
that the deflection angle is approximately 3◦. Furthermore,
feature (E3) implies that 0 � |γ | < π/2; we use γ = 0 in the
rest of this paper. Finally, the fact that the leakage current at
the center (ϕ,θ ) = (0,π/2) of the high-current region is almost
as high as the maximal current [at (ϕ,θ ) ≈ (0,3◦)] implies that
the longitudinal and transverse effective field components at
(ϕ,θ ) = (0,π/2) are similar in magnitude, i.e., g

(D)
⊥ ∼ g‖α.
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(a) (b) (c)

(d) (e) (f)

FIG. 3. (Color online) Magnetic anisotropy of the leakage cur-
rent: antiresonance and shape-sensitivity. The transverse g factors
g

(L,R)
⊥ are shown at the top of each vertical block. The deflection

angle α characterizing the tube shape is shown at the right end of each
horizontal block. Further parameters: B = 0.5 T, γ = 0, g‖ = 32, and
ES̃ = 5 μeV.

In conclusion, the analytical results for the ES̃ = 0 case can
describe the strong experimental features (E1), (E2), and (E3)
if the model parameters are appropriately adjusted. In partic-
ular, the parameter set used in Fig. 2(c) results in an I (ϕ,θ )
pattern that is remarkably similar to the experimental result
S7. The weaker features (E4) and (E5) are not reproduced,
motivating further study of the case ES̃ > 0.

B. Results for the ES̃ > 0 case

In this case, we diagonalize the Hamiltonian H ′′ numer-
ically to obtain the eigenstates |i〉. The magnetic anisotropy
of the leakage current for specific choices of parameters close
to the experimental values is shown in Fig. 3. The narrow
antiresonance (E4) appears on this plot, but the resonance
(E5) does not. [Note that Figs. 1(c) and 3(a) correspond to the
same parameter set.]

The explanation of the antiresonance is as follows. For
certain magnetic field directions, the effective fields in the two
dots have the same magnitudeBL = BR . In that case,Ba,‖ = 0,
hence the state T0 decouples from the other three basis states
in the 4 × 4 Hamiltonian H ′′. As T0 is decoupled from S̃, it
cannot decay to the (0,2) singlet S̃g , hence blocks the current
flow and therefore the leakage current vanishes in this case.

The shape of the antiresonance curve on the θ,ϕ plane is
described by the condition BL = BR , which, after linearizing
in α � 1 and θ − π/2 � 1, yields

θ = π

2
− (g(L)

⊥ )2 − (g(R)
⊥ )2

4g2
‖

1

α cos ϕ
. (22)

Note that this result is consistent with the assumption θ −
π/2 � 1 only if the second term of the rhs of Eq. (22) is much
smaller than 1. The analytical result Eq. (22) is superimposed
as a dashed line on Fig. 1(c) on the numerically obtained
leakage-current density plot. The analytical result follows
closely the narrow low-current region of the density plot.

We remark that the function (22) describing the antiresonance
curve is independent of the phase γ , which is a consequence
of the condition BL = BR being insensitive to the directions
of the effective field vectors.

Recall that the antiresonance appears in Fig. 3 because
ES̃ ≡ t2/� is set to a nonzero value. This implies that the
visibility of the antiresonance depends on t and �, and
perhaps also on further system parameters. To characterize
this visibility, we analytically calculate the leakage current in
the vicinity of a given point (ϕ0,θ0) on the antiresonance curve.
We do this by taking into account the perturbative coupling of
the state T0 to the state S̃ by the small matrix element Ba,⊥, see
Eq. (17). The leakage current is governed by the corresponding
slow decay rate, and is evaluated using first-order perturbation
theory in Ba,⊥/ES̃ . This yields the following result:

I (ϕ0,θ0 + δθ ) = c

(
�μBB

t2

)2

α2 cos2 ϕ0 δθ2e�in, (23)

where

c = 16
g4

‖
|g(L)

⊥ + g
(R)
⊥ eiγ |2

. (24)

Importantly, the prefactor of δθ2 in Eq. (23) decreases as
t2/� increases. Therefore, increasing t2/� increases the width
of the antiresonance along the θ direction, hence increases
the visibility of the antiresonance. This is in line with our
observations, i.e., with the appearance of the antiresonance
upon increasing t2/� from zero [Fig. 2(c)] to a finite value
[Fig. 3(a)].

We note that an antiresonance effect similar to that in Fig. 3
has been discussed in Ref. [34] for GaAs DQDs with isotropic
g-tensors and isotropic hyperfine interaction. However, to our
knowledge, such an antiresonance (called ‘stopping point’ in
Ref. [34]) has not been observed in GaAs DQDs. The reason is
probably that the external magnetic field vector corresponding
to a stopping point in GaAs depends on the nuclear spin
configuration, and the latter typically changes significantly
during a current measurement; hence the stopping points are
averaged out and the measured current appears to be a smooth
function of the magnetic field. Another type of stopping point,
corresponding to the condition Bs = 0, has been discussed in
Ref. [50].

