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Abstract

We prove that near-critical percolation and dynamical percolation on the triangular lattice
ηT have a scaling limit as the mesh η → 0, in the “quad-crossing” space H of percolation config-
urations introduced by Schramm and Smirnov. The proof essentially proceeds by “perturbing”
the scaling limit of the critical model, using the pivotal measures studied in our earlier paper.
Markovianity and conformal covariance of these new limiting objects are also established.
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1 Introduction

1.1 Motivation

Percolation is a central model of statistical physics, exceptionally simple and rich at the same time.
Indeed, edge-percolation on the graph Zd is simply defined as follows: each edge e ∈ Ed (the set
of edges e = (x, y) such that ‖x − y‖2 = 1) is kept with probability p ∈ [0, 1] and is removed with
probability 1 − p independently of the other edges. This way, one obtains a random configuration
ωp ∼ Pp in {0, 1}Ed . It is well-known (see, for example, [Gri99]) that for each dimension d ≥ 2,
there is a phase transition at some critical point 0 < pc(Zd) < 1. One of the main focuses of
percolation theory is on the typical behaviour of percolation at and near its phase transition. This
problem is still far from being understood; for example, it is a long-standing conjecture that the
phase transition for percolation is continuous in Z3.

When the percolation model is planar, a lot more is known on the phase transition. A celebrated
theorem by Kesten [Ke80] is that for edge-percolation on Z2, pc(Z2) = 1/2. Furthermore, the
corresponding phase transition is continuous (to be more precise, it falls into the class of second-
order phase transitions): the density function

θZ2(p) := Pp[0 is connected to infinity]

is continuous on [0, 1].
When one deals with a statistical physics model which undergoes such a continuous phase

transition, it is natural to understand the nature of its phase transition by studying the behaviour
of the system near its critical point, at p = pc + ∆p. In the case of percolation on Z2, it is proved
in [KZ87] that there exists an ε > 0 so that, as p→ pc(Z2) = 1

2 , one has

θZ2(p) ≥ (p− pc)1−ε1p>pc . (1.1)

In order to study such systems near their critical point, it is very useful to introduce the concept
of correlation length L(p) for p ≈ pc. Roughly speaking, p 7→ L(p) is defined in such a way
that, for p 6= pc, the system “looks critical” on scales smaller than L(p), while the non-critical
behaviour becomes “striking” above this scale L(p). See for example [We09, N08a, Ke87] for a
precise definition and discussion of L(p) in the case of percolation (see also Subsection 10.2 in this
paper). Kesten proved in [Ke87] that the correlation length L(p) in planar percolation is given in
terms of the probability of the alternating four-arm event at the critical point:

L(p) � inf

{
R ≥ 1, s.t. R2α4(R) ≥ 1

|p− pc|

}
, (1.2)

where α4(R) = α4,pc(R) stands for the probability of the alternating four-arm event up to radius
R at the critical point of the planar percolation model considered. See for example [We09, GS12].
In particular, the scale whose aim is to separate critical from non-critical effects at p ≈ pc can
be computed just by studying the critical geometry of the system (here, the quantity α4(R)).
A detailed study of the near-critical system below its correlation length was given in [BCKS01].
Furthermore, Kesten’s notion of correlation length enabled him to prove in [Ke87] that, as p > pc
tends to pc, one has

θ(p) � Pp[0 is connected to ∂B(0, L(p))]

� Ppc [0 is connected to ∂B(0, L(p))]

:= α1(L(p)) . (1.3)

3



In particular, the density θ(p) of the infinite cluster near its critical point can be evaluated just
using quantities which describe the critical system: α1(R) and α4(R).

Such critical quantities are not yet fully understood on Z2 at pc(Z2) = 1/2 (this is why the
behaviour for θZ2(p) given in (1.1) remains unprecise), but there is one planar percolation model
for which such quantities can be precisely estimated: site percolation on the triangular grid
T, for which one also has pc(T) = 1

2 . (See [We09] for self-contained lecture notes on critical site
percolation on T). Indeed, a celebrated theorem by Smirnov [Sm01] states that if one considers
critical site percolation on ηT, the triangular grid with small mesh η > 0, and lets η → 0, then
the limiting probabilities of crossing events are conformally invariant. This conformal invariance
enables one to rely on the so-called Stochastic Loewner Evolution (or SLE) processes introduced by
the third author in [Sch00], which then can be used to obtain the following estimates:

(i) α1(R) = R−5/48+o(1) obtained in [LSW02] ,

(ii) α4(R) = R−5/4+o(1) obtained in [SW01] ,

(iii) L(p) =
∣∣∣ 1
p−pc

∣∣∣4/3+o(1)
obtained in [SW01] ,

(iv) θT(p) = (p− pc)5/36+o(1)1p>pc obtained in [SW01] ,

where the o(1) are understood as R → ∞ and p → pc, respectively. It is straightforward to check
that items (iii) and (iv) follow from items (i), (ii) together with equations (1.2) and (1.3).

Items (iii) and (iv) are exactly the type of estimates which describe the so-called near-critical
behaviour of a statistical physics model. To give another well-known example in this vein: for
the Ising model on the lattice Z2, it is known since Onsager [On44] that θ(β) := P+

β

[
σ0 = +

]
�

(β−βc)1/81β>βc , which is a direct analog of Item (iv) if one interprets θ(β) in terms of its associated
FK percolation (q = 2). Also the correlation length β 7→ L(β) defined in the spirit of Kesten’s paper
[Ke87] is known to be of order 1

|β−βc| , see [DGP14].
The question we wish to address in this paper is the following one: how does the system look

below its correlation length L(p)? More precisely, let us redefine L(p) to be exactly the above

quantity inf
{
R ≥ 1, s.t. R2α4(R) ≥ 1

|p−pc|

}
; of course, the exact choice of the constant factor in

1/|p−pc| is arbitrary here. Then, for each p 6= pc, one may consider the percolation configuration ωp
in the domain [−L(p), L(p)]2 and rescale it to fit in the compact window [−1, 1]2 (one thus obtains
a percolation configuration on the lattice L(p)−1T with parameter p 6= pc). A natural question is to
prove that as p 6= pc tends to pc, one obtains a nontrivial scaling limit: the near-critical scaling
limit. Prior to this paper, subsequential scaling limits were known to exist. As such, the status
for near-critical percolation was the same as for critical percolation on Z2, where subsequential
scaling limits (in the space H to be defined in Section 2) are also known to exist. The existence
of such subsequential scaling limits is basically a consequence of the RSW theorem. Obtaining a
(unique) scaling limit is in general a much harder task (for example, proved by [Sm01] for critical
percolation on T), and this is one of the main contributions of this paper: we prove the existence
of the scaling limit (again in the space H ) for near-critical site percolation on the triangular grid
T below its correlation length. We will state a proper result later; in particular, Corollary 1.7 says
that one obtains two different scaling limits in the above setting as p→ pc: ω

+
∞ and ω−∞ depending

whether p > pc or not. One might think at this point that these near-critical scaling limits should
be identical to the critical scaling limit ω∞, since the correlation length L(p) was defined in such
a way that the system “looks” critical below L(p). But, as it is shown in [NW09], although any
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subsequential scaling limit of near-critical percolation indeed “resembles” ω∞ (the interfaces have
the same Hausdorff dimension 7/4 for example), it is nevertheless singular w.r.t ω∞. (See also
Subsection 13.2).

Now, in order to describe our results in more detail, we introduce near-critical percolation in a
slightly different manner, via the so-called monotone couplings.

1.2 Near-critical coupling

It is a classical fact that one can couple site-percolation configurations {ωp}p∈[0,1] on T in such a

way that for any p1 < p2, one has ωp1 ≤ ωp2 with the obvious partial order on {0, 1}T. One way to
achieve such a coupling is to sample independently on each site x ∈ T a uniform random variable
ux ∼ U([0, 1]), and then define ωp(x) := 1ux≤p.

Remark 1.1. Note that defined this way, the process p ∈ [0, 1] 7→ ωp is a.s. a càdlàg path in {0, 1}T
endowed with the product topology. This remark already hints why we will later consider the
Skorohod space on the Schramm-Smirnov space H .

One would like to rescale this monotone coupling on a grid ηT with small mesh η > 0 in order to
obtain an interesting limiting coupling. If one just rescales space without rescaling the parameter p
around pc, it is easy to see that the monotone coupling {ηωp}p∈[0,1] on ηT converges as a coupling to
a trivial limit except for the slice corresponding to p = pc where one obtains the Schramm-Smirnov
scaling limit of critical percolation (see Section 2). Thus, one should look for a monotone coupling
{ωnc

η (λ)}λ∈R, where ωnc
η (λ) = ηωp with p = pc + λr(η), and where the zooming factor r(η) goes

to zero with the mesh. On the other hand, if it tends to zero too quickly, it is easy to check that
{ωnc

η (λ)}λ will also converge to a trivial coupling where all the slices are identical to the λ = 0
slice, i.e., the Schramm-Smirnov limit ω∞. From the work of Kesten [Ke87] (see also [NW09] and
[GPS13]), it is natural to fix once and for all the zooming factor to be:

r(η) := η2αη4(η, 1)−1 , (1.4)

where αη4(r,R) stands for the probability of the alternating four-arm event for critical percolation
on ηT from radius r to R. See also [GPS13] where the same notation is used throughout. One
disadvantage of the present definition of ωnc

η (λ) is that λ ∈ R 7→ ωnc
η (λ) is a time-inhomogeneous

Markov process. To overcome this, we change sightly the definition of ωnc
η (λ) as follows:

Definition 1.2. In the rest of this paper, the near-critical coupling (ωnc
η (λ))λ∈R will denote the

following process:

(i) Sample ωnc
η (λ = 0) according to Pη, the law of critical percolation on ηT. We will sometimes

represent this as a black-and-white colouring of the faces of the dual hexagonal lattice.

(ii) As λ increases, closed sites (white hexagons) switch to open (black) at exponential rate r(η).

(iii) As λ decreases, black hexagons switch to white at rate r(η).

As such, for any λ ∈ R, the near-critical percolation ωnc
η (λ) corresponds exactly to a percolation

configuration on ηT with parameter{
p = 1− (1− pc)e−λ r(η) if λ ≥ 0

p = pc e
−|λ| r(η) if λ < 0 ,

thus making the link with our initial definition of ωnc
η (λ).
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Let us note that the symmetry in (ii) and (iii) between increasing and decreasing λ values is
natural and leads to a time-homogeneous Markov process only because we have pc = 1/2 now. For
general pc, the correct definition would have different rates in (ii) and (iii), with a ratio of pc/(1−pc).

In this setting of monotone couplings, our goal in this paper is to prove the convergence of the
monotone family {ωnc

η (λ)}λ∈R as η → 0 to a limiting coupling {ωnc
∞(λ)}λ∈R. See Theorems 1.4 and

1.5 for precise statements. In some sense, this limiting object captures the birth of the infinite
cluster seen from the scaling limit. (Indeed, as we shall see in Theorem 10.7, as soon as λ > 0, there
is a.s. an infinite cluster in ωnc

∞(λ)).

1.3 Rescaled dynamical percolation

In [HPS97], the authors introduced a natural reversible dynamics on percolation configurations
called dynamical percolation. This dynamics is very simple: each site (or bond in the case of
bond-percolation) is updated independently of the other sites at rate one, according to the Bernoulli
law pδ1+(1−p)δ0. As such, the law Pp on {0, 1}T is invariant under the dynamics. Several intriguing
properties like existence of exceptional times at p = pc where infinite clusters suddenly arise have
been proved lately; see [SS10, GPS10, HPS15]. It is a natural desire to define a similar dynamics
for the Schramm-Smirnov scaling limit of critical percolation ω∞ ∼ P∞, i.e., a process t 7→ ω∞(t)
which would preserve the measure P∞ of Section 2. Defining such a process is a much more difficult
task and a natural approach is to build this process as the scaling limit of dynamical percolation
on ηT properly rescaled (in space as well as in time). Using similar arguments as for near-critical
percolation (see the detailed discussion in [GPS13]), the right way of rescaling dynamical percolation
is as follows:

Definition 1.3. In the rest of this paper, for each η > 0, the rescaled dynamical percolation
t 7→ ωη(t) will correspond to the following process:

(i) Sample the initial configuration ωη(t = 0) according to Pη, the law of critical site percolation
on ηT.

(ii) As time t increases, each hexagon is updated independently of the other sites at exponential
rate r(η) (defined in equation (1.4)). When an exponential clock rings, the state of the
corresponding hexagon becomes either white with probability 1/2 or black with probability
1/2. (Hence the measure Pη is invariant).

Note the similarity between the processes λ 7→ ωnc
η (λ) and t 7→ ωη(t). In particular, the second

main goal of this paper is to prove that the rescaled dynamical percolation process t 7→ ωη(t), seen
as a càdlàg process in the Schramm-Smirnov space H has a scaling limit as the mesh η → 0. See
Theorem 1.8. This answers Question 5.3 in [Sch07].

1.4 Links to the existing literature

In this subsection, we wish to list a few related works in the literature.

• As mentioned earlier, the near-critical coupling ωnc
η (λ) has been studied in [NW09]. They do

not prove a scaling limit result for ωnc
η (λ) as η → 0, but they show that any subsequential

scaling limits (with λ 6= 0 fixed) for the interfaces γη(λ) of near-critical percolation ωnc
η (λ) are

singular w.r.t the SLE6 measure. This result was very inspiring to us at the early stage of
this work since it revealed that if a near-critical scaling limit ωnc

∞(λ) existed, then it would

6



lead to a very different (and thus very interesting) object compared to the Schramm-Smirnov
scaling limit of critical percolation ω∞ ∼ P∞ (which is defined in Section 2).

• In [CFN06], the authors suggested a conceptual framework to construct a candidate for the
scaling limit of ωnc

η (λ) (their rescaling procedure is slightly different from our Definition 1.2
as it does not take into account possible logarithmic corrections in quantities like αη4(η, 1)).
In this work, we thus answer the two main problems raised by [CFN06]. First, we prove that
their framework indeed leads to an object ωnc

∞(λ) and second, we prove that this object is
indeed the scaling limit of ωnc

η (λ) as η → 0.

• In the announcement [MS10], the authors discuss what should be the scaling limit of interfaces
of near-critical models. They identify a family of processes called the massive SLEs which
are the candidates for such near-critical scaling limits. However, they have concrete candi-
dates only for the special cases κ = 2, 3, 4, 16/3, 8, where the models are related to harmonic
functions directly or through fermionic observables. For the case of percolation, we make a
conjecture for massive SLE6’s in Subsection 13.3. Let us note here that massive SLE’s are
expected to be absolutely continuous w.r.t. their standard version for κ ≤ 4, and singular for
κ > 4.

• In the work in progress [CGN15], a similar kind of near-critical scaling limit is considered:
namely the Ising model on the rescaled lattice ηZ2 at the critical inverse temperature βc and
with exterior magnetic field hη := h η15/8 with h > 0 fixed. As the mesh η tends to zero, it is
proved using the limit of the magnetic field obtained in [CGN15] (which also relies on [CHI12])
that this near-critical Ising model has a scaling limit. Obtaining such a near-critical scaling
limit in that case is in some sense easier than here, since in compact domains, the above near-
critical scaling limit of Ising model with vanishing magnetic field happens to be absolutely
continuous w.r.t. the critical scaling limit (as opposed to what happens with near-critical
percolation, see Subsection 13.2). In particular, in order to obtain the above existence of the
near-critical scaling limit, it is enough to identify its Radon-Nikodym derivative w.r.t. the
critical measure.

• It is well-known that there is a phase-transition at p = 1/n for the Erdős-Rényi random
graphs G(n, p). Similarly to the above case of planar percolation, it is a natural problem
to study the geometry of these random graphs near the transition pc = 1/n. It turns out
in this case that the meaningful rescaling is as follows: one considers near-critical random
graphs with intensity p = 1/n + λ/n4/3, λ ∈ R. Using notations similar to ours, if Rn(λ) =
(C1

n(λ), C2
n(λ), . . .) denotes the sequence of clusters at p = 1/n+λ/n4/3 (ordered in decreasing

order of size, say), then it is proved in [ABG12] that as n → ∞, the renormalized sequence
n−1/3Rn(λ) converges in law to a limiting object R∞(λ) for a certain topology on sequences
of compact spaces which relies on the Gromov-Hausdorff distance. This near-critical coupling
{R∞(λ)}λ∈R has then been used in [ABGM13] in order to obtain a scaling limit as n → ∞
(in the Gromov-Hausdorff sense) of the minimal spanning tree on the complete graph with
n vertices. Our present paper is basically the Euclidean analog (d = 2) of the mean-field
case [ABG12], and we plan to use our near-critical coupling {ωnc

∞(λ)}λ∈R in a subsequent
work [GPS13b] to obtain the scaling limit of the Minimal Spanning Tree in the plane (see the
report [GPS10b]). An important difference is that in the mean-field case one is interested in
the intrinsic metric properties (and hence works with the Gromov-Hausdorff distance between
metric spaces), while in the Euclidean case one is first of all interested in how the graph is
embedded in the plane.
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• In [DC13], the author relies on our main result in his proof that the Wulff crystal for
supercritical percolation on the triangular lattice converges to a ball as p > pc tends to
pc(T) = 1/2.

• In [Ki15], the author uses our four-arm stability result Lemma 8.4 to study Aldous’ frozen
percolation on the square lattice, solving the main open questions about that model.

1.5 Main statements

The first result we wish to state is that if λ ∈ R is fixed, then the near-critical percolation ωη(λ)
has a scaling limit as η → 0. In order to state a proper theorem, one has to specify what the
setup and the topology are. As it is discussed at the beginning of Section 2, there are several very
different manners to represent or “encode” what a percolation configuration is (see also the very good
discussion on this in [SS11]). In this paper, we shall follow the approach by the third author and
Smirnov, which is explained in detail in Section 2. In this approach, each percolation configuration
ωη ∈ {0, 1}ηT corresponds to a point in the Schramm-Smirnov topological space (H , T ) which has
the advantage to be compact (see Theorem 2.4) and Polish. From [SS11] and [CN06], it follows that
ωη ∼ Pη (critical percolation on ηT) has a scaling limit in (H , T ): i.e., it converges in law as η → 0
under the topology T to a “continuum” percolation ω∞ ∼ P∞, where P∞ is a Borel probability
measure on (H , T ). See Subsection 2.4. We may now state our first main result.

Theorem 1.4. Let λ ∈ R be fixed. Then as η → 0, the near-critical percolation ωnc
η (λ) converges

in law (in the topological space (H , T )) to a limiting random percolation configuration, which we
will denote by ωnc

∞(λ) ∈H .

As pointed out earlier, the process λ ∈ R 7→ ωnc
η (λ) is a càdlàg process in (H , T ). One may

thus wonder if it converges as η → 0 to a limiting random càdlàg path. There is a well-known
and very convenient functional setup for càdlàg paths with values in a Polish metric spaces (X, d):
the Skorohod space introduced in Proposition 4.1. Fortunately, we know from Theorem 2.4 that
the Schramm-Smirnov space (H , T ) is metrizable. In particular, one can introduce a Skorohod
space of càdlàg paths with values in (H , dH ) where dH is some fixed distance compatible with the
topology T . This Skorohod space is defined in Lemma 4.3 and is denoted by (Sk, dSk). We have the
following theorem:

Theorem 1.5. As the mesh η → 0, the càdlàg process λ 7→ ωnc
η (λ) converges in law under the

topology of dSk to a limiting random càdlàg process λ 7→ ωnc
∞(λ).

Remark 1.6. Due to the topology given by dSk, it is not a priori obvious that the slice ωnc
∞(λ)

obtained from Theorem 1.5 is the same object as the scaling limit ωnc
∞(λ) obtained in Theorem 1.4.

Nonetheless, it is proved in Theorem 9.5 that these two objects indeed coincide.

From the above theorem, it is easy to extract the following corollary which answers our initial
motivation by describing how percolation looks below its correlation length; see Subsection 10.2 for
the proof:

Corollary 1.7. For any p 6= pc, let

L(p) := inf

{
R ≥ 1, s.t. R2α4(R) ≥ 1

|p− pc|

}
.

Recall that for any p ∈ [0, 1], ωp stands for percolation on T with intensity p. Then as p − pc > 0
tends to zero, L(p)−1ωp converges in law in (H , dH ) to ωnc

∞(λ = 2) while as p− pc < 0 tends to 0,
L(p)−1ωp converges in law in (H , dH ) to ωnc

∞(λ = −2).
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We defined another càdlàg process of interest in Definition 1.3: the rescaled dynamical percola-
tion process t 7→ ωη(t). This process also leaves in the Skorohod space Sk and we have the following
scaling limit result:

Theorem 1.8. As the mesh η → 0, rescaled dyamical percolation converges in law (in (Sk, dSk)) to
a limiting stochastic process in H denoted by t 7→ ω∞(t).

By construction, t 7→ ωη(t) and λ 7→ ωnc
η (λ) are Markov processes in H . Yet there is absolutely

no reason that the Markov property survives at the scaling limit. Our strategy of proof for Theorems
1.5 and 1.8 (see below) in fact enables us to prove the following result (see Section 11).

Theorem 1.9.

• The process t 7→ ω∞(t) is a Markov process which is reversible w.r.t the measure P∞, the
scaling limit of critical percolation.

• The process λ 7→ ωnc
∞(λ) is a time-homogeneous (but non-reversible) Markov process

in (H , dH ).

Remark 1.10. Thus we obtain a natural diffusion on the Schramm-Smirnov space H . Interestingly,
it can be seen that this diffusion is non-Feller. See Remark 11.9.

As we shall see in Section 10, the processes λ 7→ ωnc
∞(λ) and t 7→ ω∞(t) are conformally covariant

under the action of conformal maps. See Theorem 10.3 for a precise statement. Roughly speaking, if
ω̃∞(t) = φ ·ω∞(t) is the conformal mapping of a continuum dynamical percolation from a domain D
to a domain D̃, then the process t 7→ ω̃∞(t) evolves very quickly (in a precise quantitative manner)
in regions of D′ where |φ′| is large and very slowly in regions of D′ where |φ′| is small. This type
of invariance was conjectured in [Sch07], it was even coined a “relativistic” invariance due to the
space-time dependency. When the conformal map is a scaling z ∈ C 7→ α · z ∈ C, the conformal
covariance reads as follows (see Corollary 10.5):

Theorem 1.11. For any scaling parameter α > 0 and any ω ∈ H , we will denote by α · ω the
image by z 7→ α z of the configuration ω. With these notations, we have the following identities in
law:

1. (
λ 7→ α · ωnc

∞(λ)
)

(d)
=
(
λ 7→ ωnc

∞(α−3/4λ)
)

2. (
t ≥ 0 7→ α · ω∞(t)

)
(d)
=
(
t 7→ ω∞(α−3/4t)

)
Note that this theorem is very interesting from a renormalization group perspective. Indeed,

the mapping F : H →H which associates to a configuration ω ∈H the “renormalized” configu-
ration 1

2 ·ω ∈H is a very natural renormalization transformation on H . It is easy to check that the
law P∞ is a fixed point for this transformation. The above theorem shows that the one-dimensional
line given by {Pλ,∞}λ∈R, where Pλ,∞ denotes the law of ωnc

∞(λ), provides an unstable variety for
the transformation ω ∈H 7→ 1

2 · ω ∈H .
Finally, along Sections 10, 12 and 13, we establish some interesting properties of the scaling limits

of near-critical and dynamical processes as well as some related models like gradient percolation.
Here is a concise list summarizing these results.
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1. In Theorem 10.7, we show that if λ > 0, then ωnc
∞(λ) a.s. has an infinite cluster and for each

λ > 0, one can define a natural notion of correlation length L(λ), which is shown to satisfy
L(λ) = cλ−4/3.

2. In Section 12, we prove that the dynamics t 7→ ω∞(t) is noise sensitive and that there
a.s. exist exceptional times with an infinite cluster. This extends the results from [GPS10]
to the scaling limit of dynamical percolation. We wish to point out that this property is the
only link with [GPS10] throughout the whole paper. (In other words, all the sections besides
Section 12 are completely independent of [GPS10]).

3. In Subsection 13.1, we prove that the model of gradient percolation considered in [N08b]
has a scaling limit, denoted by ωgr

∞.

4. In Subsection 13.2, we prove that if λ 6= 0, then ωnc
∞(λ) ∼ Pλ,∞ is singular w.r.t ω∞ ∼ P∞,

confirming in a weaker sense the main singularity result from [NW09].

1.6 Strategy of proof

Let us end this introduction by explaining what will our strategy be to build the processes λ 7→
ωnc
∞(λ) and t 7→ ω∞(t) and to show that they are the scaling limits of their discrete η-analogs. We

will focus on the near-critical case, the dynamical case being handled similarly. Also, before giving
a rather detailed strategy, let us start with a very rough one: in order to build a random càdlàg
process λ 7→ ωnc

∞(λ), our strategy will be to start with the critical slice, i.e., the Schramm-Smirnov
limit ω∞ = ω∞(λ = 0) ∼ P∞ and then as λ will increase, we will randomly add in an appropriate
manner some “infinitesimal” mass to ω∞(0). In the other direction, as λ will decrease below 0, we
will randomly remove some “infinitesimal” mass to ω∞(0). Before passing to the limit, when one
still has discrete configurations ωη on a lattice ηT, this procedure of adding or removing mass is
straightforward and is given by the Poisson point process induced by Definition 1.2. At the scaling
limit, there are no sites or hexagons any more, hence one has to find a proper way to perturb the
slice ω∞(0). Even though there are no black or white hexagons anymore, there are some specific
points in ω∞(0) that should play a significant role and are measurable w.r.t. ω∞: namely, the set of
all pivotal points of ω∞. We shall denote this set by P̄ = P̄(ω∞), which could indeed be proved to
be measurable w.r.t. ω∞ using the methods of [GPS13, Section 2], but we will not actually need this.
The “infinitesimal” mass we will add to the configuration ω∞(0) will be a certain random subset
of P̄. Roughly speaking, one would like to define a mass measure µ̄ on P̄ and the infinitesimal
mass should be given by a Poisson point process PPP on (x, λ) ∈ C × R with intensity measure
dµ̄×dλ. We would then build our limiting process λ 7→ ωnc

∞(λ) by “updating” the initial slice ω∞(0)
according to the changes induced by the point process PPP. So far, the strategy we just outlined
corresponds more-or-less to the conceptual framework from [CFN06].

The main difficulty with this strategy is the fact that the set of pivotal points P̄(ω∞) is a.s. a
dense subset of the plane of Hausdorff dimension 3/4 and that the appropriate mass measure µ̄ on
P̄ would be of infinite mass everywhere. This makes the above strategy too degenerate to work
with. To overcome this, one introduces a small spatial cut-off ε > 0 which will ultimately tend
to zero. Instead of considering the set of all pivotal points, the idea is to focus only on the set of
pivotal points which are initially pivotal up to scale ε. Let us denote by P̄ε = P̄ε(ω∞(λ = 0)) this
set of ε-pivotal points. The purpose of the companion paper [GPS13] is to introduce a measure
µ̄ε = µ̄ε(ω∞) on this set of ε-pivotal points. This limit corresponds to the weak limit of renormalized
(by r(η)) counting measures on the set P̄ε(ωη), and it can be seen as a “local time” measure on the
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pivotal points of percolation and is called the pivotal measure. See Subsection 2.6 or [GPS13]
for more detail. (In fact, as we shall recall in Subsection 2.6, we will consider for technical reasons
a slightly different set Pε, with the corresponding measure µε). Once such a spatial cut-off ε is
introduced, the idea is to “perturb” ω∞(λ = 0) using a Poisson point process PPP = PPP(µε) of
intensity measure dµε × dλ (we now switch to the actual measure µε used throughout and which is
introduced in Definition 2.14). This will enable us to define a cut-off trajectory λ 7→ ωnc,ε

∞ (λ). (In
fact the construction of this process will already require a lot of work, see the more detailed outline
below). The main problem then is to show that this procedure in some sense stabilizes as the cut-off
ε→ 0. This is far from being obvious since there could exist “cascades” from the microscopic world
which would have macroscopic effects as is illustrated in Figure 1.1.

x, λ1

y, λ2

x, t2

y, t1

Figure 1.1: Two “cascade” configurations: on the left at λ = 0, there is no left-right crossing and
both points x and y have low importance, but at the level λ2 > λ1 there is a left-right crossing
that we could not predict if we are not looking at low important points. Similarly, in dynamical
percolation (on the right), with t1 < t2, the low important point y switches first, followed by the
important one. If one does not look at low important points, one would wrongly predict that the
left-right crossing has ceased to exist, although it still exists thanks to y. Note that the second
configuration could occur only for dynamical percolation, which does not have monotonicity in its
dynamics.

Let us now outline our global strategy in more detail and with pointers to the rest of the text.
We will from time to time use notations which will be properly introduced later in the text.

1. Cut-off processes λ 7→ ωnc,ε
∞ (λ)

As discussed above, the first step is to define for each cut-off parameter ε > 0 a random
cut-off process λ 7→ ωnc,ε

∞ (λ) out of a sample of ω∞ ∼ P∞. To achieve this, we will rely
on the pivotal measure µε = µε(ω∞) built in the companion paper [GPS13]. Then, we
sample a Poisson point process PPP = PPP(µε) on C × R with intensity measure dµε × dλ.
This Poisson point process is now a.s. locally finite. Given ω∞(0) and PPP, we would like to
“update” ω∞(0) as λ increases (or decreases) according to the information provided by the
Poisson point process PPP. This step which is straightforward in the discrete setting is more
delicate at the scaling limit: indeed, due to the definition of the Shramm-Smirnov space H
(see Section 2), updating a point ω∞(λ = 0) in this space H requires in principle to follow the
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status of all crossing events �Q for all quads Q (see Section 2 for these notations). Under the
consistency conditions of Lemma 7.4 (which will indeed be satisfied), it is enough to follow the
status of countably many quads Q ∈ QN. We are thus left with the following problem: given
a fixed quad Q ∈ QN and a level λ ∈ R, can one decide based on ω∞(0) and PPP whether the
process one is building should cross or not the quad Q at level λ?

2. Networks NQ = NQ(ω∞,PPP)

To answer the above problem, to each level λ ∈ R and each quad Q ∈ QN, we will define a
kind of graph structure (with two types of edges, primal and dual ones), called a network,
whose vertices will be the points in PPPλ = PPP∩(C× [0, λ]) (we assume here that λ > 0), see
Definition 6.1. The purpose of this network is to represent the connectivity properties of the
configuration ω∞(λ = 0) within Q \ PPPλ. This network NQ,λ = NQ,λ(ω∞,PPPλ) is obtained
as a limit of mesoscopic networks defined in Definition 6.8. See Theorem 6.14. Once we
have at our disposal such a structure NQ,λ which is furthermore measurable w.r.t (ω∞,PPP),
one can answer the above question and obtain (assuming that the conditions of Lemma 7.4
hold) a well-defined process λ 7→ ωnc,ε

∞ (λ) in the space H .

3. Convergence in law of ωnc,ε
η (·) towards ωnc,ε

∞ (·)
The convergence in law we wish to prove is under the topology of the Skorohod space Sk on the
space H introduced in Lemma 4.3. To prove this convergence, we couple the pairs (ωη, µ

ε(ωη))
and (ω∞, µ

ε(ω∞)) together so that with high probability the Poisson point processes PPPη
and PPP∞ are sufficiently “close” so that we get identical networks for macroscopic quads Q.

See Subsection 7.3 for the coupling. To conclude that dSk(ω
nc,ε(·)
η , ωnc,ε

∞ (·)) tends to zero under
this coupling as η → 0, there is one additional technicality which lies in the fact that dSk relies
on the metric space (H , dH ) and that the distance dH compatible with the quad-crossing
topology is non-explicit. To overcome this, we introduce an explicit uniform structure in
Section 3.

4. There are no cascades from the microscopic world: ωnc
η (·) ≈ ωnc,ε

η (·)
This is the step which proves that scenarios like the ones highlighted in Figure 1.1 are unlikely
to happen. This type of “stability” result is done in Section 8. In particular, it is proved that
E
[
dSk(ω

nc
η (·), ωnc,ε

η (·))
]

goes to zero uniformly as 0 < η < ε go to zero. See Proposition 8.1.

5. Existence of the limiting process λ 7→ ωnc
∞(λ) and weak convergence of ωnc

η (·) to it

Once the above steps are established, this last one is more of a routine work. It is handled in
Section 9.

For the sake of simplicity, we will assume in most of this paper that our percolation configurations
are defined in a bounded smooth simply-connected domain D of the plane (i.e., we will consider the
lattice ηT ∩D). Only in Section 9 will we highlight how to extend our main results to the case of
the whole plane, which will consist in a routine compactification technique.

Finally, to make the reading easier, we include a short list of notations which should be useful:
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Notations

D any fixed bounded, smooth domain in C
ηT the triangular grid with mesh η > 0
H = HD Schramm-Smirnov space of percolation configurations in D
dH a distance on H compatible with the quad-crossing topology T

ωη ∈H ∼ Pη a critical configuration on ηT
ω∞ ∈H ∼ P∞ a continuum percolation in the sense of Schramm-Smirnov
ωη(t), ω∞(t) rescaled dynamical percolation on ηT and its scaling limit
ωnc
η (λ), ωnc

∞(λ) near-critical percolation on ηT and its scaling limit

Q a quad
QD the space of all quads in D
dQ a distance on QD
QN =

⋃Qk a countable dense subset of QD
�Q event of crossing the quad Q

αη1(r,R), αη4(r,R) probabilities of the one and four-arms events for ωη ∼ Pη

r(η) the renormalized rate r(η) := η2αη4(η, 1)−1 = η3/4+o(1)

ε cut-off parameter in space
µε = µε(ω∞) Pivotal measure on the ε-pivotal points constructed in [GPS13]
PPPT = PPPT (µε) Poisson point process on D × [0, T ] with intensity measure dµε × dt
ωεη(t), ωε∞(t) cut-off dynamical percolation and its scaling limit
ωnc,ε
η (λ), ωnc,ε

∞ (λ) cut-off near-critical percolation and its scaling limit
Pε(ωη) ε-pivotal points for an εZ2 grid in the sense of Definition 2.14
Sk space of càdlàg trajectories on H
dSk Skorohod distance on Sk
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2 Space and topology for percolation configurations

There are several ways to represent a configuration of percolation ωη. Historically, the first topolog-
ical setup appeared with Aizenman in [Ai98] where the author introduced the concept of percolation
web. The rough idea there is to think of a percolation configuration as the set of all its possible
open paths and then to rely on a kind of Hausdorff distance on the space of collections of paths.

Later on, in the setup introduced in [CN06], one considers a percolation configuration ωη as a set
of oriented loops (the loops represent interfaces between primal and dual clusters). The topology
used in [CN06] for the scaling limit of critical percolation ωη on η T as the mesh η goes to zero, is
thus based on the way macroscopic loops look. See [CN06] for more details. In this work, we will
rely on a different representation of percolation configurations which yields to a different topology
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of convergence. The setup we will use was introduced by the third author and Smirnov in [SS11].
It is now known as the quad-crossing topology. We will only recall some of the main aspects of this
setup here, so we refer to [CN06, SS11, GPS13] for a complete description. (In fact some of the
explanations below are borrowed from our previous work [GPS13]).

2.1 The space of percolation configurations H

The idea in [SS11] is in some sense to consider a percolation configuration ωη as the set of all the
quads that are crossed (or traversed) by the configuration ωη. Let us then start by defining properly
what we mean by a quad.

Definition 2.1. Let D ⊂ C be a bounded domain. A quad in the domain D can be considered as
a homeomorphism Q from [0, 1]2 into D. A crossing of a quad Q is a connected closed subset of
[Q] := Q([0, 1]2) that intersects both ∂1Q := Q({0} × [0, 1]) and ∂3Q := Q({1} × [0, 1]) (let us also
define ∂2Q := Q([0, 1] × {0}) and ∂4Q := Q([0, 1] × {1})). The space of all quads in D, denoted
by QD, is equipped with the following metric: dQ(Q1, Q2) := infφ supz∈∂[0,1]2 |Q1(z) − Q2(φ(z))|,
where the infimum is over all homeomorphisms φ : [0, 1]2 → [0, 1]2 which preserve the 4 corners of
the square. Note that we use a slightly different metric here as in [SS11, GPS13], yet the results
from [SS11] still hold.

From the point of view of crossings, there is a natural partial order on QD: we write Q1 ≤ Q2

if any crossing of Q2 contains a crossing of Q1. See Figure 2.1. Furthermore, we write Q1 < Q2 if
there are open neighborhoods Ni of Qi (in the uniform metric) such that N1 ≤ N2 holds for any
Ni ∈ Ni. A subset S ⊂ QD is called hereditary if whenever Q ∈ S and Q′ ∈ QD satisfies Q′ < Q,
we also have Q′ ∈ S.

Definition 2.2. [The space H ] We define the space H = HD to be the collection of all closed
hereditary subsets of QD.

Now, notice that any discrete percolation configuration ωη of mesh η > 0 can be viewed as a
point in H in the following manner. Consider ωη as a union of the topologically closed percolation-
wise open hexagons in the plane. It thus naturally defines an element S(ωη) of HD: the set of all
quads for which ωη contains a crossing. By a slight abuse of notation, we will still denote by ωη the
point in H corresponding to the configuration ωη.

Since configurations ωη in the domain D are now identified as points in the space H = HD,
it follows that critical percolation induces a probability measure on HD, which will be denoted by
Pη.

Q1

Q2

Figure 2.1: Two quads, Q1 ≤ Q2.

In order to study the scaling limit of ωη ∼ Pη, we need to define a topology on the space H for
which the measures Pη will converge weakly as η → 0.
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2.2 A topology on percolation configurations: the quad-crossing topology T
Hereditary subsets can be thought of as Dedekind cuts in the setting of partially ordered sets
(instead of totally ordered sets, as usual). It can be therefore hoped that by introducing a natural
topology, HD can be made into a compact metric space. Indeed, let us consider the following
subsets of HD. For any quad Q ∈ QD, let

�Q := {ω ∈HD : Q ∈ ω} , (2.1)

and for any open U ⊂ QD, let

�U := {ω ∈HD : ω ∩ U = ∅} . (2.2)

It is easy to see that these sets have to be considered closed if we want HD to be compact. It
motivates the following definition from [SS11].

Definition 2.3. [The quad-crossing topology, [SS11]] We define T = TD to be the minimal topology
on H that contains every �c

Q and �c
U as open sets.

The following result is proved in [SS11].

Theorem 2.4. [Theorem 3.10 [SS11]]
For any nonempty domain D, the topological space (HD, TD) is compact, Hausdorff, and metriz-

able.
Furthermore, for any dense Q0 ⊂ QD, the events {�Q : Q ∈ Q0} generate the Borel σ-field of

HD.
In particular, the space H is a Polish space.

This compactness property is very convenient since it implies right-away the existence of sub-
sequential scaling limits. Similarly the fact (H , T ) is Polish will enable us to study the weak
convergence of measures on (H , T ) in the classical framework of probability measures on Polish
spaces. We will come back to this in subsection 2.4, but before this, we discuss the metrizable aspect
of H .

2.3 On the metrizability of the topological space (H , T )

As we discussed above, it is stated in [SS11] that the topological space (H , T ) is metrizable. It
would be convenient for our later purposes to have at our disposal a natural and explicit metric on
H which would induce the topology T . The following one, d̃H , seems to be a good candidate since
it is “invariant” under translations.

For any ω, ω′ ∈H (= HD), define

d̃H (ω, ω′) := inf
ε>0 such that


∀Q ∈ ω, ∃Q′ ∈ ω′ with dQ(Q,Q′) < ε
and
∀Q′ ∈ ω′, ∃Q ∈ ω with dQ(Q,Q′) < ε

 .

As such (H , , d̃H ) is clearly a metric space. It is not hard to check that the topology on H
induced by d̃H is finer than the topology T , but unfortunately, it turns out to be strictly finer.

After careful investigations, we did not succeed in finding a natural and explicit metric compat-
ible with the topology T . (One possible way is to go through Urysohn’s metrization theorem proof,
but that does not lead to a nice and explicit metric). We will thus rely in the remaining of this text
on some non-explicit metric dH .
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Definition 2.5. We thus fix once and for all a metric dH on H which is such that it induces the
topology T on H . In particular, the space (H , dH ) is a compact metric space. It is also a Polish
metric space. Since by compactness, diam(H ) <∞, we will assume without loss of generality that
diamdH

(H ) = 1.

Since dH is not explicit, we will need to find some explicit and quantitative criteria which will
tell us whenever two configurations ω, ω′ ∈H are dH -close or not. This will bring us to the notion
of defining explicit uniform structures on the topological space (H , T ). This will be the purpose
of the next section (Section 3).

But before that, let us review some useful results from [SS11] and [GPS13].

2.4 Scaling limit of percolation in the sense of Schramm-Smirnov

This setup we just described allows us to think of ωη ∼ Pη as a random point in the compact metric
space (H , dH ). Now, since Borel probability measures on a compact metric space are always tight,
we have subsequential scaling limits of Pη on H , as the mesh ηk → 0, denoted by P∞ = P∞({ηk}).

One of the main results proved in [SS11] is the fact that any subsequential scaling limit P∞ is a
noise in the sense of Tsirelson (see [Tsi04]). But it is not proved in [SS11] that there is a unique such
subsequential scaling limit. As it is explained along section 2.3 in [GPS13], the uniqueness property
follows from the work [CN06]. More precisely, [CN06] proves the uniqueness of subsequential scaling
limits in a different topological space than (H , dH ), but it follows from their proof that ω ∈H is
measurable with respect to their notion of scaling limit (where a percolation configuration, instead
of being seen as a collection of quads, is seen as a collection of nested loops). See [GPS13], section
2.3, for a more thorough discussion.

Definition 2.6. In what follows, we will denote by ω∞ ∼ P∞ the scaling limit of discrete mesh
percolations ωη ∼ Pη. (Recall Pη denotes the law of critical site percolation on ηT).

Of course, as explained carefully in [SS11, GPS13], the choice of the space H = HD (or any
other setup for the scaling limit) already poses restrictions on what events one can work with. Note,
for instance, that A := {∃ neighborhood U of the origin 0 ∈ C s.t. all quads Q ⊂ U are crossed} is
clearly in the Borel σ-field of (HD, TD), and it is easy to see that P∞[A] = 0, but if the sequence
of η-lattices is such that 0 is always the center of an hexagonal tile, then Pη[A] = 1/2.

With such an example in mind, it is natural to wonder how to effectively measure crossing
events, multi-arms events and so on. Since the crossing event �Q is a Borel set, it is measurable
and P∞[�Q] is thus well-defined. Yet, one still has to check that

Pη[�Q]→ P∞[�Q] , as η → 0 ,

which will ensure that P∞[�Q] is given by Cardy’s formula. This property was proved in [SS11].
More precisely they prove the following result.

Theorem 2.7 ([SS11], Corollary 5.2). For any quad Q ∈ QD,

P∞[∂�Q] = 0 .

In particular, one indeed has
Pη[�Q]→ P∞[�Q] ,

as η → 0, by weak convergence of Pη to P∞.

In the next subsection, we define Borel sets in (H , dH ) which correspond to the so called mutli-
arms events. They were introduced and studied in [GPS13] where an analog of the above Theorem
2.7 was proved. See Lemma 2.10 below.
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2.5 Measurability of arms events ([GPS13])

Following [GPS13], if A = (∂1A, ∂2A) is any non-degenerate smooth annulus of the plane (see
[GPS13]), one can define events A1,A2,A3,A4, . . . ,Aj which belong to the Borel sigma-field of
(H , dH ) and which are such that for the discrete percolation configurations ωη ∼ Pη ∈ (H , dH ),
1Ai(ωη) coincides with the indicator function that ωη has j (alternate) arms in the annulus A.

We recall below the precise definition from [GPS13] in the case where j = 4 (which is the most
relevant case in this paper).

Definition 2.8 (Definition of the 4 arms event). Let A = (∂1A, ∂2A) ⊂ D be a piecewise smooth
annulus. We define the alternating 4-arm event in A as A4 = A4(A) =

⋃
δ>0Aδ4, where Aδ4 is

the existence of quads Qi ⊂ D, i = 1, 2, 3, 4, with the following properties (See figure 2.2):

(i) Q1 and Q3 (resp. Q2 and Q4) are disjoint and are at distance at least δ from each other.

(ii) For all i ∈ {1, . . . , 4}, the paths Qi({0}× [0, 1]) (resp. Qi({1}× [0, 1]) lie inside (resp. outside)
∂1A (resp. ∂2A) and are at distance at least δ from the annulus A and from the other Qj ’s.

(iii) The four quads are ordered cyclically around A according to their indices.

(iv) For i ∈ {1, 3}, ω ∈ �Qi .

(v) For i ∈ {2, 4}, ω ∈ �c
y
Qi

,

where if Q is a quad in D (i.e. an homeomorphism from, say, [−1, 1]2 into D), then
y
Q denotes the

rotated quad by π/2, i.e.

y
Q := Q ◦ eiπ/2 . (2.3)

Remark 2.9. Note that by construction, A4 = A4(A) is a measurable event. In fact, it is easy to
check that it is an open set for the quad-topology T .

Also, the definitions of general (mono- or polychromatic) k-arm events in A are analogous:
see [GPS13] for more details.

We will need the following Lemma from [GPS13], which is the analog of the above Theorem 2.7:

Lemma 2.10 (Lemma 2.4. and Corollary 2.10 in [GPS13]). Let A ⊂ D be a piecewise smooth
topological annulus (with finitely many non-smooth boundary points). Then the 1-arm, the alter-
nating 4-arm and any polychromatic 6-arm event in A, denoted by A1, A4 and A6, respectively, are
measurable w.r.t. the scaling limit of critical percolation in D, and one has

lim
η→0

Pη[Ai] = P∞[Ai] .

Moreover, in any coupling of the measures {Pη} and P∞ on (HD, TD) in which ωη → ω a.s. as
η → 0, we have

P
[
{ωη ∈ Ai}∆{ω ∈ Ai}

]
→ 0 (as η → 0) . (2.4)

Finally, for any exponent γ < 1, there is a constant c = cA,γ > 0 such that, for any δ > 0 and any
η > 0:

Pη

[
Aδ4 | A4

]
≥ 1− c δγ . (2.5)
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Figure 2.2: Defining the alternating 4-arm event using quads crossed or not crossed.

2.6 Pivotal measures on the set of pivotal points ([GPS13])

In what follows, A = (∂1A, ∂2A) will be a piecewise smooth annulus with inside face denoted by ∆.
The purpose of [GPS13] is to study the scaling limit of suitably renormalized counting measures on
the set of A-important points where these latter points are defined as follows:

Definition 2.11. For any η > 0, a point x ∈ ηT ∩∆ is A-important for the configuration ωη if one
can find four alternating arms in ωη from x to the exterior boundary ∂2A. See figure 2.3

Definition 2.12 (Pivotal measure µA). Let us introduce the following counting measure on the set
of A-important points:

µA = µA(ωη) :=
∑

x ∈ ηT ∩∆
x is A-important

δx η
2αη4(η, 1)−1 .

The main Theorem in [GPS13] may be stated as follows:

Theorem 2.13 (Theorem 1.1 in [GPS13]). For any annulus A as above, there is a measurable map
µA from (H , dH ) into the space M of finite Borel measures on ∆̄ such that

(ωη, µ
A(ωη))

(d)−→ (ω∞, µ
A(ω∞)) ,

as the mesh η → 0. The topology on M is the topology of weak convergence (see the Prohorov metric
dM in (7.3)) and the above convergence in law holds under the product topology of dH by dM.