Figures 3(a)–3(f) also demonstrate, in line with Eq. (22),
that the L/R asymmetry in the transverse g factors is directly
observable as the orientation of the antiresonance curve on
the I (ϕ,θ ) plot. For example, the antiresonance curve in the
90◦ < ϕ < 270◦ interval bends upwards (downwards) if the
transverse g factor is greater in QD L (R), and it is a flat line
if the transverse g factors are equal.

C. Shape sensitivity of the leakage current

We use Fig. 3 to demonstrate the dependence of the
leakage current on the DQD’s deflection angle α. The first line
[Figs. 3(a)–3(c)] shows the magnetic anisotropy of the leakage
current for α = 3◦, whereas the second line [Figs. 3(d)–3(f)]
shows that for α = 6◦. As predicted by Eq. (20), the region
of maximal current is focused around the lines θ = π/2 ±
α cos ϕ. It is clear from Eq. (22), although less obvious from
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FIG. 4. (Color online) Shape-dependent leakage current in a bent
carbon nanotube double quantum dot. The three curves correspond
to three different settings of the transverse g factors. By decreasing
the transverse g factors, the peak width decreases, i.e., the current
becomes more sensitive to the nanotube shape. Parameter values:
B = 0.5 T, γ = 0, g‖ = 32, and ES̃ = 5 μeV.

Fig. 3, that the antiresonance line moves as the angle α is
changed.

In Fig. 4, we show how the leakage current depends on
the deflection angle α characterizing the shape of the CNT
for a fixed magnetic field. To this end, we pick the points
(ϕ,θ ) = (180◦,96◦) in Figs. 3(a) and 3(d), and plot the leakage
current for this magnetic field orientation as the deflection
angle is varied continuously. This is shown as the green dashed
line in Fig. 4, which displays a broad peak around α = 6◦.
The other two lines correspond to smaller transverse g factors
(i.e., smaller valley-mixing matrix elements or larger spin-orbit
splittings), resulting in narrowed current peaks.

The results shown in Fig. 4 suggest that the in situ changes
in the shape of the CNT could in principle be monitored
by measuring the current flowing through the embedded
DQD. Static variations in α with respect to a reference value
(“working point”) α0 could be effectively detected if the slope
of the I (α) curve is large at the reference value α0. For example,
if the system is described by the solid red curve of Fig. 4, then,
e.g., α0 ≈ 5.5◦ is a good working point. Dynamical variation of
α, due to, e.g., external driving of a flexural phonon mode of the
CNT [6,15,16], could also be detected as long as its frequency
is well below the tunnel rate �in. In that case, the working point
α0 should be chosen such that the second derivative of I (α) is
large at α0. Using the example of the solid red curve in Fig. 4,
α0 ≈ 6◦ is a good operating point. The large second derivative
ensures that the time-averaged current will be highly sensitive
to the time-dependent variation of α: if α(t) = α0 + δα sin ωt ,
then the time-averaged current is Iavg ≈ 1

T

∫ T

0 dtI (α(t)) ≈
I (α0) + 1

4 (δα)2 d2I
dα2 |α=α0 . These considerations together with

Fig. 4 imply that the efficiency of the measurement of the static
deflection angle and its time-dependent variation improves if
the transverse g factors are decreased or the longitudinal g

factors are increased.
The above-discussed principle of detecting dynamical

variations of the CNT deflection is similar to the one used in the
experiments of Refs. [5,6]. There, the detection scheme was
based on Coulomb-blockade peaks, and the deflection-current
relation was induced by a capacitive mechanism. In contrast,
here the peak in I (α) arises because Pauli blockade is lifted,
and the deflection-current relation is due to the deflection-
induced changes in the spin Hamiltonian.

V. CONCLUSION

We studied the dependence of the Pauli-blockade leakage
current on the magnetic field direction in a DQD embedded in
a bent CNT, and compared our results to a recent experiment.
The model we use reproduces a number of previously
unexplained experimental features [see (E1)–(E4) of Sec. II].
We demonstrate that the leakage current is sensitive to the
shape of the CNT, and this sensitivity increases if the ratio of
the longitudinal and transverse g factors increases. In principle,
this sensitivity allows for mechanical control of the leakage
current, and a characterization of the tube shape via measuring
the leakage current. For a recent experiment, we use our model
to deduce a deflection angle of 3◦ from the measured magnetic
anisotropy of the leakage current.

Our model does not provide an explanation for the weak
resonances (E5) seen in the experiment. There are a number
of potential future extensions of the present theory accounting
for (i) different longitudinal g factors in the two dots, (ii)
the qubit-flip interdot tunneling, (iii) the n − p character
of the double dot [1,29], (iv) the valley-mixing character of
the electron-electron interaction [51], (v) Wigner-molecule
physics [13,14,45,52–55], etc. We believe that incorporating
these mechanisms would render the model more accurate
quantitatively, and might also allow for an explanation of the
observed resonance.
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[48] A. Kiss, A. Pályi, Y. Ihara, P. Wzietek, H. Alloul, P. Simon, V.
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