For each ε > 0, let us consider the grid εZ2 ∩D. Since the domain D is assumed to be bounded,
there are finitely many ε-squares in this grid. To each such square Q (if Q intersects ∂D, we still
consider the entire ε-square), we associate the square Q̃ of side-length 3ε centered around Q and we
consider the annulus AQ so that ∂1AQ = ∂Q and ∂2AQ = ∂Q̃. See figure 2.3.
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∂2A

∂1A

x

D

Q

Q̃

3ε

Figure 2.3: On the left picture, a point x which is A-important for the annulus A = (∂1A, ∂2A).
On the right, a point which is ε-important, i.e. in Pε

Definition 2.14. For any η > 0, We define the set Pε = Pε(ωη) to be the set of points x ∈ ηT ∩D,
which are such that x belongs to an ε-square Q in the grid εZ2 and x is AQ-important for the
configuration ωη. The points in Pε are called ε-important points.

Furthermore, we will denote by µε = µε(ωη) the Pivotal measure on these ε-important points,
namely:

µε = µε(ωη) :=
∑

x∈Pε(ωη)

δx η
2αη4(η, 1)−1 .

Theorem 2.13 above clearly implies the following result on the scaling limit of µε(ωη):

Corollary 2.15. For any ε > 0, there is a measurable map µε from (H , dH ) into the space of
finite Borel measures on D̄, such that

(ωη, µ
ε(ωη))

(d)−→ (ω∞, µ
ε(ω∞)) ,

under the above product topology.

Furthermore, in the Proposition below, we list some properties on the pivotal measure µε from
[GPS13].

Proposition 2.16 (Proposition 4.4 in [GPS13]). There is a universal constant C > 0 (which does
not depend on ε > 0) such that

(i) for any smooth bounded open set U ⊂ D̄,

E
[
µε(U)

]
< C ε−5/4 area(U)

(ii) for any r-square Sr = (x, y) + [0, r]2 included in D̄,

E
[
µε(Sr)

2
]
< C ε−5/4 r11/4 = C ε−5/4area(Sr)

11/8 .
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(Note that this second moment estimate does not hold for any shapes of open sets U).

Remark 2.17. As mentioned in the introduction, it may seem easier or more natural to consider
the set P̄ε = P̄ε(ωη) of all points x ∈ ηT which are such that ωη satisfies a four-arms event in the
euclidean ball B(x, ε). But the techniques in [GPS13] would not provide a scaling limit for the
corresponding pivotal measures µ̄ε. Yet, it is easy to check that for any ε > 0, one always has

P̄2
√

2ε ⊂ Pε ⊂ P̄ε ,

which will be a useful observation later in section 8.

3 Notion of uniformity on the space H

When dealing with càdlàg processes on a topological space (X, τ), one needs a way to compare
two different càdlàg trajectories on X. But in general, just having a topology τ on X is not
enough for such a task. A notion of uniformity is needed and this brings us to the notion of
uniform structure. (Part of this section, in particular item (ii) and its proof in Proposition 3.9
are borrowed from [GPS13] and are included here for completeness).

3.1 Uniform structure on a topological space

A uniform structure on a topological space (X, τ) is a given family Φ of entourages, which are
subsets of X × X. The uniform structure Φ needs to satisfy a few properties (like symmetry, a
certain type of associativity and so on) and needs to generate in a certain sense the topology τ . See
[Tu40] for example for an introduction on uniform spaces. If τ is generated by a metric dX , then
the canonical uniform structure on the metric space (X, dX) is generated by the entourages of the
form Ua := {(x, y) ∈ X × X, dX(x, y) < a}, a > 0. Furthermore, the following fact is known (see
for example[Tu40]).

Proposition 3.1. If (X, τ) is a compact Hausdorff topological space, then there is a unique uniform
structure on (X, τ) compatible with the topology τ .

We will not rely explicitly on this Proposition nor on the exact definition of uniform structures,
but we state these in order to show the intuition underlying the setup to come.

3.2 Two useful coverings of (H , T )

3.2.1 The first covering : with metric balls

For any radius r > 0, one can cover H by {BdH
(ω, r), ω ∈H }. Since (H , dH ) is compact, There

is a finite subcover
CrdH

:= {B(ωri , r), i = 1 . . . Nr} . (3.1)

3.2.2 The second covering : with �c
U and �c

Q open sets

In order to introduce an interesting covering of H consisting of open sets as in (2.1), (2.2), let us
first introduce one particular dense countable family of quads in Q(= QD).
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Definition 3.2. (A dyadic family of quads)
For any k ≥ 1, let (Qkn)1≤n≤Nk be the family of all quads which are polygonal quads in D∩2−kZ2,

i.e. their boundary ∂Qkn is included in D ∩ 2−kZ2 and the four marked vertices are vertices of
D ∩ 2−kZ2. (For fixed k, there are finitely many such quads since the domain D is assumed to be
bounded). We will denote by Qk = QkD this family of quads. Notice that Qk ⊂ Qk+1.

Clearly, the family QN :=
⋃
kQk is dense in the space of quads (QD, dQ). In particular, Theorem

2.4 implies that the events {�Q : Q ∈ QN} generate the Borel σ-field of HD.
In order to use the open sets of the form �c

U , where U is an open set of QD, we will associate

to each Q ∈ Qk, (k ≥ 1), the open set Q̂k := BdQ(Q, 2−k−10), and with a slight abuse of notation,
we will write �c

Q̂
for the open set �c

Q̂k
.

Also, to each quad Q ∈ Qk, we will associate the quad Q̄k ∈ Qk+10 which among all quads
Q′ ∈ Qk+10 satisfying Q′ > Q is the smallest one. Even though > is not a total order, it is not hard
to check that Q̄k is uniquely defined. See Figure 3.1 for an illustration. Note furthermore that Q̄k
satsifies dQ(Q̄k, Q) ∈ [2−k−10, 2−k−5]. Since, by definition Q̄k > Q, one has that �c

Q ⊂ �c
Q̄k

. With
a slight abuse of notation, we will write �c

Q̄
for the open set �c

Q̄k
.

Q ∈ Qk

∂1Q

∂3Q

Q̄k ∈ Qk+10

Figure 3.1: Definition of Q̄k > Q

Definition 3.3 (A family of neighborhood). For each k ≥ 1 and each point ω ∈ H , let Ok(ω) be
the following open set

Ok(ω) :=
( ⋂
Q∈Qk, s.t. Q/∈ω

�c
Q̄

)⋂( ⋂
Q∈Qk s.t. Q∈ω

�c
Q̂

)
. (3.2)

Let also O0(ω) be the space H for any ω ∈H .

Remark 3.4. Since for any Q ∈ Qk, �c
Q is already an open set, one might wonder why we have

chosen here to relax �c
Q into �c

Q̄
. This choice will make the statements and proofs to come more

symmetric and easier to handle.

Remark 3.5. Let us point out that for any ω ∈H and any k ≥ 0, we have that Ok+1(ω) ⊂ Ok(ω).
This illustrates the fact that the finite coverings Ck := {Ok(ω)ω ∈ H } are finer and finer as
k →∞.

This family of open sets is useful thanks to the following property.
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Lemma 3.6. The collection of open sets {Ok(ω), k ≥ 1, ω ∈ H } is a (countable) subbase for the
topological space (H , T ).

The Lemma follows from the proof of Lemma 3.7 in [SS11] and the fact that the collection of
open sets {Q̂k, Q ∈ Qk, k ≥ 1} is a countable basis for the topological space (Q, dQ).

In some sense, the purpose of the next subsection is to see how these two different coverings of
(H , T ) relate to each other.

3.3 Two uniform structures on (H , T )

The first natural uniform structure on (H , T ) is of course given by the metric dH . We now wish
to give an explicit uniform structure on (H , T ) which in the end shall be the same as the one given
by dH . This uniform structure will be defined using a semimetric on H ×H .

Definition 3.7 (An explicit uniform structure on (H , T )). Let us start by introducing the following
quantity on H ×H :

KH (ω, ω′) := sup{k ≥ 0, s.t. ω′ ∈ Ok(ω) or ω ∈ Ok(ω′)} (3.3)

It is easy to check that (KH )−1 defines a semimetric on H . For each k ≥ 0, let

Uk := {(ω, ω′) ∈H ×H , s.t.KH (ω, ω′) ≥ k} .

Even though we will not need this fact, the following proposition holds.

Proposition 3.8. The family {Uk, k ≥ 0} defines a uniform structure on H compatible with the
topology T .

The non-straightforward part in the proof of this proposition would be to show that the family
{Uk} indeed satisfies to the transitivity condition needed for uniform structures. This step will be
implicitly proved along the proof of Proposition 3.9.

3.4 How these two different uniform structures relate to each other

The purpose of this subsection is the following result.

Proposition 3.9. One can define two functions
r > 0 7→ k(r) ∈ N∗

and

k ∈ N∗ 7→ r(k) > 0

which are such that the following properties hold:

(i) For any r > 0, and any ω, ω′ ∈H . If KH (ω, ω′) ≥ k(r) then

dH (ω, ω′) ≤ r .

In other words, if two configurations share the same crossing properties for all quads in Qk(r)

(up to a small perturbation of about 2−k−10), then these two configurations are necessarily
r-close for the dH metric.
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(ii) For any k ≥ 1 and any ω, ω′ ∈ H . If dH (ω, ω′) ≤ r(k), then ω′ ∈ Ok(ω) and ω ∈ Ok(ω′).
(Note that it implies KH (ω, ω′) ≥ k.)

In other words, if ω and ω′ are sufficiently close (r(k)-close), then (up to a small perturbation
of 2−k−10) they share the same crossing properties for all quads in Qk.

Let us point out here that one could prove this Proposition by first proving Proposition 3.8 and
the existence of these two functions would then follow from Proposition 3.1. Nevertheless, since it
does not make the proof much longer, we will give a self-contained proof here which thus bypasses
the notion of uniform structure as well as its axioms. Also, as mentioned at the beginning of this
section, item (ii) corresponds exactly to the content of Lemma 2.5. in [GPS13] but is included here
for completeness.

Proof of the proposition. Let us start with the proof of (ii). Let us fix some integer k ≥ 0. Let
k′ be a slightly larger integer, say k + 20. Notice that since there are finitely many quads in Qk′ ,
there are only finitely many possible open sets of the form Ok′(ω) and the union of these covers H .
Note also that if ω ∈ H then necessarily the open set Ok′(ω) is non-empty since it contains the
point ω. It follows from these easy observations that to any point ω ∈H , on can associate a radius
rω > 0 so that the ball BdH

(ω, 2 rω) is included at least in one of the open sets Ok′(ω). Consider
now the covering {BdH

(ω, rω), ω ∈H } from which one can extract a finite covering

{BdH
(ωi, ri), i = 1, . . . , Nk′} .

Let us define r(k) := min1≤i≤Nk′{ri} and let us check that it satisfies the desired properties. Let
ω, ω′ be any points in H such that dH (ω, ω′) ≤ r(k). By our choice of r(k), one can find at least
one ball BdH

(ωi, ri) in the above covering such that both ω and ω′ lie in the ball BdH
(ωi, 2 ri). In

particular this means that one can find some ω̄ ∈ H such that both ω and ω′ lie in Ok′(ω̄). Let
us now prove that ω′ ∈ Ok(ω), the other condition is proved similarly. Consider any quad Q ∈ Qk.
We will distinguish the following cases:

(a) Suppose Q ∈ ω̄ and Q ∈ ω. Since ω′ ∈ Ok′(ω̄), we have that ω′ ∈ �c
Q̂k′
⊂ �c

Q̂k
.

(b) Suppose Q ∈ ω̄ and Q /∈ ω. We need to show that Q̄k /∈ ω′. For this, note that one can find
a quad R in Qk′ which is such that Q̄k > R̄k′ and R̂k′ > Q (in the sense that all the quads
in the open set R̂k′ are larger than Q). If R happened to be in ω̄, then since ω ∈ Ok′(ω̄), Q
would necessarily belong to ω. Hence R /∈ ω̄ and thus R̄k′ /∈ ω′ which implies Q̄k /∈ ω′.

(c) Suppose Q /∈ ω̄ and Q ∈ ω. We need to show that ω′ ∈ �c
Q̂k

. As in case (b), note that one

can find a quad R ∈ Qk′ such that Q > R̄k′ and R̂k′ ⊂ Q̂k. If R was not in ω̄, then Q would
not be in ω either. Hence R ∈ ω̄ and thus ω′ ∈ �c

R̂k′
⊂ �c

Q̂k
.

(d) Finally, suppose Q /∈ ω̄ and Q /∈ ω. Note that Q̄k > Q̄k′ . Since ω′ ∈ Ok′(ω̄), Q̄k′ is not in ω′

and thus ω′ ∈ �c
Q̄k

, which ends the proof of (ii).

Let us now turn to the proof of (i). Fix some radius r > 0 and let CrdH
:=
⋃Nr
i=1B(ωri , r/2) be

a finite covering of H by balls of radii r/2. For any point ω ∈ H , we claim that there exists a
large enough integer kω such that the open set Okω(ω) is included in at least one of the open balls
B(ωri , r/2), 1 ≤ i ≤ Nr. This follows from Lemma 3.6
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Let us consider the following covering of H : {Okω+10(ω), ω ∈H } from which one can extract
a finite covering {Okj+10(ωj), j = 1, . . . ,Mr}. We define

k(r) := max
1≤j≤Mr

kj + 20 .

Let us check that it satisfies the desired property. Let thus ω, ω′ be two configurations in H such
that K(ω, ω′) ≥ k(r) and suppose we are in the case where ω′ ∈ Ok(r)(ω). There is at least one
j ∈ [1,Mr] such that ω ∈ Okj+10(ωj) ⊂ Okj (ωj). In order to conclude, we only need to check that
ω′ ∈ Okj (ωj) since it would imply that both ω, ω′ belong to Okj (ωj) which itself is contained in a
dH -ball of radius r/2.

Let Q be any quad in Qkj . We distinguish two cases:

1. Suppose Q /∈ ωj . Since we assumed ω ∈ Okj+10(ωj), we have that R := Q̄kj+10 /∈ ω. Now

notice that R ∈ Qkj+20 ⊂ Qk(r) and that Q̄kj > R̄k(r) (this uses the fact that 2−kj−10−5 +

2−k(r)−5 < 2−kj−10). Since ω′ ∈ Ok(r)(ω), we have that R̄k(r) /∈ ω′ and thus Q̄kj /∈ ω′.

2. Suppose Q ∈ ωj . similarly to the above cases, one can find a quad R ∈ Qk(r) such that
R < Q̂kj+10 and R̂k(r) ⊂ Q̂kj (this uses the fact that 2−kj−20 + 2−k(r)−10 < 2−kj−10). Since

ω ∈ Okj+10(ωj) and R < Q̂kj+10, necessarily R ∈ ω and since ω′ ∈ Ok(r)(ω), ω′ ∈ �c
R̂k(r)

⊂
�c
Q̂kj

which concludes our proof.

4 Space and topology for càdlàg paths of percolation configura-
tions

As we mentioned earlier, both in the cases of dynamical percolation (t 7→ ωη(t)) and near-critical
percolation (λ 7→ ωnc

η (λ)), our processes will be considered as càdlàg processes with values in the
metric space H .

Recall from Theorem 2.4 and Definition 2.5 that (H , dH ) is a Polish space. It is a classical fact
that if (X, d) is a Polish space and if DX = DX [0, 1] denotes the space of càdlàg functions from [0, 1]
to X, then one can define a metric dSk on DX for which (DX , dSk) is a Polish space. This metric is
usually known under the name of Skorohod metric. Let us summarize these facts in the following
Proposition

Proposition 4.1 (See for example [EK86], Chapter 3.5). Let (X, d) be a Polish metric space (i.e.
a complete separable metric space). Let DX = DX [0, 1] be the space of càdlàg functions [0, 1]→ X.
Then DX is a Polish metric space under the Skorohod metric dSk defined as follows: for any càdlàg
processes x, y : [0, 1]→ X, define

dSk(x, y) := inf
λ∈Λ

{
‖λ‖ ∨ sup

0≤u≤1
dX(x(u), y(λ(u)))

}
,

where the infimum is over the set Λ of all strictly increasing continuous mappings of [0, 1] onto itself
and where

‖λ‖ := sup
0≤s<t≤1

| log
λ(t)− λ(s)

t− s | . (4.1)
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This discussion motivates the following definition:

Definition 4.2. For any T > 0, let SkT := DH [0, T ] be the space of càdlàg processes from [0, T ] to
H and following Proposition 4.1, let

dSkT (ω(t), ω̃(t)) := inf
λ∈ΛT

{
‖λ‖ ∨ sup

0≤u≤T
dH (ω(u), ω̃(λ(u)))

}
,

Here we used the same notations as in Proposition 4.1 (at least their natural extensions to [0, T ]).
When the context will be clear, we will often omit the subscript T in the notation dSkT .

We will also need the following extension to R+ and R:

Lemma 4.3. Let Sk(−∞,∞) (resp. Sk[0,∞)) be the space of càdlàg processes from R (resp. [0,∞))
to H . Then, if we define

dSk(−∞,∞)
(ω(λ), ω̃(λ)) :=

∑
k≥1

1

2k
dSk[−k,k]

(ω, ω̃) , (4.2)

this gives us a Polish space (Sk(−∞,∞), dSk(−∞,∞)
) (and analogously for Sk[0,∞)).

The proof of this lemma is classical. Note that since H is compact, one always have dSk[−T,T ]
(ω, ω̃) ≤

diam(H ) for any ω, ω̃ ∈H , T > 0. This way we do not need to rely on more classical expressions
such as

∑
k 2−k dk

1+dk
.

5 Poisson point processes on the set of pivotal points

In this section, we will fix the bounded domain D as well as a cut-off scale ε > 0. Our aim in this
section is to define a Poisson point process on D with intensity measure dµε(x) × dt and to study
some of its properties.

5.1 Definition

Recall from subsection 2.6 that in [GPS13], we defined for any fixed ε > 0, a measure µε = µε(ω∞)
(in the sense that it is measurable w.r.t ω∞ ∼ P∞) which is such that

(ωη, µ
ε(ωη))

(d)−→ (ω∞, µ
ε(ω∞)) , (5.1)

as η → 0.

Definition 5.1. Let T > 0 and ε > 0 be fixed. We will denote by PPPT = PPPT (µε(ω∞)) the
Poisson point process

PPPT = {(xi, ti), 1 ≤ i ≤ N}
in D× [0, T ] of intensity measure dµε(x)× 1[0,T ] dt. Furthermore, we will denote by ST the random
set of switching times ST := {t1, . . . , tN} ⊂ [0, T ].
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5.2 Properties of the point process PPPT

We list below some useful a.s. properties for PPPT .

Proposition 5.2. Let T > 0 and ε > 0 be fixed. Then the cloud of points PPPT = PPPT (µε(ω∞))
a.s. satisfies the following properties:

(i) The set of points PPPT is finite. This justifies the notation PPPT = {(xi, ti), 1 ≤ i ≤ N}. In
particular the set of switching times ST = {t1, . . . , tN} ⊂ [0, T ] is finite.

(ii) The points in PPPT are at positive distance from each other, i.e.

inf
i 6=j
{|xi − xj |} > 0

(iii) Similarly, the switching times in ST are at positive distance from each other.

(iv) For any quad Q ∈ QN, the set PPPT remains at a positive distance from ∂Q, i.e.

dist(∂Q,PPPT ) > 0

Proof of the proposition:

• The first property (i) follows directly from item (i) in Proposition 2.16 applied to U = D (we
use here our assumption that D is bounded).

• To prove the second property, notice that for any k ∈ N, if infi 6=j{|xi−xj |} < 2−k, this means
that one can find at least one dyadic square of the form [i2−k+2, (i+ 1)2−k+2]× [j2−k+2, (j +
1)2−k+2] which contains at least two points of PPPT . Since D is bounded, one can cover D
with O(1)22k such dyadic squares (where O(1) depends on D). If S = Sk is any dyadic square
of the above form, one has

P
[
|PPPT ∩ S| ≥ 2

∣∣ µε] ≤ T 2 µε(S)2 .

Integrating w.r.t µε gives

P
[
|PPPT ∩ S| ≥ 2

]
≤ T 2 E

[
µε(S)2

]
(5.2)

= T 2 E
[
µε([0, 2−k+2]2)2

]
, (5.3)

by translation invariance of the measure µε in the plane. Now, from item (ii) in Proposition
2.16, we have

P
[
|PPPT ∩ S| ≥ 2

]
≤ O(1)T 2 2−11k/4 . (5.4)

By union bound, we thus obtain

P
[
inf
i 6=j
{|xi − xj |} < 2−k

]
≤ O(1)T 2 2−3k/4 , (5.5)

where O(1) depends only on the size of D as well as on ε > 0. This gives us the following
estimate on the lower tail of the random variable ρ := infi 6=j{|xi − xj |}. There is a constant
c = c(D, ε, T ) > 0 such that

P
[
ρ < r

]
< c r3/4 .
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• The third property (iii) is proved in the same way.

• For the fourth property (iv), since QN is countable, it is enough to check the property on any
fixed quad Q ∈ QN. For such a quad Q, there is a constant K = K(U) < ∞ such that for
any 0 < r < 1, if Ur is the r-neighbourhood of ∂Q, then |Ur| < Kr. Now from item (i) in
Proposition 2.16, one has E

[
µε(Ur)

]
< CεK r which readily implies

P
[
dist(∂Q,PPPT ) < r

]
< 1− e−CεK r T < CεK r T

6 Networks associated to marked percolation configurations

In this section, we will fix some quad Q ∈ QN. Roughly speaking, our goal in this section will be
to associate to any configuration ω ∈ H and any finite set of points X = {x1, . . . , xp} ⊂ D a
combinatorial object that we will call a network which will be designed in a such a way that it will
represent the connectivity properties of the configurations ω within the domain Q \ {x1, . . . , xn}.
This network denoted by NQ = NQ(ω,X) will be a certain graph on the set of vertices V =
X ∪ {∂1, ∂2, ∂3, ∂4} with two types of edges connecting these vertices: primal and dual edges.

Let us start with a formal definition of our combinatorial object (network), which for the moment
will not depend on a configuration ω ∈H .

6.1 Formal definition of network

Definition 6.1 (Network). Suppose we are given a polygonal quad Q ∈ QN = QN(D) and a finite
set of points X = {x1, . . . , xp} ⊂ D. (This subset X will later correspond to the set of pivotal points
in PPPT ). We will assume that the points in X are all at positive distance from the boundary ∂Q.

A network for the pair (Q,X) will be an undirected graph N = (V,E, Ẽ) with vertex set
V = X ∪ {∂1, ∂2, ∂3, ∂4} and with two types of edges (the primal edges e ∈ E and the dual edges
ẽ ∈ Ẽ) and which satisfies to the following constraints:

1. If any, all the edges connected to ∂1 and/or ∂3 are primal edges.

2. If any, all the edges connected to ∂2 and/or ∂4 are dual edges.

3. There are no multiple edges.

Here are a few properties on networks that we shall need:

Definition 6.2. We will say that a network N = (V,E, Ẽ) is connected if there is a primal path
connecting ∂1 to ∂3 or a dual path connecting ∂2 to ∂4.

Definition 6.3. We will say that a network N = (V,E, Ẽ) is Boolean if for any assignment φ : X =
{x1, . . . , xp} → {0, 1} which induces a site-percolation on the graph (V,E, Ẽ), then

(i) Either there is at least one open primal path from ∂1 to ∂3, (i.e. a primal path from ∂1 to ∂3

which only uses sites x ∈ X for which φ(x) = 1) and there are no closed dual paths from ∂2

to ∂4 (i.e. dual paths from ∂2 to ∂4 which only use sites x ∈ X for which φ(x) = 0).

(ii) Or, there is a closed dual path from ∂2 to ∂4 and there are no open primal path connecting
∂1 to ∂3.
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As such one can associate a Boolean function fN : {0, 1}X → {0, 1} to a Boolean network N as
follows : for any φ ∈ {0, 1}X , let fN(φ) := 1 if we are in case (i) and 0 otherwise.

Remark 6.4. Note that a Boolean network is necessarily connected.

6.2 Mesoscopic network

In the previous subsection, we defined a combinatorial structure associated to a finite cloud of
points (these points will later correspond to pivotal switches in PPPT (ω∞)). When one deals with
the continuum limit ω∞ ∼ P∞, it is easier to work with mesoscopic squares rather than points.
Whence the following definition.

Definition 6.5. Let Q be a fixed quad in QN. For any dyadic r > 0 in 2−N, and any family of disjoint
r-squares B = {Br

1, . . . , B
r
p} where the squares are taken from the grid rZ2 − ( r4 ,

r
4), a network

for the pair (Q,B) = (Q,Br
1, . . . , B

r
p) will be the same combinatorial structure as in Definition 6.1,

where the set of vertices is replaced here by B ∪ {∂1, ∂2, ∂3, ∂4}.
The purpose of the next subsections will be to define a network attached to a cloud of points

with the help of a nested sequence of mesoscopic networks, where the dyadic squares will shrink
towards the cloud of points. This motivates the following definition.

Definition 6.6 (A nested family of dyadic coverings). For any b > 0 in 2−N, let Gb be a disjoint
covering of R2 using b-squares of the form [0, b)2 along the lattice bZ2. Now for any r ∈ 2−N and
any finite subset X = {x1, . . . , xp} ⊂ D, one can associate uniquely r-squares Br

x1
, . . . , Br

xp in the

following manner: for all 1 ≤ i ≤ p, there is a unique square B̃xi ∈ Gr/2 which contains xi and we

define Br
xi to be the r-square in the grid rZ2− (r/4, r/4) centered around the r/2-square B̃xi . (This

explains the above translation by (r/4, r/4)). We will denote by Br(X) this family of r-squares.
The family of r-squares has the following two properties:

(i) The points xi are at distance at least r/4 from ∂Br
xi .

(ii) For any set X, {Br(X)}r∈2−N forms a nested family of squares in the sense that for any r1 < r2

in 2−N, and any x ∈ X, we have
Br1
x ⊂ Br2

x .

6.3 How to associate a mesoscopic network to a configuration ω ∈H

Given a quad Q ∈ QN and a dyadic positive number r ∈ 2−N, the purpose of this subsection is to
associate in a useful manner a mesoscopic network NrQ to a finite set X ⊂ D and a configuration
ω ∈H . In other words, we wish to construct a map NrQ : (ω,X) 7→ NrQ(ω,X).

Let us start with a technical definition which quantifies by how much points in X are away from
each other and from ∂Q.

Definition 6.7. Let Q ∈ QN be a fixed quad and X = {x1, . . . , xp} ⊂ D a finite subset. Let us define
the quantity r∗ = r∗(X,Q) > 0 to be the supremum over all u ≥ 0 such that for any 1 ≤ i ≤ p, xi
is at distance at least 10 · u from the other points xj and from the boundary ∂Q.

In the particular case where the set X is the random set PPPT = PPPT (µε(ω∞)) defined
earlier in Definition 5.1 we will consider, with a slight abuse of notation, the random variable
r∗ = r∗(PPPT , Q).

It follows from Proposition 5.2 that this random variable r∗ = r∗(PPPT , Q) is positive a.s.
(more precisely one has from Proposition 5.2 that there is a constant c = cQ,D,ε,T < ∞ such that
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P
[
r∗ < r

]
< c r3/4. This follows form the fact that the contribution r3/4 is much larger than the

boundary contribution of order r).

We are now ready to define what a mesoscopic network is.

Definition 6.8 (Mesoscopic network). Let Q ∈ QN be a fixed quad. And let X ⊂ D be a finite subset
with r∗(X,Q) > 0. For any r ∈ 2−N, the r-mesoscopic network NrQ = NrQ(ω,X) associated to
the set X will be the following network:

• The set of vertices of NrQ will be Br(X)∪{∂1, . . . , ∂4}, where Br(X) is the family of r-squares
defined in Definition 6.6. With a slight abuse of notation, we will denote the vertices Br

xi
simply by xi.

• If r ≥ r∗(PPPT , Q), for convenience we define the edge structure of NrQ to be empty. Otherwise,
if r < r∗(PPPT , Q), the edge structure is defined as follows:

• The primal edge e = 〈xi, xj〉 will belong to NrQ(ω,X) if and only if one can find a quad R
such that ∂1R and ∂3R remain strictly inside Br

xi and Br
xj and such that R remains strictly

away from the squares Br
xk
, k /∈ {i, j} as well as r-away from the boundary ∂Q and for which

ω ∈ �R.

• The dual edge ẽ = 〈xi, xj〉 will belong to NrQ(ω,X) if and only if one can find a quad R
satisfying the same conditions as in the above item, except ω ∈ �c

y
R

.

• The primal edge e = 〈∂1, ∂3〉 will belong to NrQ(ω,X) if and only if one can find a quad R
which is larger than any quad in BdQ(Q, r), which remains strictly away from all squares Br

xi
and for which ω ∈ �R.

• Idem for the dual edge ẽ = 〈∂2, ∂4〉.

• The edge e = 〈∂1, xi〉 will belong to NrQ if and only if one can find a quad R for which ∂3R
remains inside Br

xi , for which ∂1R remains r-outside of Q, for which R remains strictly away
from the squares Br

xk
, k 6= i and r-away from ∂2, ∂3, ∂4 and for which ω ∈ �R. (Analog

conditions for the edges 〈xj , ∂2〉 and their dual siblings).

Note that NrQ is defined in such a way that for any combinatorial network N 6= ∅, the event {NrQ = N}
is an open set of the quad-topology T (this requires all the above conditions to be “strict” conditions
as opposed to large conditions of the type ≥ r-away from the boundary).

It is easy to check that it indeed defines a mesoscopic network in the sense of Definition 6.5.

6.4 Comparison of NrQ(ω∞) and NrQ(ωη)

One has the following Proposition:

Proposition 6.9. Assume (ωη)η>0 and ω∞ are coupled together so that ωη ∼ Pη converge pointwise
towards ω∞ ∼ P∞. For any Q ∈ QN, and for any subset X ⊂ D with r∗(X,Q) > 0, we have for all
r < r∗(X,Q) in 2−N:

P
[
NrQ(ωη, X) = NrQ(ω∞, X)

]
→ 1 , (6.1)

as η → 0.
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Corollary 6.10. In particular, for almost all ω∞ ∼ P∞, all the networks NrQ(ω∞, X) with X ⊂ D
and 0 < r ∈ 2−N < r∗(X,Q) are Boolean networks. (Note that this was not obvious at all to start
with, since it is easy to construct points ω ∈ H which do not correspond to planar percolation
configurations).

Proof: It is proved in the same fashion as equation 2.4 in Lemma 2.10 (see [GPS13]), namely one
direction uses the fact that {NrQ = N} is an open set, as mentioned above. The other direction is
in fact easier than (2.4) proved in [GPS13] since one does not require the quads for different edges
to be disjoint. Hence it is only a matter of controlling boundary effects as in the proof of Corollary
5.2 in[SS11] (stated in Theorem 2.7).

6.5 Almost sure stabilization as r → 0 of the r-mesoscopic networks

Let PPPT = PPPT (µε) ⊂ D be sampled according to the intensity measure dµε(x)× 1[0,T ]dt. As we
have seen in section 5, PPPT is almost surely finite and is such that for all quads Q ∈ QN, one has
a.s. r∗ = r∗(PPPT , Q) > 0 (see Definition 6.7).

Definition 6.11. For any r ∈ 2−N, we will denote by NrQ(ω∞,PPPT ) the r-mesoscopic network
associated to PPPT as defined in Definition 6.8.

We start with the following lemma on the measurability of this network.

Lemma 6.12. The network NrQ(ω∞,PPPT ) is measurable w.r.t (ω∞,PPPT )

Proof: First of all, the scale r∗(PPPT , Q) is measurable with respect to PPPT as a deterministic
geometric quantity which depends on the finite cloud PPPT . This implies that the event {r ≥ r∗} ⊂
{NrQ = ∅} is measurable (where by NrQ = ∅ we mean that the edge structure of NrQ is empty).

In what follows r ∈ 2−N is fixed. We already dealt with the case {r ≥ r∗}. Now, on the event
{r < r∗}, notice that since D is bounded, there are finitely many possible vertex sets Br(X), X ⊂ D
since these consists in family of dyadic squares and the constraints r∗(X,Q) > r implies that |X|
is bounded. In other words, the map X ⊂ D 7→ Br(X)1{r∗(X,Q)>r} is piecewise constant and its
image is a finite set. Let Br be an arbitrary such family of r-squares. First, let us notice that
the event {Br(PPPT ) = Br} is clearly measurable w.r.t PPPT . Now, let E be any edge structure
on Br ∪ {∂1, . . . , ∂4}, it follows easily from our definition of the edge structure of NrQ that on the
event {Br(PPPT ) = Br} ∩ {r < r∗}, the event {NrQ = (Br, E)} is measurable w.r.t the percolation
configuration ω∞.

We wish to prove that almost surely the random sequence of networks NrQ(ω∞,PPPT ) is even-
tually stationary as r ↘ 0.

For this, it will be enough to prove the following lemma.

Lemma 6.13. Let Q be a fixed quad in QN. Let T > 0 and ε > 0 be fixed. There is a constant
A = AQ <∞ such that for any r̄ > 0 and any r ∈ 2−N with r ≤ r̄,

P
[
N
r/2
Q (ω∞,PPPT ) 6= NrQ(ω∞,PPPT ) , r∗(PPPT , Q) > r̄

]
≤ AQ

r1/3

r̄4/3
. (6.2)

Note that the constant AQ only depends on the shape of Q and not on T nor on ε.

Indeed the Lemma implies the following result
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Theorem 6.14. There is a measurable scale rQ = rQ(ω∞,PPPT (µε)) ∈ 2−N which satisfies{
0 < rQ < r∗(ω∞,PPPT ) a.s.
NrQ(ω∞,PPPT ) = NrQ(ω∞,PPPT ) ∀r < rQ ∈ 2−N

(6.3)

In particular, the r-mesoscopic network NrQ(ω∞,PPPT ) a.s. has a limit as r → 0, which is
measurable w.r.t (ω∞,PPPT ) and which we will denote by NQ = NQ(ω∞,PPPT ).

Let us start by deriving the proposition using Lemma 6.13. This is a straightforward use of
Borel-Cantelli. For any k ∈ N and any k̄ ∈ N, define the event

Ak̄k := {N2−k̄−k−1

Q (ω∞,PPPT ) 6= N2−k̄−k
Q (ω∞,PPPT ) , r∗(PPPT , Q) > 2−k̄} .

Lemma 6.13 implies that for any k̄ ∈ N,
∑

k≥0 P
[
Ak̄k
]
< ∞. Therefore by Borel-Cantelli, there is

a measurable K = K(k̄, ω∞,PPPT ) < ∞ a.s. such that Ak̄K−1 is satisfied and all Ak̄k, k ≥ K are

not (we define here Ak̄−1 to be of full measure). Let k̄0 := inf{k̄ ∈ N; 2−k̄ ≤ r∗(PPPT , Q)} which is
measurable w.r.t. PPPT and is <∞ a.s. (see Definition 6.7). With our above notations, the scale

rQ := 2−k̄0−K(k̄0,ω∞,PPPT )

satisfies the desired conditions of Theorem 6.14.

We now turn to the proof of Lemma 6.13 which will use in a crucial manner the comparison
with the discrete setting ωη ∼ Pη established in Proposition 6.9.

Proof of Lemma 6.13: Let us fix r̄ > 0 and r < r̄ ∈ 2−N. Since the upper bound in (6.2) relies
on arm exponents, it will be convenient if not necessary to rely on the discrete setting. In order to
work with an actual discrete mesh ηT, we will thus rely on Proposition 6.9.

As in the proof of Lemma 6.12, we use the fact that on the event {r∗ > r̄}, there are finitely

many possible vertex sets for N
r/2
Q (ω∞,PPPT ). In other words, the range of families of r/2-squares

obtained as Br/2(PPPT ) with PPPT such that r∗(PPPT , Q) > r̄ is a finite set Γ. We will denote by

V = {Br/2
1 , . . . , B

r/2
NV
} the elements of Γ. Note that each V ∈ Γ needs to satisfy r∗(V,Q) > r̄ (with

the obvious extension of the quantity r∗ defined in Defintion 6.7 to family of r-squares).

As in Proposition 6.9, let us consider a coupling of (ωη)η>0 and ω∞ so that ωη ∼ Pη and ωη
converges pointwise in (H , dH ) towards ω∞ ∼ P∞. Since PPPT is a Poisson point process with
intensity measure µε(ω∞), we have that a.s. PPPT ⊂ Pε(ω∞). In particular if Br/2(PPPT ) = V =

{Br/2
1 , . . . , B

r/2
NV
} ∈ Γ and if for all i ∈ [1, NV ], we denote by Aεi the annulus centered around the

r/2-square B
r/2
i of exterior side-length ε, then ω∞ must satisfy a four-arm event in each annuli Aεi .

Let us then introduce the following event

AV = AεV =
⋂

1≤i≤NV

A4(Aεi) ,

where the events A4(Aεi) denote the four-arms events in each annuli Aεi . As such, on the event
{Br/2(PPPT ) = V }, we must have ω∞ ∈ AεV .

Lemma 2.10 implies that for any V ∈ Γ

P
[
ωη ∈ AεV

∣∣ Br/2(PPPT (ω∞)) = V
]
−→
η→0

1 (6.4)
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Furthermore using Proposition 6.9 we have that for any V ∈ Γ,

lim
η→0

P
[
N
r/2
Q (ωη, V ) = N

r/2
Q (ω∞, V )

]
= lim

η→0
P
[
NrQ(ωη, V ) = NrQ(ω∞, V )

]
= 1

This asymptotic equality enables us to write

P
[
N
r/2
Q (ω∞,PPPT ) 6= NrQ(ω∞,PPPT ), r̄ < r∗

]
=
∑
V ∈Γ

P
[
N
r/2
Q (ω∞,PPPT ) 6= NrQ(ω∞,PPPT ), Br/2(PPPT ) = V

]
=
∑
V ∈Γ

lim
η→0

P
[
N
r/2
Q (ωη, V ) 6= NrQ(ωη, V ), Br/2(PPPT ) = V

]
=
∑
V ∈Γ

lim
η→0

P
[
N
r/2
Q (ωη, V ) 6= NrQ(ωη, V ), Br/2(PPPT ) = V, ωη ∈ AεV

]
≤ lim

η→0
P
[
∃V ∈ Γ s.t. N

r/2
Q (ωη, V ) 6= NrQ(ωη, V ) and ωη ∈ AεV

]
, (6.5)

where in the third equality we used equation (6.4) and for the last inequality we used the fact

that all the events {Nr/2Q (ωη, V ) 6= NrQ(ωη, V ), Br/2(PPPT ) = V, ωη ∈ AεV } where V ranges over the
set Γ are mutually disjoint. Note that in the last probability, one does not average anymore over
(ω∞,PPPT ).

It remains to bound (6.5). For this matter, let us analyse the event

W = Wη := {ωη ∈H s.t. ∃V ∈ Γ s.t. N
r/2
Q (ωη, V ) 6= NrQ(ωη, V ) and ωη ∈ AεV } .

If ωη ∈ W , then one can find a set of r/2-dyadic squares V = {Br/2
1 , . . . , B

r/2
NV
} ∈ Γ which satisfies

the above property. Let us simplify the notation and write instead V = {B1, . . . , BN}. Let us
collect what V and ωη need to satisfy. From the definition of r∗ (Definition 6.7) and since V ∈ Γ,
recall that {

for any i 6= j ∈ [1, N ], dist(Bi, Bj) > 5 r∗ > 5r̄

for any i ∈ [1, N ], dist(Bi, ∂Q) > 5 r∗ > 5r̄
(6.6)

Furthermore since ωη ∈W , and since we assumed the set V realised that event, we have{
N
r/2
Q (ωη, V ) 6= NrQ(ωη, V )

for any i ∈ [1, N ], ωη ∈ A4(Aεi) ⊂ A4(Ai(r/2, r̄))
, (6.7)

where Ai(r/2, r̄) is the annulus centred around the r/2-square Bi of exterior radius r̄. Let us analyse

what may happen in order to cause N
r/2
Q (ωη, V ) 6= NrQ(ωη, V ). For this difference to happen, at least

one edge (dual or primal) must differ in the edge structure of N
r/2
Q (ωη, V ) and NrQ(ωη, V ). These

two networks share the same vertex set, namely V ∪ {∂1, . . . , ∂4}. Without loss of generality, let
us assume that there is at least one primal edge which differs (the dual scenario being treated
similarly). There are three types of such primal edges: bulk to bulk (Bi to Bj), boundary to bulk
(∂1 or ∂3 to Bi) and boundary to boundary (∂1 to ∂3). We will analyse in details only the first case:
bulk to bulk. The two other cases are analysed similarly by taking care of boundary issues.

Bulk to bulk case:
Let us assume that a difference occurs on the edge e = 〈Bi, Bj〉 for some i 6= j ∈ [1, N ]. I.e.
ωη ∈ {e = 〈i, j〉 ∈ Nr/2}∆{e = 〈i, j〉 ∈ Nr}. We still need to distinguish two cases.
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• Suppose we are in the case where e ∈ Nr and e /∈ Nr/2. From our Definition 6.8 of NuQ(ω, V ),
this implies that one can find a quad R which strictly avoids all Br

k, k /∈ {i, j} (as well as
the r-neighborhood of ∂Q) and it connects Br

i with Br
j . Here Br

i denote the r-square which

surounds Bi = B
r/2
i , in particular Br

i ⊃ B
r/2
i . Since we are on a discrete mesh, this is the same

as finding an open path which connects Br
i and Br

j and avoids all Br
k. Since e /∈ Nr/2(ωη, V )

and since it easier to avoid all Bk, k /∈ {i, j} (as well as the r/2-neighbourhood of ∂Q), it
necessarily implies that the open cluster in ωη which connects Br

i with Br
j does not connect

B
r/2
i with B

r/2
j . Let us call this cluster Ci,j . Let us suppose without loss of generality that

the loss of connection happens nearby Bi. Recall that ωη ∈ A4(Ai(r/2, r̄)) which means that

there are two disjoint open clusters connecting B
r/2
i to the square Br̄

i of radius r̄ centered
around Bi. Let us call these clusters C1 and C2. To be more precise these two clusters are
disjoint only if restricted inside Br̄

i and C1 and C2 should denote these clusters inside Br̄
i . The

three clusters C1, C2, Ci,j must be disjoint inside Br̄
i in order e /∈ Nr/2. This implies that in

the present case, ωη needs to satisfy a 6 arms event in the annulus Ai(r, r̄).

• Suppose on the other hand that e ∈ Nr/2 and e /∈ Nr. The situation in this case is quite

different. Indeed since e ∈ Nr/2, one can find an open path which connects B
r/2
i with B

r/2
j

and it avoids all B
r/2
k as well as the r/2-neighborhood of ∂Q. Let us call Ci,j the cluster

(not the path) in ωη which connects these two squares. Since e /∈ Nr and since besides the
restriction coming from ∂Q and the other squares Bk, k /∈ {i, j} it is easier to connect Br

i with
Br
j , it means that at least one of the following scenario must happen:

1. Either there is at least one k /∈ {i, j} such that restricted on the r̄-square Br̄
k, the cluster

Ci,j minus the square Br
k is disconnected.

2. Or, the cluster Ci,j restricted in Q(r) := {x ∈ Q,dist(x, ∂Q) ≥ r} gets disconnected.

Let us analyze the first scenario. Since Ci,j minus Br
k gets disconnected in Br̄

k, this means that
there is at least one dual cluster C̃ connecting Br

k to Br̄
k. Now recall that ωη ∈ A4(Ak(r/2, r̄)).

This means in particular that there are at least two disjoint dual clusters C̃1 and C̃2 which

connect B
r/2
k to Br̄

k. We claim that inside the annulus Br̄
k \B

r/2
k , the dual clusters C̃, C̃1 and

C̃2 must be disjoint. Indeed if one had for example C̃ = C̃1, this would force the cluster Ci,j

to pass through B
r/2
k I.e. restricted on Br̄

k, the cluster Ci,j minus B
r/2
k would be disconnected

as well which would prevent the existence of a path within Ci,j which would connect B
r/2
i to

B
r/2
j away from B

r/2
k . Hence C̃, C̃1 and C̃2 are three disjoint dual clusters. In particular in

the present case, ωη needs to satisfy a 6 arms event in the annulus Ak(r, r̄).

The second scenario is easier to analyze. Let us cover the r-neighborhood of ∂Q with Nr =
O(1/r) r-squares S1, . . . , SNr . It is easy to check that there must be at least one square Sk
such that inside Q, Ci,j \ Sk gets disconnected (proceed for example by removing squares Si
one at a time until Ci,j gets disconnected). This can happen only if there is a three arm events
for ωη in (S r̄k \ Srk) ∩ Q (where at this point it should be clear what the notation S r̄k stands
for).

Let us summarize the Bulk to bulk case as follows. If ωη ∈W and falls in this bulk to bulk situation,
then

(i) Either one may find a dyadic r-square Br
i inside Q such that ωη satisfies a 6 arm events in

Ai(r, r̄).
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(ii) Or one may find a dyadic r-square along ∂Q for which ωη satisfies a boundary three-arm event
up to distance r̄.

The two other cases (boundary to bulk and boundary to boundary) would reach to the same
conclusion. We will see below that the probability of (i) ∪ (ii) is small.

Let us then introduce the following event:

Gr,r̄ :={ω ∈H s.t. ∃ a dyadic r-square B s.t. ω ∈ A6(Br̄ \B)}
∪ {ω ∈H s.t. ∃ a dyadic r-square B along ∂Q s.t. ω ∈ A3((Br̄ \B) ∩Q)}

:=Gbulk
r,r̄ ∪Gboundary

r,r̄ .

Indeed, using 6.5 as well as the above analysis, we end up with the following upper bound

P
[
N
r/2
Q (ω∞,PPPT ) 6= NrQ(ω∞,PPPT ), r̄ < r∗

]
(6.8)

≤ lim
η→0

(
P
[
ωη ∈ Gbulk

r,r̄

]
+ P

[
ωη ∈ Gboundary

r,r̄

])
(6.9)

Let us start with the first term:

lim
η→0

P
[
ωη ∈ Gbulk

r,r̄

]
≤ O(r−2) lim sup

η→0
αη6(r, r̄)

≤ BQ r−2 (r/r̄)35/12 , (6.10)

using the 6-arm exponent for the triangular lattice obtained in [SW01].

The second term may be handled as follows: without loss of generality we may assume that r̄ is
smaller than 2−k where k is such that our quad Q ∈ QN is in Qk. Following the above notations,
there are O(1/r) squares r-squares Sk along ∂Q. The squares for which the probability of a three
arm event is the higher are squares near corners of ∂Q which have a angular sector inside Q of angle
3π/2. Again using [SW01], we have that the limsup as η → 0 of having a three arm event in such
a sector from r to r̄ is bounded above by C (r/r̄)4/3. It thus follows that

lim
η→0

P
[
ωη ∈ Gboundary

r,r̄

]
≤ O(r−1) lim sup

η→0
α+,η

3 (r, r̄, θ = 3π/2)

≤ CQ r−1 (r/r̄)4/3 , (6.11)

All together, we obtain the upper bound

lim
η→0

P
[
ωη ∈ Gbulk

r,r̄

]
≤ BQ r−2 (r/r̄)35/12 + CQ r

−1 (r/r̄)4/3

≤ AQ
r1/3

r̄4/3
,

which ends the proof of Lemma 6.13.

Conditioned on (ω∞,PPPT ), we are now able for each quad Q ∈ QN, to associate in a measurable
manner a combinatorial structure, the network NQ(ω∞,PPPT ) whose aim is to represent how the
points in PPPT are linked together via ω∞ inside Q. The purpose of the next section is to use this
combinatorial graph in order to define a càdlàg process with values in H .
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7 Construction of a continuum ε-cut-off dynamics

Let ε > 0 be a fixed cut-off parameter and T > 0 be some fixed time-range. We wish to construct a
certain cut-off dynamics ωε∞(t) on H which will be shown (in subsection 7.6) to be the scaling limit
in the Skorohod space SkT (see section 4) of the discrete cut-off dynamics ωεη(t). The present section
is divided as follows: the first five subsections deal with dynamical percolation. More precisely in
subsection 7.1 we define the stochastic càdlàg process t ∈ [0, T ] 7→ ωε∞(t) and in subsections 7.2
to 7.6, we prove that a.s. the process ωε∞(t) remains in H for all times t ∈ [0, T ] and is the
limit in the Skorohod space SkT of the càdlàg process t 7→ ωεη(t). Finally in subsection 7.7, we
extend the construction to the near-critical case in order to build an ε-cutoff near-critical process
λ ∈ [−L,L] 7→ ωnc,ε

∞ (λ).

7.1 Construction of the processes

If one considers the well-defined dynamics t 7→ ωη(t), the evolution on the time interval [0, T ] of
the state of sites which are initially in Pε(ωη(t = 0)) is governed by the Poisson point process
PPPT (µε(ωη)). When such sites are updated, they become open (or remain open if they were
already so) with probability 1/2 and closed with probability 1/2. Let us then decompose PPPT as
follows:

PPPT = PPP+
T ∪ PPP−T ,

where PPP+
T (PPP−T ) is the Poisson cloud of points which turn open (closed). It is easy to check that

PPP±T are two independent copies of a Poisson point process of intensity measure 1
2dµ

ε(ωη)(x) ×
1[0,T ]dt. This motivates the following definition

Definition 7.1 (Discrete cut-off dynamics). For any fixed ε > 0 and T > 0, one defines a càdlàg
process t 7→ ωεη(t) by starting at the initial time t = 0 with ωεη(t = 0) = ωη ∼ Pη and by
updating this initial configuration as time t ∈ [0, T ] increases using the above Poisson point process
PPPT (µεη(ωη)) = PPP+

T ∪ PPP−T in the obvious manner.

Back to the continuum case, let us sample ω∞ ∼ P∞ as well as two independent Poisson
point processes PPP+

T and PPP−T both with same intensity measure 1
2dµ

ε(ω∞)(x) × 1[0,T ]dt. To

be consistent with the previous sections, we will still call PPPT = PPP+
T ∪ PPP−T . From these

two sources of randomness, we wish to build, similarly as in Definition 7.1, a càdlàg trajectory
t ∈ [0, T ] 7→ ωε∞(t) ∈H .

Since the family of quads QN defined earlier in 3.2 is dense in QD, by Theorem 2.4, it should
in principle be sufficient to define the trajectory ωε∞(t) through the processes (or projections) t 7→
1�Q(ωε∞(t)) for all quads Q ∈ QN. In the present subsection, we will construct such càdlàg processes
simultaneously for all quads Q ∈ QN. We will denote these 0-1 valued processes by t 7→ ZQ(t) =
ZQ(t, ω∞,PPPT ) ∈ {0, 1}. The aim of the next subsection will be to show that these projected
processes a.s. characterize uniquely a well defined càdlàg process t 7→ ωε∞ ∈H . In other words, we
will show that a.s. there exists a unique càdlàg process t 7→ ωε∞(t) ∈ H such that for all Q ∈ QN,
and all t ∈ [0, T ], one has

1�Q(ωε∞(t)) = ZQ(t) ∈ {0, 1} .
Definition 7.2. Let T > 0 and ε > 0 be fixed. For any q ∈ Q∩ [0, T ], let PPPq be the Poisson point
process PPPq(ω∞, µ

ε(ω∞)) defined in Definition 5.1. Note that since q ≤ T , PPPq can be obtained
simply by projecting PPPT on 1D̄(x)× 1[0,q](t). From Theorem 6.14, for each Q ∈ QN, we have at
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our disposal the network NQ,q = NQ(ω∞,PPPq). Let us define the events

V1 := {∀q ∈ Q ∩ [0, T ] and ∀Q ∈ QN, the network NQ,q is Boolean} (7.1)

V2 := {|ST | <∞} , (7.2)

where recall that ST denotes the set of switching times defined in Definition 5.1. Since Q and QN
are countable, it follows from Corollary 6.10 that P

[
V1

]
= 1. It also follows from Proposition 5.2

that P
[
V2

]
= 1. As such if V := V1 ∩ V2, one has P

[
V
]

= 1. On this event V , we denote by fQ,q
the Boolean functions associated to the Boolean networks NQ,q (as in Definition 6.3) and still on
the event V , for each Q ∈ QN and each q ∈ Q ∩ [0, T ], we define

ZQ(q) := fQ,q(φq) ,

where φq ∈ {0, 1}PPPq is just the configuration 1PPP+
q

. Note that the possible discontinuities of

the process q ∈ Q ∩ [0, T ] 7→ ZQ(q) are necessarily included in ST . Since we are on the event
V ⊂ V2, the later process is piecewise constant. This enables us to define the random càdlàg
process t ∈ [0, T ] 7→ ZQ(t) ∈ {0, 1} as the unique càdlàg extension of q ∈ Q ∩ [0, T ] 7→ ZQ(q).

On the negligible event V c, we arbitrarily define ZQ(q) ≡ 0.
In the end, we thus defined for each quad Q ∈ QN a piecewise constant process t ∈ [0, T ] 7→

ZQ(t) ∈ {0, 1}. Furthermore the set of discontinuities of these processes is always included inside
ST whatever Q ∈ QN is (note that this is also the case on V c).

Theorem 7.3. One can define a càdlàg process ωε∞ : t ∈ [0, T ] 7→ H which starts from ωε∞(t =
0) = ω∞ ∼ P∞ and which is such that a.s. one has for all quads Q ∈ QN and all t ∈ [0, T ]:

1�Q(ωε∞(t)) = ZQ(t, ω∞,PPPT ) .

The set of discontinuities of the process t 7→ ωε∞(t) ∈H is included in the a.s. finite set ST ⊂ [0, T ].
Furthermore, this process is measurable w.r.t (ω∞,PPPT ) and is unique up to indistinguishability
among càdlàg processes.

The difficulty in proving this Theorem is to prove that one can simultaneously “extend” these
projected processes into a single trajectory t 7→ ωε∞(t) which remains consistent with the processes
Zq and at the same time remains in the space H . The proof of this Theorem is postponed to
subsection 7.5. Meanwhile we introduce an extension tool which will allow us to prove Theorem
7.3.

7.2 An extension lemma

In order to define a process as in Theorem 7.3, we will need to simultaneously extend the informations
provided by the collection of all the processes ZQ(·). The following Lemma gives sufficient conditions
for the existence of a such an extension.

Lemma 7.4. Suppose we are given a map φ : QN → {0, 1} satisfying the following constraints:

(i) Monotonicity : If Q,Q′ ∈ QN, Q < Q′ and φ(Q′) = 1, then φ(Q) = 1 as well.

(ii) Closeness : for any sequence (Qn)n≥0 ∈ QN and any quad Q ∈ QN with Qn < Q for all n ≥ 0
and Qn → Q, if one has lim supφ(Qn) = 1, then φ(Q) = 1.
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Then, there exists is a unique element ω = ωφ ∈H which extends φ in the following sense: for any
Q ∈ QN, Q ∈ ω if and only if φ(Q) = 1.

Proof: Note that the uniqueness of ωφ follows from Theorem 2.4. Yet, since the argument for the
uniqueness part is straightforward, let us prove it without relying on Theorem 2.4: suppose there
exist two different configurations ω, ω′ ∈ H compatible with the map φ in the above sense. This
means that one can find at least one quad Q /∈ QN for which one has {ω ∈ �Q}∆{ω′ ∈ �Q}. Since
QN is dense in QD, one can find a sequence (Qn)n≥0 in QN which is such that Qn → Q and Qn < Q
for all n ≥ 0. Since either ω or ω′ belongs to �Q, by assumption (i) we necessarily have φ(Qn) = 1
for all n ≥ 0. This implies that for all n ≥ 0, ω and ω′ both belong to �Qn . Since ω, ω′ are in H ,
they are closed hereditary subsets which implies that both ω and ω′ satisfy �Q which thus leads to
a contradiction.

We now turn to the existence of such a configuration ω = ωφ. We build the configuration ω as
follows. For any Q ∈ QD \ QN, we can find an increasing sequence of quads Qn ∈ QN, such that
Qn < Q and Qn → Q. From assumption (i), the sequence φ(Qn) has a limit l ∈ {0, 1}. We need to
check that this limit does not depend on the chosen subsequence. This is straightforward: if (Q′n)
is another sequence of quads in QN with Q′n < Q and Qn → Q, then it is easy to check that for any
n ≥ 0, there exists Nn, N

′
n ≥ 0 so that {

Qn < Q′N ′n
Q′n < QNn

,

which implies by assumption (i) that limφ(Qn) = limφ(Q′n). Therefore we are able to extend in a
consistent way the map φ : QN → {0, 1} to a map φ : QD → {0, 1}. It remains to show that the
configuration ωφ defined by

ωφ := {Q ∈ QD, φ(Q) = 1} ,
is a closed hereditary subset and is thus in H . The fact that ωφ is an hereditary subset is straight-
forward from our construction and from assumption (i). To see that it is closed, let Q̄n ∈ QD which
converges towards Q ∈ QD and suppose all Q̄n are in ω. It is easy to check that one can define a
sequence of quads Qn ∈ QN such that Qn < Q̄n as well as Qn < Q for all n ≥ 0 and Qn → Q. Since
ω is hereditary, we have that φ(Qn) = 1 for all n ≥ 0. Now, if the limit Q is itself in QN, assumption
(ii) guarantees that Q ∈ ω as well and if Q ∈ QD \ QN, then by our extension of φ which does not
depend on the chosen sequence of quads, we must have φ(Q) = 1 and thus Q ∈ ω.

At this point, proving Theorem 7.3 essentially boils down to proving that for almost all (ω∞,PPPT ),
the map

Zq :
QN −→ {0, 1}
Q 7→ ZQ(q)

satisfies the conditions (i) and (ii) of Lemma 7.4 for all q ∈ Q ∩ [0, T ] (see the statement of
Proposition 7.8). Nevertheless, the proof of Theorem 7.3 will be postponed to subsection 7.5.
Indeed, even though the monotonicity property (i) seems very intuitive, it appears to be quite
delicate to prove without relying on a coupling with the discrete dynamics (ωεη(q)). Indeed, one
natural approach is to use the fact that there is an open path in NQ′,q from ∂1Q

′ to ∂3Q
′. For all

r ∈ 2−N small enough, one can thus find a set of quads Rr1, . . . R
r
k which realise this open path. One

might be tempted to claim that such a set of quads also realises an open path in NrQ,q for the smaller
quad Q but as is illustrated in Figure 7.1, this is not always the case. This is why we postpone the

37



Q
Q′

Rr
3

Figure 7.1: For the monotony property, the quad Rr3 is troublesome

proof of this Proposition to subsection 7.5 and in the mean time, we introduce a coupling between
the process ωεη(t) and what will be the process ωε∞(t).

7.3 A coupling of ωεη(t) with (ω∞,PPPT (µε(ω∞)))

In this subsection, we wish to couple ωεη(t) and ωε∞(t) so that with high probability, they will remain
close to each other. (There is a slight abuse of notation here since we did not yet prove Theorem
7.3 and thus did not yet define properly ωε∞(t). This will be handled in subsection 7.5.) Recall our
main result from [GPS13], i.e. Theorem 2.13 and Corollary 2.15. We have for all fixed ε > 0:

(ωη, µ
ε(ωη))

(d)−→ (ω∞, µ
ε(ω∞)) .

µε(ωη) and µε(ω∞) are a.s. finite measures on the compact set D̄. It is well-known that the
topology of weak-convergence for measures on D̄ is metrizable, the so-called Prohorov’s metric being
one of the possible choices. Recall the Prohorov metric on the space M = M(D̄) of finite measures
on D̄ is defined as follows: for any µ, ν ∈M(D̄), let

dM(µ, ν) := inf

ε > 0 , s.t ∀ closed set A ⊂ D̄ ,
µ(Aε) ≤ ν(A) + ε

and
ν(Aε) ≤ µ(A) + ε

 . (7.3)

It is well-known (see [Pro56]) that the metric space (M(D̄), dM) is a complete separable metric
space (in particular, one can apply Skorohod representation theorem). Furthermore, µi converges
weakly towards µ ∈M(D̄) if and only if dM(µi, µ)→ 0.
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It thus follows from Theorem 2.13 that one can define a joint coupling of (ωη, µ
ε(ωη)) and

(ω∞, µ
ε(ω∞)) so that a.s. as η → 0,

dH (ωη, ω∞)→ 0

and

dM(µε(ωη), µ
ε(ω∞))→ 0

Using this joint coupling, our next step is to couple the Poisson point processes PPPT (µε(ωη))
and PPPT (µε(ω∞)) so that they are asymptotically close (as η → 0). We will need the following
general lemma.

Lemma 7.5. We consider the space M of finite measures on the square [0, 1]2 (the extension to
our domain D̄ is straightforward). Let T > 0 be any fixed time. Suppose µ, ν ∈ M are such
that dM(µ, ν) < δ and µ([0, 1]2) < M , then one can couple PPPT (µ) with PPPT (ν) so that with
probability at least 1− 12(T +M)δ1/20, one has

(i) #PPPT (µ) = #PPPT (ν) = k ∈ N

(ii) If PPPT (µ) = {(x1, t1), . . . , (xk, tk), 0 < t1 < . . . < tk < T} and PPPT (ν) = {(y1, u1), . . . , (yk, uk), 0 <
u1 < . . . < uk < T}, then for all 1 ≤ i ≤ k, one has ti = ui and xi and yi are in the same
r-square of the grid Gr (see Definition 6.6), where

r = inf{u ∈ 2−N, u ≥ 41/20δ1/20} . (7.4)

In particular, one has B2r(PPPT (µ)) = B2r(PPPT (ν)).

Proof of Lemma 7.5: Let r be defined as in equation (7.4). As in Definition 6.6, divide [0, 1]2

into R = r−2 disjoint squares of side-length r and of the form [0, r)2 Call these squares S1, . . . , SR.
For each square Si, let us call µi := µ(Si) and νi := ν(Si). In each such square Si, the number
of points which will fall in that square for PPPT (µ) is a Poisson variable of mean T µi. Let us
sample independently for all i ∈ [1, R], Xi ∈ N ∼ Poisson(T µi). Now, we have that νi ≤ ν(S2δ

i ) ≤
µ(Si) + 2δ = µi + 2δ. We now couple Yi ∼ Poisson(νi) with Xi. We distinguish two cases:

(i) If νi < µi, sample Yi using a Binomial random variable Binom(Xi,
νi
µi

).

(ii) Otherwise Yi ∼ Xi + Poisson(Tνi − Tµi).

We claim that with probability at least 1− (2RTδ) we have Yi ≤ Xi for all 1 ≤ i ≤ R. Indeed
the probability that Yi > Xi is bounded from above by R×P

[
Poisson(2T δ) ≥ 1

]
≤ 2RTδ.

We now wish to show that with high probability one has for all 1 ≤ i ≤ R, Yi ≥ Xi. By our
coupling, this is already the case for the squares Si with νi ≥ µi. Let us analyse what happens for
squares Si in situation (i), i.e. when νi < µi. Since νi/µi might be very small, we will divide this
set of squares as follows: {

I− := {1 ≤ i ≤ R, µi < r3 and νi < µi}
I+ := {1 ≤ i ≤ R, µi ≥ r3 and νi < µi}

Clearly, the squares Si with i ∈ I− contribute very little, since
∑

i∈I− µi < r−2r3 = r. On these
squares, we have by definition of our coupling Yi ≤ Xi. But since

∑
i∈I− Xi is a Poisson variable
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of parameter bounded by T r, the probability that Yi < Xi for at least one i ∈ I− is bounded
from above by P

[
Poisson(T r) ≥ 1

]
≤ T r. It remains to control what happens for i ∈ I+. In

this case since νi < µi we use item (i) to sample Yi. But notice that by our assumption, we have
µi−2δ < νi < µi which leads to 1− 2δ

µi
< νi

µi
< 1 and since in this case µi ≥ r3 we have νi

µi
> 1−r−17

( recall that δ < r20/2 by (7.4)). Now, notice that with high probability all Xi are smaller than
M/r3, indeed

P
[
Xi ≥

M

r3

]
≤ E

[
Xi

]
M

r3 ≤ T r3 ,

which implies P
[
∃i, Xi ≥Mr−3

]
≤ T r. On the event that all Xi are smaller than M r−3, if i ∈ I+

since Yi ∼ Binom(Xi,
νi
µi

), we have

P
[
Yi < Xi

]
≤ M

r3
r17 = M r14 ,

which implies,

P
[
∃i ∈ I+, Yi < Xi

]
≤M r12 .

Summarising the above analysis, we obtain that with probability at least 1 − (2T r−2 δ + 2T r +
M r12), one has Xi = Yi ∀1 ≤ i ≤ R. Since r20/8 < δ < r20/2, we thus obtain the following upper
bound on the probability that our event is not satisfied:

2T r−2δ + 2T r +M r12 ≤ T r18 + 2T r +M r12

≤ 3(T +M) r ≤ 12(T +M) δ1/20 .

As such, one has the following Corollary

Corollary 7.6. Let us fix T > 0 and ε > 0. One can can couple (ωη,PPP
±
T (µε(ωη))) and

(ω∞,PPP
±
T (µε(ω∞))) so that for each r ∈ 2−N, we have a.s. as η → 0:

(i) |PPP+
T (ωη)| = |PPP+

T (ω∞)| and |PPP−T (ωη)| = |PPP−T (ω∞)|.

(ii) The switching times ST (ωη) and ST (ω∞) are identical for PPP±T (ωη) and PPP±T (ω∞).

(iii) Br(PPP±T (ωη)) = Br(PPP±T (ω∞)) (recall Definition 6.6).

This way we obtain a joint coupling of the dynamics (ωεη(t))η>0 as defined in Definition 7.1 with
our càdlàg processes ZQ(t) which are aimed at defining our process ωε∞(t).

Proof: This follows easily from Lemma 7.5 with µ = µε(ω∞) and η = µε(ωη). One just has to
deal with the fact that the first measure µ = µε(ω∞) in the latter Lemma is assumed to have a
total mass bounded by M . By Proposition 2.16, item (i), one indeed has that µε(D̄) ≤ M with
probability going to one as M →∞, which is enough for our purpose here.
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7.4 Comparison of ωεη(t) with ωε∞(t)

In this subsection, we wish to prove the following proposition

Proposition 7.7. Let us consider the coupling from Corollary 7.6. For any quad Q ∈ QN, we have

lim
η→0

P
[
∃t ∈ [0, T ], {ωεη(t) ∈ �Q}∆{ωε∞(t) ∈ �Q}

]
= 0 , (7.5)

where since we did not yet prove Theorem 7.3 at this point, the event {ωε∞(t) ∈ �Q} should be
understood as {ZQ(t) = 1}.

Note that this Proposition will be very helpful (in fact stronger than what we need) in order
to show using Definition 4.2 and item (i) in Proposition 3.9 that dSkT (ωεη(t), ω

ε
∞(t)) converges in

probability towards 0.

Proof: Recall from Definition 7.2, that for any Q ∈ QN, the càdlàg process t ∈ [0, T ] 7→ ZQ(t)
is piecewise constant with a set of discontinuities included in ST = ST (ω∞). Similarly the càdlàg
process t 7→ ωεη(t) is piecewise constant on [0, T ] with a set of discontinuities included in ST (ωη).
Recall that in the joint coupling obtained in Corollary 7.6, one has P

[
ST (ωη) = ST (ω∞)

]
→ 1 as

η → 0.
Using these facts plus the property that ST (ω∞) is a.s finite (Proposition 5.2), it is straightfor-

ward to check that proving (7.5) boils down to proving the following fact: For any q ∈ Q ∩ [0, T ]
and any Q ∈ QN, one has

lim
η→0

P
[
{ωεη(q) ∈ �Q}∆{ωε∞(q) ∈ �Q}

]
= 0 .

Let us then fix some Q ∈ QN and some q ∈ Q∩ [0, T ]. Let α ∈ (0, 1) be fixed. We wish to show that

lim sup
η→0

P
[
{ωεη(q) ∈ �Q}∆{ωε∞(q) ∈ �Q}

]
≤ α .

Let us sample (ω∞,PPPq) coupled with its discrete analogs. From Theorem 6.14, there is a mea-
surable scale rQ = rQ(ω∞,PPPq) ∈ 2−N such that for all r ∈ 2−N, r ≤ rQ, one has NQ(ω∞,PPPq) =
NrQ(ω∞,PPPq). Furthermore the random variable r∗ = r∗(PPPq, Q) is a.s. positive (see Definition

6.7). In particular, one can find rα ∈ 2−N so that

P
[
rQ ∧ r∗ ≥ rα

]
≥ 1− α/100 .

Let Aα be this event. On the event Aα, we have for all r ≤ rα,{
NQ(ω∞,PPPq) = NrQ(ω∞,PPPq)

r∗(PPPq, Q) ≥ rα
Now, in our coupling defined in Corollary 7.6, since ωη → ω∞ in H , we have from Proposition

6.9 that for any r ≤ rα,

P
[
NrQ(ω∞, X) = NrQ(ωη, X)

]
→ 1 ,

as η → 0 for any fixed (detreministic) X ⊂ D with r∗(X,Q) > 0. We also have from Corollary 7.6
that for any r ∈ 2−N,

P
[
Br(PPPq(ωη)) = Br(PPPq(ω∞))

]
→ 1 ,

41



as η → 0. Since for any fixed r ∈ 2−N, there are finitely many possible Br sets, the above two facts
plus the way NrQ is defined in Definition 6.8 imply that for any r ≤ rα ∈ 2−N, we have

P
[
NrQ(ωη,PPPq(ωη)) = NQ(ω∞,PPPq(ω∞))

∣∣ Aα]→ 1 , (7.6)

as η → 0.
Let r0 ≤ rα be small enough so that there is η0 > 0 such that the probability to have a 2 r0-

square in G2 r0 (recall Definition 6.6) with a 6-arms event for ωη up to radius rα/10 is bounded
above by α/100 whatever η < η0 is (see the proof of Lemma 6.13 where such estimates were used).
We will call Br0 the event that there are no such 6 arms events. Finally, let also η1 < η0 be small
enough so that for any η < η1,

P
[
Nr0Q (ωη,PPPq(ωη)) = NQ(ω∞,PPPq(ω∞))

∣∣ Aα] ≥ 1− α/100 . (7.7)

We are now ready to introduce for any η < η1, the following event

C := Aα ∩Br0 ∩ {Nr0Q (ωη,PPPq(ωη)) = NQ(ω∞,PPPq(ω∞))} ,

whose probability (from the above estimates) is at least (1 − α/100)(1 − α/100) − α/100 − α/100
which is greater than 1−α/10. Note that this event depends on the η- configuration (ωη,PPPq(ωη))
as well as on (ω∞,PPPq(ω∞)).

Let η < η1 and suppose we are on the event C. We distinguish two cases:

1. First case: ωε∞(q) ∈ �Q (or in other words, ZQ(q) = 1). This means that one can find an
open path e1, . . . , ek from ∂1Q to ∂3Q which only uses vertices in PPP+

q (ω∞). Since we are on
the event C, we have Nr0Q (ωη,PPPq(ωη)) = NQ(ω∞,PPPq(ω∞)). By Definition 6.8, this means
that one can find quads Rr01 , . . . , R

r0
k which realise the open path e1, . . . , ek and satisfy the

conditions of Definition 6.8. In particular, ∂1R
r0
1 remains r0-away from ∂1Q (outside of Q)

and so on. We also have for each 1 ≤ i ≤ k, ωη ∈ �R
r0
i

. To obtain that ωη ∈ �Q, we proceed

exactly as in the proof of Lemma 6.13 by showing that the converse would lead to six-arms
events that cannot exist under the above event C. We leave the details to the reader.

2. The second case, i.e. ωε∞(q) /∈ �Q is treated in the same manner by relying on a dual path
ẽ1, . . . , ẽk. Note that we need here the fact that NQ(ω∞,PPPq) is a.s. Boolean by Corollary
6.10.

We thus conclude that if η < η1, we have

P
[
{ωεη(q) ∈ �Q}∆{ωε∞(q) ∈ �Q}

]
≤ α/10 ,

as desired.

We will use this Proposition later to prove that dSkT (ωεη(·), ωε∞(·)) goes to zero in probability
as η → 0, see Theorem 7.10. But before on, we still need to justify the existence of a càdlàg
trajectory ωε∞(t) which extends our projected càdlàg processes t 7→ ZQ(t). We will now use the
above Proposition 7.7 in order to prove Theorem 7.3.
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7.5 Proof of Theorem 7.3

As explained at the end of subsection 7.2, we start by proving the following Proposition.

Proposition 7.8. For almost all (ω∞,PPPT ), the following property is satisfied: for all q ∈ Q ∩
[0, T ], the map

Zq :
QN −→ {0, 1}
Q 7→ ZQ(q)

satisfies the conditions (i) and (ii) of Lemma 7.4.

Proof of Proposition 7.8:
Let us fix T > 0 and q ∈ Q ∩ [0, T ]. We wish to show that the random map Zq : QN → {0, 1} a.s.
satisfies the conditions (i) and (ii) of Lemma 7.4.

Let us start with condition (i). Since QN is countable, it is enough to check that property (i)
is a.s. satisfied for any fixed Q,Q′ ∈ QN with Q < Q′. Suppose Zq(Q

′) = 1, we wish to show
that a.s. Zq(Q) = 1 as well. We will compare with the η-lattice using Proposition 7.7. Let then
(ωη,PPPT (ωη)) be coupled with (ω∞,PPPT (ω∞)) as in Corollary 7.6. By Proposition 7.7, we have
as η → 0 {

limη→0 P
[
{ωεη(q) ∈ �Q′}∆{Zq(Q′) = 1}

]
= 0

limη→0 P
[
{ωεη(q) ∈ �Q}∆{Zq(Q) = 1}

]
= 0

From the above limiting probability, we can write

P
[
Zq(Q

′) = 1, Zq(Q) = 0
]

= lim
η→0

P
[
Zq(Q

′) = 1, ωεη(q) ∈ �Q′ , ω
ε
η(q) /∈ �Q, Zq(Q) = 0

]
≤ lim

η→0
P
[
ωεη(q) ∈ �Q′ , ω

ε
η(q) /∈ �Q

]
= 0 ,

since Q < Q′. This ends the proof of item (i).

We now turn to the proof of item (ii). Since QN is countable, we may fix one quad Q ∈ QN.
We wish to prove that the probability that there exists a sequence of quads Qn with Qn < Q and
Qn → Q so that Zq(Qn) = 1 for each n ≥ 1 but Zq(Q) = 0 is equal to zero.

Suppose our fixed quad Q is in Qk0 (recall Definition 3.2). Similarly to the definition of Q̄k
in the same Definition 3.2, we will define for each k ≥ k0, the quad Q̃k which among all quads
Q′ in Qk+10 satisfying Q′ < Q is the largest one. Suppose now that a sequence of quads (Qn) as
above exists. Then for each k ≥ k0, there is N = Nk < ∞ such that for all n ≥ Nk, one has
Q̃k < Qn < Q. In particular, by item (i), one has a.s. Zq(Q̃k) = 1 since Q̃k < Qn (for n large
enough) and Zq(Qn) = 1. This implies that there is a negligible event W (P

[
W
]

= 0) so that for
any quad Q ∈ QN:

{∃(Qn)n ∈ QN, Qn < Q, Qn → Q, Zq(Qn) = 1, Zq(Q) = 0}
⊂
( ⋂
k≥k0

{Zq(Q̃k) = 1, Zq(Q) = 0}
)
∪W .

As such it is enough to prove the lemma below in order to show that item (ii) is a.s. satisfied.
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Lemma 7.9. For any quad Q ∈ Qk0 ⊂ QN, there exists a constant C = CQ <∞ such that for any
k ≥ k0 we have

P
[
Zq(Q̃k) = 1 , Zq(Q) = 0

]
≤ C 2−k . (7.8)

To prove this lemma, we proceed as in the proof of item (i) by using the coupling with
(ωη,PPPT (ωη). Using Proposition 7.7, we have

P
[
Zq(Q̃k) = 1 , Zq(Q) = 0

]
= lim

η→0
P
[
Zq(Q̃k) = 1, ωεη(q) ∈ �Q̃k

, ωεη(q) /∈ �Q, , Zq(Q) = 0
]

≤ lim
η→0

P
[
ωεη(q) ∈ �Q̃k

, ωεη(q) /∈ �Q

]
.

Now, it is a standard fact (see for example teh analysis in section 7.2. in [GPS10] or in Chapter
VI in [GS12]) that the above probability is given by the existence of a three arm event along the
2−k−10 neighbourhood of ∂1Q (some analysis needs to be done near the corners of ∂1Q, where only
a two-arm events appears, see again Chapter VI in [GS12] where this is treated in details). As such
uniformly in η small enough, we obtain an upper bound of the form O(2−k).

End of proof of Theorem 7.3:
Let A be the event that for each q ∈ Q∩ [0, T ], the map Zq = Zq(ω∞,PPPT ) defined in Proposition
7.8 satisfies the conditions (i) and (ii) of Lemma 7.4. By Proposition 7.8, we have that P

[
A
]

= 1.
Furthermore, the process q 7→ Zq is by construction (see Definition 7.2) piecewise constant with a
set of discontinuities included in the a.s. finite ST ⊂ [0, T ]. As such, on the event A ∩ {|ST | <∞}
and using Lemma 7.4, we define the càdlàg process t ∈ [0, T ] 7→ ωε∞(t) to be the unique càdlàg
process in H which is compatible with all the càdlàg processes {t ∈ [0, T ] 7→ Zt(Q)}Q∈QN defined
in Definition 7.2. On Ac, define the càdlàg process t 7→ ωε∞(t) on Ac to be the constant process
ωε∞(t) := ω∞(t = 0).

The fact that this process is measurable w.r.t to (ω∞,PPPT (µε(ω∞)) is due to the fact that one
has built t 7→ ωε∞(t) out of the networks NQ(ω∞,PPPq), q ∈ Q, which are themselves limits of the
mesoscopic networks NrQ(ω∞,PPPq). Finally, the later networks are measurable w.r.t (ω∞,PPPq)
using Lemma 6.12.

The fact that this process is unique up to indistinguishability is obvious (it is a càdlàg process).

This thus ends the proof of Theorem 7.3. We now have for any ε > 0 and any T > 0 a
well-defined random process

t ∈ [0, T ] 7→ ωε∞(t) .

In the next subsection, we wish to prove that under the above coupling, the trajectories ωεη(t)
and ωε∞(t) are very close to each other w.h.p as η → 0.

7.6 The process ωεη(·) converges in probability towards ωε∞(·) in the Skorohod
space SkT .

Theorem 7.10. Let T > 0 and ε > 0 be fixed. Under the joint coupling defined in Corollary 7.6, the
càdlàg process t ∈ [0, T ] 7→ ωεη(t) converges in probability in the Skorohod space SkT (see Definition
4.2) towards the càdlàg process t 7→ ωε∞(t) defined in Theorem 7.3.
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Proof:
We wish to prove that for any r > 0,

lim
η→0

P
[
dSk(ω

ε
η(·), ωε∞(·)) > r

]
= 0 .

Recall the definition of dSk from Definition 4.2. By the a.s. property (ii) in Corollary 7.6, it will
be enough to fix λ(s) = id(s) = s so that

‖λ‖ := sup
0≤s<t≤1

| log
λ(t)− λ(s)

t− s | = 0 . (7.9)

It thus remains to show that for any fixed r > 0, one has

P
[
∃t ∈ [0, T ], dH (ωεη(t), ω

ε
∞(t)) > r

]
−→
η→0

0 . (7.10)

Since the set Qk is a finite set of quads, we readily obtain from Proposition 7.7 that for any
fixed k ≥ 0,

lim
η→0

P
[
∃Q ∈ Qk and ∃t ∈ [0, T ], {ωεη(t) ∈ �Q}∆{ωε∞(t) ∈ �Q}

]
= 0 . (7.11)

Recall the notations from Definition 3.2. We claim that the event

C := {∃t ∈ [0, T ], ωε∞(t) /∈ Ok(ωεη(t)) and ωεη(t) /∈ Ok(ωε∞(t))}

is included in the above event
{
∃Q ∈ Qk and ∃t ∈ [0, T ], {ωεη(t) ∈ �Q}∆{ωε∞(t) ∈ �Q}

}
. Indeed,

suppose our joint coupling satisfies the event C. We just need to focus on the fact that ωε∞(t) /∈
Ok(ωεη(t)) for some t ∈ [0, T ]. This means we can find a quad Q ∈ Qk with respect to which ωε∞(t)
and ωεη(t) behave differently. We thus have two cases.

1. Either this quad Q is such that ωεη(t) ∈ �Q and ωε∞(t) /∈ �c
Q̂k

(recall the notation after

Definition 3.2). In particular, this implies that a.s. ωε∞(t) /∈ �Q. We are using here the fact
that our process by its construction in Theorem 7.3 belongs to H and is thus hereditary. In
particular the event {ωεη(t) ∈ �Q}∆{ωε∞(t) ∈ �Q} holds.

2. Or this quad Q is such that ωεη(t) ∈ �c
Q and ωε∞(t) ∈ �Q̄k

(recall the notation after Definition

3.2). In particular, since ωε∞(t) ∈ H , and since Q̄k > Q, we have ωε∞(t) ∈ �Q which implies
also here that the event {ωεη(t) ∈ �Q}∆{ωε∞(t) ∈ �Q} is realised.

We thus obtain from equation 7.11 the following estimate that for any fixed k ∈ N,

lim
η→0

P
[
∃t ∈ [0, T ], ωε∞(t) /∈ Ok(ωεη(t)) and ωεη(t) /∈ Ok(ωε∞(t))

]
= 0 . (7.12)

Using Proposition 3.9 together with equation (7.12) (with k = k(r)) we obtain that for any fixed
r > 0, we have

lim
η→0

P
[
∃t ∈ [0, T ], dH (ωεη(t), ω

ε
∞(t)) > r

]
= 0 .

This implies (using λ(s) = id(s) = s) as desired that for any r > 0,

lim
η→0

P
[
dSk(ω

ε
η(·), ωε∞(·)) > r

]
= 0 .
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7.7 The case of the near-critical trajectory λ 7→ ωnc,ε
∞ (λ)

The construction of the near-critical trajectory λ 7→ ωnc,ε
∞ (λ) follows the exact same steps as the

construction of t 7→ ωε∞(t), except that instead of fixing some T > 0, we fix some L > 0 and work
on the interval λ ∈ [−L,L]. Also, we do not need an analog here of PPPT = PPP+

T ∪PPP−T since in
this near-critical case, it is enough to consider PPPL = PPPL(µε(ω∞(0))), a Poisson point process
on D̄ × [−L,L] with intensity measure dµε × dλ.

Theorem 7.10 extends readily to this near-critical setting where λ ∈ [−L,L] 7→ ωnc,ε
η (λ) converges

to λ 7→ ωnc,ε
∞ (λ) as η → 0 (either in law under the topology of SkL or in probability for a joint coupling

on SkL similar to the coupling defined in Corollary 7.6).

8 Stability property on the discrete level

We wish to prove the following Proposition.

Proposition 8.1. Let T > 0 be fixed. There exists a continuous function ψ = ψT : [0, 1] → [0, 1],
with ψ(0) = 0 such that uniformly in 0 < η < ε,

E
[
dSkT (ωη(·), ωεη(·))

]
≤ ψ(ε) .

To prove this Proposition, we will need to introduce some notations as well as some preliminary
lemmas.

First of all, since this entire section is about discrete configurations ωη ∈H , we will often omit
for convenience the subscript η and denote the percolation configurations simply by ω.

Definition 8.2 (Importance of a point). Given a percolation configuration ω = ωη ∈H and a site z,
let Z(z) = Zω(z) denote the maximal radius r such that the four arm event holds from the hexagon
of z to distance r away. This is also the maximum r for which changing the value of ω(z) will change
the white connectivity in ω between two white points at distance r away from z, or will change the
black connectivity between two black points at distance r away from z. The quantity Z(z) will also
be called the importance of z in ω.

Definition 8.3. Fix T > 0. We will denote by X = Xη,T the random set of sites on ηT which are
updated along the dynamics t ∈ [0, T ] 7→ ωη(t). Recall from Definition 1.3 that this random subset
of ηT is independent of ω = ωη(t = 0) and each site z ∈ ηT is in X independently with probability
qT := 1− e−Tr(η) ∼ T η2/αη4(η, 1).

let Ω(ω,X) denote the set of percolation configurations ω′ such that ω′(x) = ω(x) for all x /∈ X.
Finally, let A4(z, r, r′) denote the 4-arm event in the annulus A(z, r, r′).

Lemma 8.4. Let T > 0 be fixed. Set ri := 2i η, N := blog2(1/η)c. Let Wz(i, j) denote the
event that there is some ω′ ∈ Ω(ω,X) satisfying A4(z, ri, rj). Then for every integers i, j satisfying
0 ≤ i < j < N and every z ∈ R2

P
[
Wz(i, j)

]
≤ C1 α4(ri, rj) , (8.1)

where C1 = C1(T ) is a constant that may depend only on T .

Proof. Let D denote the event that ω does not satisfy A4(z, ri+1, rj−1). Suppose that Wz(i, j) ∩ D
holds, and let ω′ ∈ Ω(ω,X) satisfyA4(z, ri, rj). Let Y0 := X\A(z, ri+1, rj−1), and let {x1, x2, . . . , xm}
be some ordering of X ∩A(z, ri+1, rj−1). Let Yk = Y0 ∪ {x1, x2, . . . , xk}, k = 1, 2, . . . ,m, and let ωk
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be the configuration that agrees with ω′ on Yk and is equal to ω elsewhere. Then ω0 does not satisfy
A4(z, ri+1, rj−1), and therefore also does not satisfy A4(z, ri, rj). On the other hand, ωm = ω′

satisfies A4(z, ri, rj). Let q ∈ {1, 2, . . . ,m} be minimal with the property that A4(z, ri, rj) holds in
ωq, and let n ∈ N ∩ [i+ 1, j − 2] be chosen so that xq ∈ A(z, rn, rn+1). Then xq is pivotal in ωq for
A4(z, ri, rj). Since B(xq, rn−1) ⊂ A(z, ri, rj), this implies that ωq satisfies A4(xq, 2 η, rn−1). Hence,
we get the bound

P
[
Wz(i, j), D

]
≤

j−2∑
n=i+1

∑
x∈A(z,rn,rn+1)

P
[
x ∈ X, Wx(1, n− 1), Wz(i, j)

]
.

Since Wz(i, j) ⊂ Wz(i, n− 1) ∩Wz(n+ 2, j) and since B(x, rn−1) ⊂ A(z, rn−1, rn+2), independence
on disjoint sets gives

P
[
x ∈ X, Wx(1, n− 1), Wz(i, j)

]
≤ P

[
x ∈ X, Wx(1, n− 1), Wz(i, n− 1), Wz(n+ 2, j)

]
= P[x ∈ X] P

[
Wx(1, n− 1)

]
P
[
Wz(i, n− 1)

]
P
[
Wz(n+ 2, j)

]
.

Now set bji := supz P
[
Wz(i, j)

]
. The above gives

P
[
Wz(i, j), D

]
≤ O(T )

j−2∑
n=i+1

(rn/η)2 η2 αη4(η, 1)−1 bn−1
1 bn−1

i bjn+2 .

Since P
[
Wz(i, j)

]
≤ P

[
¬D
]

+ P
[
Wz(i, j), D)

]
, The above shows that for some absolute constant

C0 > 0, we have

bji/C0 ≤ α4(ri, rj) + T

j−2∑
n=i+1

r2
n α

η
4(η, 1)−1 bn−1

1 bn−1
i bjn+2

≤ α4(ri, rj) + T αη4(η, 1)−1
j−1∑
n=i+1

r2
n b

n−1
1 bn−1

i bjn+2.

(8.2)

We now claim that (8.1) holds with some fixed constant C1 = C1(T ), to be later determined. This
will be proved by induction on j, and for a fixed j by induction on j− i. In the case where j− i ≤ 5,
say, this can be guaranteed by an appropriate choice of C1. Therefore, assume that the claim holds
for all smaller j and for the same j with all larger i. The inductive hypothesis can be applied to
estimate the right hand side of (8.2), to yield

bji ≤ C0 α4(ri, rj) + T C0C
3
1 α

η
4(η, 1)−1

j−1∑
n=i+1

r2
n α4(r1, rn−1)α4(ri, rn−1)α4(rn+2, rj) .

By the familiar multiplicative properties of α4, we obtain

bji ≤ C2 α4(ri, rj)
(

1 + T C3
1

j−1∑
n=i+1

r2
n

α4(rn, 1)

)
, (8.3)
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for some constant C2. Since O(1)α4(rn, 1) > r2−ε
n for some constant ε > 0, it is clear that when

N − j is larger than some fixed constant M = M(T ) ∈ N, we have

T (2C2)3
j−1∑
n=i+1

r2
n

α4(rn, 1)
≤ 1 .

This shows that (8.3) completes the inductive step if we choose C1 = 2C2 and if N − j > M .
(Note that in the proof of the induction step when N − j > M , we have not relied on the inductive
assumption in which this condition does not hold.) To handle the case N−j ≤M , we just note that
bji ≤ bN−M−1

i , and the estimate that we have for bN−M−1
i is within a constant factor (depending on

T ) of our claimed estimate for bji , since M depends only on T .

Set
ZX(z) := sup

ω′∈Ω(ω,X)
Zω′(z) .

Lemma 8.5. For every site z and every ε and r satisfying 2 η < ε < 24 ε < r ≤ 1, we have

P
[
ZX(z) ≥ r, Zω(z) ≤ ε

]
≤ OT (1) ε2 α4(ε)α4(r, 1)−1 .

The proof uses some of the ideas going into the proof of Lemma 8.4 as well as the estimate
provided by that lemma.

Proof. Fix z, ε and r as above. Suppose that ZX(z) ≥ r and Zω(z) ≤ ε both hold. Let ω′ ∈ Ω(ω,X)
be such that Zω′(z) ≥ r. Let x1, x2, . . . , xm be the sites in Bη(z, ε) where ω′ 6= ω. (We use some
arbitrary but fixed rule to choose ω′ and the sequence xj among the allowable possibilities.) For
each j = 0, 1, . . . ,m, let ωj denote the configuration that agrees with ω′ on every site different from
xj+1, xj+2, . . . , xm, and agrees with ω on xj+1, . . . , xm. Then ωm = ω′ and Zω0(z) < ε. Let k be
the first j such that Zωj (z) > r.

Fix some site x satisfying rx := |z − x| ≤ ε. In order for ZX(z) ≥ r, Zω(z) ≤ ε and xk = x
to hold, the following four events must occur: x ∈ X, ZX(z) ≥ rx/2, ZX(x) ≥ rx/2, and Wz(2 +
dlog2 r

xe, blog2 rc) (using the notation of Lemma 8.4). We have P
[
x ∈ X

]
= qT = O(T ) η2 α4(1)−1,

while the probabilities of the latter three events are bounded by Lemma 8.4. Combining these
bounds, we get

P
[
ZX(z) ≥ 1, Z(z) ≤ ε, xk = x

]
≤ OT (1)α4(rx)2 η2 α4(1)−1 α4(rx, r)

= OT (1)α4(rx) η2 α4(r, 1)−1 .

Summing this bound over all sites x satisfying |z − x| ≤ ε yields the lemma.

For any quad Q ∈ Q, if r > 0 is smaller than the minimal distance from ∂1Q to ∂3Q, we will
say that Q is r-almost crossed by ω = ωη ∈H , if there is an open path in the r-neighborhood of
Q that comes within distance r of each of the two arcs ∂1Q and ∂3Q.

Proposition 8.6. Let T and X be as above, and fix some quad Q ∈ Q. Let r > 0 be smaller than
the minimal distance between ∂1Q and ∂3Q, and suppose that 0 < η < 2 η < ε < 25 ε < r ≤ 1. Then
the probability that there are some ω′, ω′′ ∈ Ω(ω,X) such that (a) Q is crossed by ω′, (b) Q is not
r-almost crossed by ω′′, and (c) ω′(z) = ω′′(z) for every site z satisfying Zω(z) ≥ ε is at most

OT,Q(ε2)α4(ε, 1)−1 α4(r, 1)−1.
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Proof. Suppose that there are such ω′ and ω′′. Let Y denote the set of sites whose hexagons are
contained in the r-neighborhood of ∂1Q ∪ ∂3Q, and let {x1, x2, . . . , xm} denote the sites not in Y
whose hexagons intersect Q. For j = 0, 1, . . . ,m, let ωj denote the configuration that agrees with ω′

on Y ∪{xj+1, xj+2, . . . , xm}, and agrees with ω′′ elsewhere. Then Q is crossed by ω0 (since ω0 agrees
with ω′ on all hexagons intersecting Q), but is not r-almost crossed by ωm (since ωm agrees with
ω′′ on all hexagons except those contained in the r-neighborhood of ∂1Q∪ ∂3Q). Let k be the least
index j such that there is no ωj-white path connecting ∂1Q and ∂3Q within the r-neighborhood of
Q. Then ωk−1 and ωk differ only in the color of xk. Since a flip of xk modifies the connectivity
between ∂1Q and ∂3Q within the r-neighborhood of Q, and since the hexagon of xk intersects Q and
is not contained in the r-neighborhood of ∂1Q∪∂3Q, it follows that Zωk−1

(xk) > r/2. Consequently,
ZX(xk) > r/2. If x is any site, then in order to have x = xk, we must have (i) ZX(x) > r/2, (ii)
Zω(x) < ε, (iii) x ∈ X, and (iv) the hexagon of x intersects Q. There are OQ(η−2) sites satisfying
(iv). The event (iii) has probability qT and is independent from the intersection of (i) and (ii),
while Lemma 8.5 bounds the probability of this intersection. The proposition now follows easily by
summing the bound we get for P[xk = x] over all possible x.

The previous Proposition readily implies the following Lemma.

Lemma 8.7. Let k ∈ N and T > 0 be fixed and suppose that 0 < η < 2η < ε < 2−k−20. Then, the
probability that there are some ω′, ω′′ ∈ Ω(ω,X) such that

(a) ω′ /∈ Ok(ω′′). (Recall Definition 3.3).

(b) ω′′ /∈ Ok(ω′).

(c) ω′(z) = ω′′(z) for every site z satisfying Zω(z) ≥ ε.

is at most
OT,k(ε

2)α4(ε, 1)−1.

Proof: Suppose ω′ /∈ Ok(ω′′) (the second condition (b) is treated the same way). We need to
analyse 2 cases:

1. Either, there is some Q ∈ Qk, s.t. ω′ ∈ �Q and ω′′ ∈ �Q̂k
. By the definition of Q̂k =

BdQ(Q, 2−k−10), it means that Q is not r-almost crossed by ω′′ with, say r = 2−k−20. As such,
one has from the above Proposition a constant CT,Q <∞ such that the probability of such a
scenario is bounded from above by CT,Q ε

2α4(ε, 1)−1α4(2−k−20, 1)−1.

2. Or, there is some Q ∈ Qk, s.t. ω′ ∈ �c
Q and ω′′ ∈ �Q̄k

. Similarly, this means now that Q̄k is

not r-almost crossed by ω′, with r = 2−k−20. By the symmetry in ω′, ω′′ of Proposition 8.6,
there is a constant C̄T,Q such that the probability of this scenario is bounded from above by
C̄T,Q ε

2α4(ε, 1)−1α4(2−k−20, 1)−1.

Recall that our domain D is bounded. As such there are finitely many quads Q ∈ Qk. We thus
obtain an upper bound of the form

2
∑
Q∈Qk

[CT,Q + C̄T,Q]α4(2−k−20, 1)−1ε2α4(ε, 1)−1 = OT,k(ε
2)α4(ε, 1)−1 ,

where the factor 2 handles the second condition (b).
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We are now able to conclude the proof of Proposition 8.1.
Proof of Proposition 8.1:

Note by our definitions of t 7→ ωη(t) and t 7→ ωεη(t) in Definitions 1.3 and 7.1 that for any time
t ∈ [0, T ], the configurations ωη(t) and ωεη(t) belong to the space Ω(ωη(t = 0), X) introduced above.
Furthermore, recall from the definition of the measure µε(ωη) and the construction of ωεη(t) that
for any t ∈ [0, T ], ωη(t)(z) = ωεη(t)(z) for all points in X which are initially in Pε(ωη). By the
definition of Pε, which relies on an ε-annulus structure, it is easy to check that Pε contains the set
of all points z which are such that Zωη(t=0)(z) ≥ 3ε. (See for example remark 2.17). In particular
the above Lemma applied with ε̃ = 3ε implies readily that there is a constant MT,K < ∞ s.t. for
any 2η < ε < 2−k−20:

P
[
∃t ∈ [0, T ], KH (ωη(t), ω

ε
η(t)) < k

]
< MT,k ε

2α4(ε, 1)−1 ,

where the quantity KH was defined in Definition 3.7. Using this bound with k = k(r), one obtains
for any 2η < ε < 2−k(r)−20,

P
[

sup
t∈[0,T ]

dH (ωη(t), ω
ε
η(t)) > r

]
< MT,k(r) ε

2α4(ε, 1)−1 . (8.4)

By the definition of the Skorohod distance dSkT in Definition 4.2, one thus has

E
[
dSkT (ωη(·), ωεη(·))

]
≤ r + diam(H )MT,k(r) ε

2α4(ε, 1)−1

= r +MT,k(r) ε
2α4(ε, 1)−1 .

Notice that for any fixed r > 0,

lim
ε→0

sup
0<2η<ε

(
r +MT,k(r) ε

2α4(ε, 1)−1
)

= r .

It is easy to see that this ensures the existence of a continuous function ψ = ψT : [0, 1]→ [0, 1] with
ψ(0) = 0 which is such that Proposition 8.1 holds. (Note that this function is not explicit since it
depends on how fast r 7→ k(r) diverges).

Let us point out that our Lemma 8.4 can be seen as a strengthening of a classical estimate on
the stability of the four-arm probabilities in the near-critical regime, which goes back to Kesten’s
seminal paper [Ke87]. See also [N08a, DSV09]. Even though we obtain here a strengthening
of Kesten’s original estimate, our proof is very similar in flavour to the one in [Ke87], with the
important difference that he uses differential inequalities that work well in the monotone coupling,
but would break down for the dynamical version. Furthermore, given the stability of the four-arm
probability, the above proof can be generalized for alternating j-arm events with j even, and also
for the one-arm event, since the change in these probabilities is also governed by the pivotal points.

9 Proof of the main theorem

9.1 Bounded domain D and finite time-range [0, T ]

We are now ready to prove our main Theorem under the hypothesis we used until now, i.e. D is
bounded and one considers dynamical percolation on a finite time-range [0, T ]. The extensions to
C and R+ are straightforward and are discussed in the next subsection.
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Theorem 9.1. The processes defined earlier in Theorem 7.3

{t 7→ ωε∞(t)}ε>0 ,

converge in probability in (SkT , dSkT ) as ε→ 0 to a continuum dynamical percolation process:
t ∈ [0, T ] 7→ ω∞(t). (We will see in Proposition 9.7 that ω∞(t) ∼ P∞ for each t ≥ 0).

Furthermore, this process t ∈ [0, T ] 7→ ω∞(t) is the limit in law (under the Skorohod topology on
SkT ) of the discrete dynamical percolation t ∈ [0, T ] 7→ ωη(t) as the mesh η → 0.

To prove this theorem, we start by constructing the limiting process as an a.s. limit of cut-off
processes t 7→ ωεL∞ (t) along a well-chosen sequence εL. Namely:

Proposition 9.2. For a well chosen subsequence εL → 0, the processes t 7→ ωεL∞ (t) converge a.s.
for dSkT to a limiting process t 7→ ω∞(t).

The proof of this Proposition will rely on a coupling with discrete dynamical percolations, but
we wish to point out that the process we eventually obtain does not depend on the choice of the
coupling, only in principle on the choice of the subsequence {εL}L.

Proof: Let {εL}L≥1 be a non-increasing sequence converging to 0, to be chosen later. for any
L1 < L2, by using Theorem 7.10 (for the coupling defined in Corollary 7.6 with ε = εL2 < εL1)
together with Proposition 8.1 applied successively to ε = εL1 and ε = εL2 and using triangle
inequality, one obtains

E
[
dSkT (ω

εL1∞ (·), ωεL2∞ (·))
]
≤ ψT (εL1) + ψT (εL2)

Let us fix the sequence {εL}L≥1 so that for any 1 ≤ L ≤ N < ∞, ψT (εL) ≤ 2−L. It follows easily
that the sequence {ωεL∞ (·)}L≥1 is a.s. a Cauchy sequence in SkT for dSkT . In particular, this defines
us an a.s. limiting process t ∈ [0, T ] 7→ ω∞(t).

Proof of Theorem 9.1: To prove that t ∈ [0, T ] 7→ ωη(t) converges in law to the above càdlàg
process t ∈ [0, T ] 7→ ω∞(t), it is enough to show that for any δ > 0, one can couple these two
processes so that

E
[
dSkT (ωη(·), ω∞(·))

]
< δ . (9.1)

This follows easily from the above proof. Indeed, let L be large enough so that 2−L < δ/10,
then by using the coupling defined in Corollary 7.6 with ε = εL, one has

E
[
dSkT (ωη(·), ω∞(·))

]
≤ E

[
dSkT (ωη(·), ωεLη (·))

]
+ E

[
dSkT (ωεLη (·), ωεL∞ (·))

]
+ E

[
dSkT (ωεL∞ (·), ω∞(·))

]
≤ ψT (εL) + E

[
dSkT (ωεLη (·), ωεL∞ (·))

]
+
∑
N≥L

ψT (N)

≤ 2−L + E
[
dSkT (ωεLη (·), ωεL∞ (·))

]
+ 2−L+1 ,

uniformly in 0 < 2η < ε. From Theorem 7.10, one can choose η small enough so that the second
term is less than 2−L which gives us (9.1).

The convergence in probability of the processes ωε∞(·) to ω∞(·) is obtained in the same fashion:
for any δ > 0, we wish to show that there is some ε̄ > 0 small enough so that for any ε < ε̄,

P
[
dSkT (ωε∞(·), ω∞(·)) > δ

]
< δ .
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Let ε̄ be such that for any ε < ε̄, ψT (ε) < δ/2. Let L be large enough in the above sequence such
that E

[
dSkT (ωεL∞ (·), ω∞(·))

]
< δ/2. By using the exact same argument as above (i.e. coupling with

a discrete dynamical configuration), one obtains for any ε < ε̄,

E
[
ωε∞(·), ω∞(·))

]
< δ ,

which implies the desired convergence in probability and thus ends our proof of Theorem 9.1.

Remark 9.3. The proof above is somewhat classical. It is very similar for example to the setup of
the approximation Theorem 4.28 from Kallenberg’s book [Ka02].

9.2 Main theorem in the near-critical case

Theorem 9.4. For any L > 0, the near-critical ensemble λ ∈ [−L,L] 7→ ωnc
η (λ) converges in law

(under the Skorohod topology on SkL) to a càdlàg process λ 7→ ωnc
∞(λ) as the mesh η → 0.

This limiting process is the limit in probability of the cut-off processes λ ∈ [−L,L] 7→ ωnc,ε
∞ (λ),

as ε→ 0.

This is proved exactly along lines of Theorem 9.1. Now note that these results are not yet
satisfactory, because, due to the form of the Skorohod distance dSkL , if we fix any λ0 ∈ (−L,L), we
cannot conclude from the above Theorem 9.4 that ωnc

η (λ0) converges in law in (H , dH ) to ωnc
∞(λ0)

as η → 0. We thus need the following theorem, which is not an immediate corollary:

Theorem 9.5. For any fixed λ ∈ R, ωnc
η (λ) converges in law in (H , dH ) to ωnc

∞(λ), where the
“slice” ωnc

∞(λ) is extracted from the trajectory obtained in Theorem 9.4. (By taking L sufficiently
large, say).

Furthermore, as in Theorem 2.7 one has

lim
η→0

P
[
ωnc
η (λ) ∈ �Q

]
= P

[
ωnc
∞(λ) ∈ �Q

]
. (9.2)

This may be viewed as a near-critical Cardy’s theorem (except we only establish the convergence
here, we do not find an explicit “formula”). We also have:

lim
η→0

P
[
ωnc
η (λ) ∈ Aj(r,R)

]
= P

[
ωnc
∞(λ) ∈ Aj(r,R)

]
, (9.3)

Proof: The reason why such a result does not follow readily from Theorem 9.4 is that there could
be some deterministic value of λ, some λ0 ∈ R such that there is always a sudden change at that
parameter. Of course, such a scenario will not happen, but we do need to prove such a local
continuity property:

Proposition 9.6. For any λ0 ∈ R and any α > 0, there is some δ = δ(λ0, α) > 0 such that

P
[
∃λ ∈ (λ0 − δ, λ0 + δ), dH (ωnc

∞(λ0), ωnc
∞(λ)) > α

]
< α . (9.4)

Assume λ0 > 0 and choose L = 2λ0. Since λ 7→ ωnc
η (λ) converges in law to λ 7→ ωnc

∞(λ) for the
topology given by dSkL , it is easy to see from the definition of dSkL that it is enough to show that
one can find a δ = δ(λ0, α) > 0 sufficiently small so that as η → 0, one has

P
[
∃λ ∈ (λ0 − 2δ, λ0 + 2δ), dH (ωnc

η (λ0), ωnc
η (λ)) > α/2

]
< α/2 . (9.5)
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We leave the details to the reader to recover (9.4) from (9.5) plus the convergence in law of ωnc
η (·)

to ωnc
∞(·).

Now, in order to prove (9.5), recall the definition of r 7→ k(r) from Proposition 3.9. In particular,
it is stronger but sufficient to show that

P
[
∃λ ∈ (λ0 − 2δ, λ0 + 2δ), ωnc

η (λ) /∈ Ok(α/2)(ω
nc
η (λ0))

]
< α/2 . (9.6)

In order to prove this, we will use the setup and the notations from section 8. In particular let
X = Xη,L = Xη,2λ0 be the set of points which are updated in the interval [−L,L]. Note that if
∃λ ∈ (λ0 − 2δ, λ0 + 2δ), ωnc

η (λ) /∈ Ok(α/2)(ω
nc
η (λ0)), this means that one can find a point x ∈ Xη,L

whose label is in (λ0 − 2δ, λ0 + 2δ) and for which the event Wx(η, 2−k(α/2)−10) is satisfied (formally
the notation Wz(i, j) used a logarithmic scale but we freely extend the notation to Wz(ri, rj) here).
Using Lemma 8.4, the probability of finding at least one such point is dominated by (for η sufficiently
small):

O(η−2)P
[
x ∈ Xη,L and its label is in (λ0 − 2δ, λ0 + 2δ)

]
C1(L)αη4(η, 2−k(α/2)−10)

≤ O(η−2)O(δ)η2αη4(η, 1)−1C1(L)αη4(η, 1)α4(2−k(α/2)−10, 1)−1

≤ CL,α δ ,

where CL,α < ∞ is a constant which depends only on L,α. One can thus find δ = δ(λ0, α) > 0
small enough so that (9.6) holds, thus concluding the proof of Proposition 9.6.

It remains to justify the limits (9.2) and (9.3) in Theorem 9.5. It is enough for this to follow
the proofs of Corollary 5.2 in [SS11] and Lemma 2.10 in [GPS13] by relying when needed on the
estimates on near-critical arm-events given by Proposition 11.6.

In fact the proof of Theorem 9.5, once adapted to the dynamical setting, easily implies the
following interesting and non-trivial fact about the scaling limit of dynamical percolation:

Proposition 9.7. Let t 7→ ω∞(t) be the process constructed in Theorem 9.1. Then one has for all
t ≥ 0,

ω∞(t) ∼ P∞ .

In particular, the process t 7→ ω∞(t) preserves the measure P∞. (Which will be important for the
simple Markov property in Theorem 11.1).

9.3 Extension to the full plane and infinite time-range

Extending the above Theorem to the case of the full plane or to an infinite time-range does not
add real additional technicalities. It can be handled using a standard compactification setup. For
example, one way to proceed is to consider the following metric on plane percolation configurations:

dHC(ω, ω′) :=
∑
N≥1

2−N dH
[−2N,2N ]

(ω, ω′) . (9.7)

Recall that we assumed for any bounded domainD, our distance dHD
to be such that diamdHD

(HD) =
1 so that the above sum is bounded above by one.

Under the topology given by this metric dHC , it is clear form the above results (Theorem 9.1)
that dynamical and near-critical percolation on the full plane converge to a limiting process for the
Skorohod topology on (HC, dHC).
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Before stating an actual Theorem, let us also extend the setup to an infinite time-range t ∈ [0,∞)
or λ ∈ R. For this purpose, let us consider as in Lemma 4.3 the following Skorohod metric on
SkC,(−∞,∞) (resp. SkC,[0,∞)), the space of càdlàg processes from R (resp. [0,∞)) to HC:

dSk(−∞,∞)
(ω(·), ω̃(·)) :=

∑
k≥1

1

2k
dSkC,[−k,k]

(ω(·), ω̃(·)) . (9.8)

Theorem 9.1 readily implies (since SkC,(−∞,∞) and SkC,[0,∞) are Polish spaces as noted in Lemma
4.3) the following result.

Theorem 9.8. Let t 7→ ωη(t) and λ 7→ ωnc
η (λ) be respectively the dynamical and near-critical

percolations (properly renormalized as in Definitions 1.3 and 1.2) on ηT ∩ C = ηT. Then, as the
mesh η → 0, these processes converge in law respectively to the càdlàg processes t 7→ ω∞(t) and
λ 7→ ωnc

∞(λ) in SkC,[0,∞) and SkC,(−∞,∞) under the topologies given by dSkC,[0,∞)
and dSkC,(−∞,∞)

.

There is one little subtlety which needs to be made more precise here: the construction of the
limiting process t 7→ ω∞(t) (or λ 7→ ωnc

∞(λ)). Indeed, in order to prove the existence of this limiting
process, one proceeds as in the proof of Theorem 9.1 by approximations using cut-off processes
t 7→ ωε∞(t) except that here the cut-off ε will play two different roles: focusing on ε-pivotal points
as previously and also focusing on the percolation configurations only on the domain [−1/ε, 1/ε]2.
(Otherwise, one would have infinitely many switches on any interval [0, T ]). As ε→ 0, these cut-off
processes converge in probability to a limiting one as in Theorem 9.1. This is the only additional
technicality needed to prove Theorem 9.8.

10 Conformal covariance property, infinite cluster and correlation
length of the n.c. model

10.1 Conformal covariance of dynamical and near-critical percolation

Before stating our result, we need to introduce a slight generalisation of our dynamical and near-
critical percolation models originally defined in Definitions 1.3 and 1.2:

Definition 10.1. Let Ω ⊂ C be a domain of the plane and let φ : Ω → (0,∞) be any continuous
function.

We will consider the dynamical percolation process t 7→ ωφη (t) which starts at ωφη (t = 0) ∼ Pη

and for which sites x ∈ η T are updated independently of each other with inhomogeneous rate

rφ(η, x) := φ(x) η2

α4(η,1) . (As such, this dynamical percolation is mixing faster in areas of the domain

Ω where the function φ is large).

Similarly, we will consider the near-critical coupling (ωnc,φ
η (λ))λ∈R, where ωnc,φ

η (λ = 0) ∼ Pη, and

as λ increases, white hexagons x ∈ ηT switch to black hexagons at same rate rφ(η, x) := φ(x) η2

α4(η,1) .

This near-critical percolation ωnc,φ
η (λ) corresponds exactly to a percolation configuration on ηT with

inhomogeneous parameter p(x) = pc + 1− e−λ rφ(η,x) ∼ pc + λφ(x)r(η).

Following the exact same proof as in the rest of the paper, one can define cut-off processes
t 7→ ωφ,εη (t) by only following the evolution of points in Pε(ωη(t = 0)). In the same way as before,

it can be shown that these processes converge in law (in (Sk, dSk)) to a process t 7→ ωφ,ε∞ (t) and it is
straightforward to establish the following analog of Theorem 9.1:
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Theorem 10.2. Let Ω ⊂ C be a domain and let φ : Ω→ (0,∞) be any continuous function. Then
the processes

{t 7→ ωε,φ∞ (t)}ε>0

converge in probability in (SkT , dSkT ) as ε→ 0 to a continuum dynamical percolation process:

t ∈ [0, T ] 7→ ωφ∞(t).

Furthermore, this process t ∈ [0, T ] 7→ ωφ∞(t) is the limit in law (under the Skorohod topology on

SkT ) of the discrete dynamical percolation t ∈ [0, T ] 7→ ωφη (t) as the mesh η → 0.

The same theorem holds with near-critical instead of dynamical percolation. We are now ready
to state our main conformal covariance result:

Theorem 10.3. Assume that f : Ω −→ Ω̃ is a conformal map with |f ′| being bounded away from
zero and infinity. (For instance, a conformal map between so-called Dini-smooth domains is always
like that, see [Po75, Theorem 10.2].) Then, if ω∞(·) (resp. ωnc

∞(·)) is a continuous dynamical
percolation (resp. n.c. percolation), then the image of these processes by f , i.e., the càdlàg processes
t 7→ f(ω∞(t)) (resp. λ 7→ f(ωnc

∞(λ))) have the same law as the following processes defined on Ω̃:

1. t 7→ ωφ∞(t) in the dynamical case

2. λ 7→ ωnc,φ
∞ (λ) in the near-critical case,

where the function φ on Ω̃ is defined by,

φ(f(z)) := |f ′(z)|−3/4 , ∀z ∈ Ω .

Remark 10.4. If ω ∈ HΩ, the configuration image f(ω) ∈ HΩ̃ is well-defined. See the end of
Subsection 2.3 in [GPS13] for a discussion why the measure P∞ = P∞,Ω is conformally invariant.

Corollary 10.5.

• The scaling limits of dynamical and near-critical percolation on ηT as η → 0 are rotationally
invariant.

• They also have a form of scaling invariance which can be stated as follows. For any scaling
parameter α > 0 and any ω ∈ H , we will denote by α · ω the image by z 7→ α z of the
configuration ω. With these notations, we have the following identities in law:

1. (
λ 7→ α · ωnc

∞(λ)
)

(d)
=
(
λ 7→ ωnc

∞(α−3/4λ)
)

2. (
t ≥ 0 7→ α · ω∞(t)

)
(d)
=
(
t 7→ ω∞(α−3/4t)

)
Proof of Theorem 10.3. We start with the following lemma:

Lemma 10.6. Let f : Ω → Ω̃ be a conformal map with |f ′| bounded away from zero and infinity.
Let Sk and S̃k be respectively the space of càdlàg trajectories in HΩ and HΩ̃ endowed with the
Skorohod distance defined in Lemma 4.3. Then (with a slight abuse of notation), the map

f : Sk → S̃k
ω(·) 7→ f(ω(·))

is uniformly continuous.
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Proof. Let us prove the lemma for a finite time-range SkT for any T > 0. The extension to the
infinite time-range is only technical. Let α > 0. Suppose dSkT (ω(·), ω′(·)) < α. One can thus find a
reparametrization φ : [0, T ]→ [0, T ], such that ‖φ‖ < α and supt∈[0,T ] dH (ω(t), ω′(φ(t))) < α. Now,
by assumption, we have two constants c1, c2 ∈ (0,∞) such that

c1 < inf
Ω
|f ′(z)| ≤ sup

Ω
|f ′(z)| < c2 . (10.1)

Using Section 3 together with the above bounds, one can show that f(ω(t)) and f(ω′(φ(t))) are also
close. Indeed, the map (still with an abuse of notation)

f : HΩ → HΩ̃
ω 7→ f(ω)

is continuous and thus uniformly continuous, since (HΩ, dH ) is compact. If α 7→ g(α) denotes its
modulus of continuity, we thus have

sup
t∈[0,T ]

dH (f(ω(t)), f(ω′(φ(t)))) < g(α) .

Since ‖φ‖ < α, we have shown that dSk(ω(·), ω′(·)) < α implies dSkT (f(ω(·)), f(ω′(·))) < α + g(α)
which ends the proof of the lemma (modulo the easy extension to the infinite time-range Sk[0,∞))
.

This lemma is useful for the following reason: we have from Theorem 9.1 that ωε∞(·) converges
in probability in Sk towards ω∞(·) as ε → 0. By the above lemma, this implies that f(ωε∞(·))
converges in probability in S̃k to f(ω∞(·)) as ε→ 0.

It remains to show (by the uniqueness of the limit in probability) that f(ωε∞(·)) also converges

in probability to the process ωφ∞(·) defined in Theorem 10.3 on the domain Ω̃.
For this, recall that the cut-off dynamics ωε∞(·) is based on the set of ε-pivotal points Pε(ω∞)

defined using the grid εZ2. On Ω̃, let us consider the image of the grid εZ2 by the conformal map f .
Call this grid Fε. Let Pεf = Pεf (ω̃∞) denote the set of Fε-important points for ω̃∞ = f(ω∞), a sample

of a continuum critical percolation on Ω̃. It follows from the construction of ωε∞(·) that f(ωε∞(·)) is
exactly the càdlàg process which starts at ω̃∞ and is updated according to a Poisson point process

˜PPP of intensity measure f∗(µ
ε(ω∞)) × dt. Using the following two facts, one can conclude that

f(ωε∞(·)) and ωε,φ∞ (·) have the same limit in probability as ε→ 0 (which thus concludes the proof):

1. Theorem 6.1 in [GPS13] shows that the push-forward measure f∗(µ
ε(ω∞)) satisfies for any

point z ∈ Ω:
df∗(µ

ε(ω∞))

dµε,f (ω̃)
(f(z)) = |f ′(z)|−3/4 ,

where µε,f = µε,f (ω̃∞) stands for the measure on the Fε-important points of ω̃∞. This item

makes the link with the process ωφ∞(·) in the statement of the theorem, with φ(f(z)) :=
|f ′(z)|−3/4.

2. From equation (10.1), one can easily check that

P10c2ε(ω̃∞) ⊂ Pεf (ω̃∞) ⊂ Pc1ε/10(ω̃∞) .

By going back to the discrete and using the stability section 8, this shows that the cut-off
dynamics f(ωε∞(·)) defined on the distorded scale Fε and the cut-off dynamics ωε,φ∞ which is
defined on a proper ε-square grid, have the same limit as ε→ 0.

This finishes the proof of Theorem 10.3.
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10.2 Infinite cluster and correlation length

Theorem 10.7. For any λ > 0, there is a.s. an infinite cluster in ωnc
∞(λ) in the sense that, for any

r > 0,

lim
η→0

P
[
ωnc
η (λ) ∈ A1(r,∞)

]
= P

[
ωnc
∞(λ) ∈

⋂
R>r

A1(r,R)
]
, (10.2)

and this probability tends to 1 as r →∞, hence one can find some random r > 0 such that the event
on the right hand side occurs.

Furthermore, as in the discrete model, one can define a notion of correlation length for
ωnc
∞(λ), λ > 0. In fact, let us give two different such definitions: for any λ > 0, define{

L1(λ) := inf{r > 0 : P
[
ωnc
∞(λ) ∈ ⋂R>rA1(r,R)

]
> 1/2}

L2(λ) := inf{r > 0 : P
[
ωnc
∞(λ) crosses [0, 2r]× [0, r]

]
> 0.99} .

(10.3)

These correlation lengths have the following behaviour: there exist two constants c1, c2 ∈ (0,∞), s.t.{
L1(λ) = c1λ

−4/3

L2(λ) = c2λ
−4/3 .

(10.4)

Proof. Recall from Theorem 9.5 that for any 0 < r < R,

P
[
ω∞(λ) ∈ A1(r,R)

]
= lim

η→0
P
[
ωη(λ) ∈ A1(r,R)

]
. (10.5)

However, we do not know this convergence for the infinite intersection of events in (10.2), hence we
need to work a little bit.

Using the notations of Kesten, on the non-renormalized lattice T, let Lε(p) be the correlation
length defined as the smallest scale n ≥ 0 such that the probability under Pp to cross the rectangle
[0, 2n]× [0, n] is larger than 1− ε. Kesten’s [Ke87] implies that for any ε, ε′ > 0, then as p→ pc,

Lε(p) � Lε′(p) � L(p) := inf{N ≥ 1 : N2α4(N) ≥ 1/|p− pc|} .

See also the survey [N08a]. Furthermore, it is well known that for any δ > 0, one can find ε > 0 such
that for any p > pc, Pp

[
ω ∈ A1(Lε(p),∞)

]
> 1 − δ. See for example [BR06]. From these results,

together with the large probability of having an open circuit in any annulus of large conformal
modulus even at criticality, we also get that, for any ε, δ, a > 0, if we take b > b0(ε, a, δ) large
enough, then

Pp

[
ω ∈ A1

(
aLε(p), bLε(p)

)
\ A1

(
aLε(p),∞

)]
< δ . (10.6)

One can introduce the same notion of correlation length in the setting of our near-critical
coupling (see Definition 1.2), except the lattice is now renormalized. More precisely, for any ε, η, λ,
define

L̃ε,η(λ) := inf{r > 0 : P
[
ωnc
η (λ) crosses the rectangle [0, 2r]× [0, r]

]
> 1− ε}.

By our choice of rescaling in Definition 1.2, the above results from Kesten readily translate as
follows: for any values of ε, λ > 0, one has

0 < lim inf
η→0

L̃ε,η(λ) ≤ lim sup
η→0

L̃ε,η(λ) <∞ . (10.7)
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Furthermore, for any δ > 0, one can also choose ε small enough so that for any η ∈ (0, 1]:

P
[
ωnc
η (λ) ∈ A1(L̃ε,η(λ),∞)

]
> 1− δ ,

or using (10.7), for r > 0 large enough,

P
[
ωnc
η (λ) ∈ A1(r,∞)

]
> 1− δ . (10.8)

Similarly to (10.6), we also get that for any δ, r > 0, if R > R0(λ, r, δ) is large enough, then

P
[
ωnc
η (λ) ∈ A1(r,R) \ A1(r,∞)

]
< δ , (10.9)

for all η > 0 small enough.
Now, this finite R approximation (10.9), together with (10.5), imply (10.2). That the probability

tends to 1 follows from (10.8).
The above arguments clearly show that the correlation lengths L1(λ) and L2(λ) are finite and

nonzero. The exact formulas for them follow from the scaling covariance result in Corollary 10.5.
Indeed, one needs to scale ωnc

∞(λ) by a factor λ4/3 in order to obtain the same law as ωnc
∞(λ = 1).

Proof of Corollary 1.7. The correlation length L(p) that we use here is basically the inverse of
the rate function r(η) defined in (1.4), except that we do not know that r(η) is monotone, hence
the “inverse” is a little loosely defined. Nevertheless, there is a ratio limit theorem for α4(n) in
[GPS13, Proposition 4.7], saying that, for any t > 0 fixed,

lim
η→0

r(tη)

r(η)
= t3/4 ,

which immediately implies that

lim
n→0

ηL(r(η)) = 1 and lim
p→pc

r(1/L(p))

|p− pc|
= 1 . (10.10)

The configuration ωnc
η (λ), as η → 0, is just percolation ωp at density p − pc ∼ 1

2λr(η); the
factor 1/2 is an artifact of the coupling introduced in Definition 1.2. Therefore, when we consider
percolation ωp on a lattice scaled down by L(p), that is, when we take η = 1/L(p), then (10.10) says
that r(η) ∼ |p− pc| as p→ pc, hence 1

L(p)ωp is close to ωnc
η (λ = 2) for p→ pc+, and to ωnc

η (λ = −2)

for p→ pc−, as claimed; the values λ = ±2 come from the factor 1/2 above.

11 Markov property, associated semigroup

11.1 Simple Markov property for t 7→ ω∞(t)

We wish to prove the following simple Markov property.

Theorem 11.1. The scaling limit of dynamical percolation is a simple Markov process with values
in (H , dH ). Furthermore this process is reversible w.r.t the measure P∞.

As such, one obtains an interesting semi-group (Pt)t≥0 on B(H ), the space of bounded Borel
measurable functions on (H , dH ).
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Proof:
Fix 0 < s < t. We wish to prove that

L[ω∞(t) | (ω∞(u))0≤u≤s] = L[ω∞(t) | ω∞(s)] .

To prove this identity in law, we will build the limiting process ω∞(·) in a way which is well
suited to the above conditioning. Instead of building our process using the critical “slice” ω∞(t = 0),
we will shift things so that one builds our process from the slice ω∞(s) which by Proposition 9.7 is
known to satisfy as well ω∞(s) ∼ P∞. One proceeds as follows (the details are left to the reader):

1. We sample ω∞(s) ∼ P∞.

2. We choose ε > 0 very small and consider µε = µε(ω∞(s)) the measure on the ε-pivotal points
of ω∞(s) we used continuously so far.

3. Knowing µε, we sample the Poisson Point processes PPP[s,t] on D × [s, t] and PPP[0,s] on
D × [0, s] independently of each other and respectively with intensity measures given by
µε(dx)du1[s,t] and µε(dx)du1[0,s].

4. Using these two PPPs, we proceed as in section 7 to construct a càdlàg trajectory u ∈ [s, t] 7→
ωε∞(u) and a “càglàd” trajectory u ∈ [0, s] 7→ ωε∞(s− u).

5. From the above construction, note that conditionally on ω∞(s), these two processes are con-
ditionally independent. (This results from the fact that µε is measurable w.r.t ω∞(s) ∼ P∞).

6. As in the proof of Theorem 9.1, we obtain a limiting process u ∈ [0, t] 7→ ω̄∞(u) as ε to 0.
The convergence is in probability in Skt as ε → 0 and the above conditional independence
property survives as ε→ 0. In particular, one has

L[ω̄∞(t) | (ω̄∞(u))0≤u≤s] = L[ω̄∞(t) | ω̄∞(s)] = L[ω̄∞(t) | ω∞(s)] (11.1)

7. As in Theorem 9.1, this process ω̄∞(·) is the limiting law as η → 0 of u ∈ [0, t] 7→ ωη(u).

By the uniqueness of the limit, one has as a process in Skt, ω̄∞(·) (d)
= ω∞(·). In particular,

property (11.1) is satisfied for the process ω∞(·) which implies the desired simple Markov
property.

In order to obtain a proper Markov process together with its semi-group (Pt)t≥0 on B(H ),
one needs to be a bit more careful and define a random càdlàg process starting from any possible
initial configuration ω ∈H . So far, it is implicit in Theorems 7.3, 9.1 and Proposition 9.7 that we
only defined a random càdlàg process almost surely in the initial configuration ω∞(0) ∼ P∞ (for
example, it could be that the measure µε = µε(ω∞) is infinite which is an event of measure 0 and
is thus included in the event Ac introduced in the proof of Theorem 7.3). Formally, let B ⊂H be
the set of initial configurations ω such that almost surely in the additional randomness required
to sample the Poisson Point Processes PPP(µε(ω)), the random trajectory t 7→ ωεL∞ (ω) converges
to a limiting càdlàg process in Sk (where the sequence εL is the one used in the proof of Theorem
9.1 to construct our limiting process). By the proofs of Theorems 7.3 and 9.1, we have that
P∞[B] = 1. As in the proof of Theorem 7.3, if the initial configuration ω is in Bc ⊂ H , then we
define our random process ω∞(t) to be the constant process equal to ω. Since we know from the
above argument that starting from ω∞(t = 0), we have ω∞(t) ∼ P∞, this construction implies that
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P
[
ω∞(t) ∈ Bc

]
= P∞[Bc] = 0, which is enough for the simple Markov property and the existence

of a semi-group. Note that in order to prove a strong Markov property, one would need to check (in
particular) that this set B is polar for the dynamics t ≥ 0 7→ ω∞(t) starting at P∞. See Remark
11.9 and the question below.

Remark 11.2. Note that this proof uses in an essential manner the invariance of Pη, P∞ as well as
our way of producing a trajectory ω∞(·) in a measurable manner w.r.t an initial slice ω∞(t = 0).

11.2 Simple Markov property for λ 7→ ωnc
∞(λ)

It is tempting to claim that the simple Markov property is satisfied in the same fashion by the
near-critical process λ 7→ ωnc

∞(λ) since so far the dynamical and near-critical regimes did share the
same level of difficulty. This is no longer the case here. The additional difficulty in the near-critical
case is due to the fact that the law P∞ is not invariant along the process λ 7→ ωnc

∞(λ). In particular,
the above proof for the simple Markov property of t 7→ ω∞(t) does not work in the near-critical
setting. Nevertheless, we can prove that the simple Markov property holds for ωnc

∞(·), namely:

Theorem 11.3. The scaling limit of near-critical percolation λ 7→ ωnc
∞(λ) is a simple Markov process

with values in (H , dH ).

It may seem to be an inhomogeneous Markov process in H . It is not (the asymmetry comes
from the non-reversible nature of the near-critical dynamics).

Theorem 11.4. λ 7→ ωnc
∞(λ) is an homogeneous non-reversible Markov process.

Proof:
Similarly, for any fixed −∞ < λ1 < λ2 <∞, we wish to show that

L[ωnc
∞(λ2) | (ωnc

∞(λ))λ≤λ1 ] = L[ωnc
∞(λ2) | ωnc

∞(λ1)] .

The strategy we wish to follow is the same as the one used for dynamical percolation, i.e. to build
the process ωnc

∞(·) from the near-critical slice ωnc
∞(λ1) instead of from the critical one ωnc

∞(λ = 0).
The same approach works but several non-trivial steps need to be checked/adpated.

1. Now that ωnc
∞(λ1) is well defined, one can sample such a near-critical slice. We will denote

ωnc
∞(λ) ∼ Pλ,∞.

2. We need an analog of the measure µε which was defined in a measurable manner w.r.t ω∞ ∼
P∞ except here that ωnc

∞(λ1) follows a different law. This means that the work done in
[GPS13] to build a pivotal measure needs to be extended to the near-critical regime. We
will show in Theorem 11.5 that for any λ1 < λ2 < . . . < λn, this is the same measurable
function ω ∈ (H , dH ) 7→ µε(ω) which gives the appropriate pivotal measures respectively
for the measures Pλ1,∞, . . . ,Pλn,∞. In this sense, Theorem 11.5 implies that λ 7→ ωnc

∞(λ) is
indeed an homogeneous non-reversible Markov process as stated in Theorem 11.4.

3. Once, the work from [GPS13] is extended thanks to Theorem 11.5, it remains to check that
all the proofs of the present paper do extend to this regime. The main things to be checked
are the stability section 8 as well as the arguments from the discrete used everywhere along
sections 6 and 7. It is is easy to check that Proposition 11.6 enables to extend these sections
to the near-critical regime.
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4. With these extensions at hand, the proof used for the simple Markov property of the dynamical
percolation ω∞(·) works in the same manner.

To prove Theorems 11.3 and 11.4 following the same strategy as for dynamical percolation, we
are thus left with the following two statements.

Theorem 11.5. For any −∞ < λ1 < λ2 < . . . < λn <∞ and any ε > 0, one can define a measure
µε which is Borel measurable w.r.t ω ∈ (H , dH ) and which is such that that for any λ ∈ {λi}1≤i≤n,
one has

(ωnc
η (λ), µε(ωnc

η (λ)))
(d)−→ (ωnc

∞(λ), µε(ωnc
∞(λ))) ,

as the mesh η → 0.

Proposition 11.6. For any λ ∈ R,

1. As η → 0, the separation of arms phenomenon holds for ωη(λ) up to scales of order O(1).
In particular, for any scale R > 0, there is a constant CR ∈ (0,∞) such that for any 0 < r1 <
r2 < r3 < R and uniformly in η < r1, one has

C−1
R P

[
ωnc
η (λ) ∈ A4(r1, r3)

]
≤ P

[
ωnc
η (λ) ∈ A4(r1, r2)

]
P
[
ωnc
η (λ) ∈ A4(r2, r3)

]
≤ CRP

[
ωnc
η (λ) ∈ A4(r1, r3)

]
2. There is an ε > 0 (independent of λ) such that for any R > 0, there is a constant C = CR,λ <
∞ such that for any 0 < r < R, one has uniformly in η < r:

P
[
ωη(λ) ∈ A6(r,R)

]
≤ C (r/R)2+ε ,

and the probability of a three–arm event for ωη(λ) in H between radii r and R is bounded above
by C (r/R)2 uniformly in η < r.

In fact, Theorem 11.5 will rely partly on Proposition 11.6. Hence we start with a sketch of proof
of the latter proposition.

Sketch of proof of Proposition 11.6. Item 1 follows from the fact that if one fixes a macroscopic
scale R > 0 as well as a fixed λ ∈ R, then the RSW Theorem holds for rectangles of diameter
bounded by R. This can be seen for example by using the results on the correlation length by
Kesten (see the discussion in subsection 10.2). Once we have a RSW Theorem, then separation of
arms as well as the quasi-mutliplicativity property can be established below the scale R by now
classical arguments. See for example [We09, N08a].

There are two ways to see why item 2 holds: either by generalizing Lemma 8.4 to the case of
these arm-events, or by using the fact that a RSW Theorem classically implies that plane-5-arms
exponent and half-plane 3 arms exponent are equal to 2. The 6 arms estimate then follows from
Reimer’s inequality.

Sketch of proof of Theorem 11.5. As in [GPS13], we fix an annulus A and we wish to construct
a measure µA = µA(ωnc

∞(λ)) which is the limit in law of the counting measures for ωnc
η (λ) on its

A-pivotal points. When λ = 0 (i.e. the critical case), this measure was well approximated (in the
L2 sense) on the discrete lattice ηT by a deterministic constant times the number Y of mesoscopic
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squares of size ε which intersect the set of A-pivotal points. (Note that the parameter ε does not
play the same role in [GPS13] and in the present paper). This deterministic constant was given by

β = β(η, ε) := E
[
x0

∣∣ A0(2ε, 1)
]
,

where we use here the same notations as in [GPS13]. The same strategy/proof as in [GPS13]
applies in the present near-critical case except that some work is needed to identify the deterministic
constant βλ = βλ(η, ε) when λ 6= 0. Two issues in particular need to be addressed:

1. First of all, in order to obtain the same measurable map ω 7→ µA(ω), whatever λ is, one needs
to show that as ε and η/ε go to zero, one has

βλ(η, ε) ∼ β(η, ε) . (11.2)

The fact that the proportional factor βλ is asymptotically identical to the critical case ensures
that the measurable map µA(·) does not depend on λ.

2. One of the main technical problems that arises in [GPS13] comes form the fact that there
is an additional conditioning that one needs to handle and the proportional factor that is
eventually used is the following one:

β̂ = β̂(η, ε) := E
[
x0

∣∣ A0(2ε, 1), U0 = 1
]
.

Lemma 4.7 in [GPS13] shows that β = β̂(1 + o(1)) as ε and η/ε go to zero. Unfortunately the
proof of Lemma 4.7 does not apply in our case since it relies on a color-switching argument
which only works if λ = 0.

From the above construction, Theorem 11.5 is proved exactly as the main theorem in [GPS13]
(and using when needed the estimates from Proposition 11.6), assuming that the following lemma
holds:

Lemma 11.7. Let λ ∈ R be fixed. With the same notations as in [GPS13], let{
βλ = βλ(η, ε) := E

[
x0(ωnc

η (λ))
∣∣ A0(2ε, 1)

]
β̂λ = β̂λ(η, ε) := E

[
x0(ωnc

η (λ))
∣∣ A0(2ε, 1), U0 = 1

]
Then as ε and η/ε tend to zero, we have

β ∼ βλ ∼ β̂λ .

Proof. Let us fix λ ∈ R, and assume without loss of generality that λ > 0. Let us start with the
first equivalent, β0 ∼ βλ. Using the same technology as in [GPS13], i.e. by relying on a coupling
argument based on a near-critical RSW, it is easy to show that as ε and η/ε go to zero, one has:

E
[
x0(ωnc

η (λ))
∣∣ A0(2ε, 1)

]
∼ E

[
x0(ωnc

η (λ))
∣∣ A0(2ε,

√
ε)
]
.

The reason being that one has many logarithmic scales between radii 2ε and
√
ε in order to couple

the two conditional measures. The same argument shows that as ε, η/ε→ 0,

E
[
x0(ωnc

η (λ))
∣∣ A0(2ε, 1), U0 = 1

]
∼ E

[
x0(ωnc

η (λ))
∣∣ A0(2ε,

√
ε), U0 = 1

]
, (11.3)
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which will be useful later. We will analyse separately the numerators and denominators

E
[
x0(ωnc

η (λ))
∣∣ A0(2ε,

√
ε)
]

=
E
[
x0(ωnc

η (λ)) ∩ A0(2ε,
√
ε)
]

P
[
ωnc
η (λ) ∈ A0(2ε,

√
ε)
] .

As is shown in Lemma 4.12. in [GPS13], the numerator is well-approximated by

ε2/η2 α
λ
�(η,
√
ε)

αλ�(2ε,
√
ε)
. (11.4)

See the notations in [GPS13]. The only ingredient to prove this estimate is the fact that the three-
arm exponent in H is 2 and this is still the case when λ 6= 0 by Proposition 11.6. We now wish to
show the following Lemma.

Lemma 11.8. For any fixed λ > 0,

αλ�(η,
√
ε) ∼ α0

�(η,
√
ε) ,

as ε, η/ε→ 0.

Proof. There are two ways to see why this lemma holds:

1. One way is to notice that it follows from the proof of Lemma 8.4. Indeed this Lemma already
gives that αλ�(η,

√
ε) � α0

�(η,
√
ε), but it is easy to check that if one stops the double induction

0 < i < j at a level j so that rj = 2j η � √η � 1, then as η < ε→ 0 one obtains constants in
Lemma 8.4 as close to 1 as one wishes.

2. One may also use the differential inequalities from Kesten (see [Ke87, We09]) and use the fact
that the correlation length at level λ > 0 is much larger than

√
ε.

Now, exactly as in this last lemma, one also has

αλ�(2ε,
√
ε) ∼ α0

�(2ε,
√
ε) ,

as ε, η/ε→ 0. Thus one obtains the first asymptotic relation β ∼ βλ in Lemma 11.7. For the second
asymptotic relation, since we already have from Lemma 4.7 in [GPS13] that β̂ ∼ β, we only need
to check that β̂λ(η, ε) ∼ β̂0(η, ε) as ε, η/ε → 0. This is done in the same manner as β ∼ βλ, i.e.,
by first relying on an approximation such as (11.4), and then using the proof of Lemma 8.4 (the
additional condition that U0 = 1 is handled while following the proof of Lemma 8.4, namely if from
ωη(0) to ωη(λ) one passes from U0 = 0 to U1 = 1, it also means that a pivotal point has been
used, as in the double induction proof of Lemma 8.4). This finishes the proof of Lemma 11.7 and
Theorem 11.5.

Remark 11.9. Let us end this section by pointing out that the simple Markov processes t 7→ ω∞(t)
and λ 7→ ω∞(λ) are not Feller processes! Indeed it is not hard to build two configurations ω ∼ P∞
and ω′ ∈ H with dH (ω, ω′) � 1 which are such that their pivotal measures are very far apart
which then induces very different dynamics starting from these initial points. Not being Feller does
not exclude the possibility of being a strong Markov property, but it certainly makes it harder to
prove:

Question 11.10. Is t 7→ ω∞(t) a strong Markov process?
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12 Noise sensitivity and exceptional times

We will start by establishing in subsection 12.1 an analog in our continuous setting of the noise-
sensitivity results obtained for dynamical percolation in [GPS10]. We will then use the noise-
sensitivity of the process t 7→ ω∞(t) in order to obtain the a.s. existence of exceptional times for
which there is an infinite cluster in ω∞(t).

12.1 Noise sensitivity for t 7→ ω∞(t)

Theorem 12.1. For any Q ∈ QN, there is a constant C = CQ <∞ s.t. for any t ≥ 0,

Cov[1�Q(ω∞(0)), 1�Q(ω∞(t))] ≤ CQ t−2/3 .

Proof: From the estimates (7.6) or (8.7) in [GPS10], one easily obtains that

lim sup
η→0

Cov[1�Q(ωη(0)), 1�Q(ωη(t))] � t−2/3 .

Now, following the same proof as in Theorem 9.5 and Proposition 9.6, one can prove that

P
[
ωη(0) and ωη(t) ∈ �Q

]
−→
η→0

P
[
ω∞(0) and ω∞(t) ∈ �Q

]
.

Note that the difficulty here, as in Theorem 9.5, is to handle the possibility that there would be a
sudden change before/after t, which would be almost invisible under the Skorohod distance from
Definition 4.2.

Similarly, one has the following radial decorrelation result:

Theorem 12.2. For any 0 < r < R, let fr,R be the indicator function of the event A1(r,R) defined
in subsection 2.5. There is a constant C <∞ s.t. for all 0 < r < R and for any t < r−3/4,

E
[
fr,R(ω∞(0))fr,R(ω∞(t))

]
≤ C α1(r, t−4/3)α1(t−4/3, R)2

≤ C r−5/48t−5/36 α1(r,R)2 (12.1)

This is proved along the same lines as the proof of Theorem 12.1. This relies in particular on a
two-scale version of Theorem 7.3. from [GPS10].

Remark 12.3. Theorem 12.1 hints that the Markov process t 7→ ω∞(t) should be ergodic. We
believe that this should indeed be the case, but in order to prove its ergodicity, we would need to
control the decorrelation (or noise-sensitivity) of events like �Q1 ∩�c

Q2
and the latter ones are not

monotone events which prevents us from using the results and techniques from [GPS10].

12.2 Exceptional times at the scaling limit

Theorem 12.4. Almost surely, there exist exceptional times t, such that there is an infinite cluster
in ω∞(t). Furthermore, if E ⊂ (0,∞) denotes the random set of such exceptional times, then E is
almost surely of Hausdorff dimension 31/36.
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Proof: In this proof, we will denote the radial event fr=1,R from Theorem 12.2 simply by fR. Let

XR :=
∫ 1

0 fR(ω∞(s))ds. By definition, we have E
[
XR

]
= α1(1, R) � R−5/48. As in [SS11, GPS10],

one has

E
[
X2
R

]
≤ 2

∫ 1

0
E
[
fR(ω∞(0))fR(ω∞(s))

]
ds

≤ 2C (

∫ 1

0
s−5/36 ds)α1(1, R)2

≤ C̃ E
[
XR

]2
.

By the standard second moment method, lim infR→∞P
[
XR > 0

]
> 0. Since the events {XR > 0}

are decreasing in R, by countable additivity, one obtains

P
[
∩R{XR > 0}

]
> 0 . (12.2)

If for each radius R, the random set of times {t ∈ [0, 1], s.t. ω∞(t) ∈ A1(1, R)} was a.s. a compact
set, then the estimate (12.2) would readily imply the existence of exceptional times. Unfortunately,
our process t 7→ ω∞(t) is càdlàg . One can still conclude using a similar trick as in the case
of (discrete) dynamical percolation: since t 7→ ω∞(t) is càdlàg , let {t+i }i≥1 ∪ {t−i }i≥1 denote its
countable set of discontinuities in [0, 1], where each discontinuity is marked + if ω∞(t−) ≤ ω∞(t+)
(i.e. the pivotal point responsible for the discontinuity turned open) and is marked − otherwise.
Let us consider the trajectory t 7→ ω̃∞(t) which is identical to t 7→ ω∞(t) outside of

⋃
t−i and on⋃

t−i , is defined by ω̃∞(u) := limδ→0 ω∞(u− δ). For this process, one has decreasing compact sets
as R increases and the above proof leads to the existence of exceptional times for t 7→ ω̃∞(t). Since
by construction ω∞(t) ≤ ω̃∞(t), it could still be that there are exceptional times for ω̃∞(·) but not
for our process ω∞(·). The purpose of Lemma 3.2. in [HPS97] is to overcome this problem in the
classical (discrete) model. It turns out that one can adapt the proof of this Lemma 3.2. to our
present setting as follows. Divide the plane R2 into disjoint squares Qn,m = [n, n+ 1)× [m,m+ 1).
Let {tm,nj } ⊂ ⋃{t−i } be the set of discontinuities which correspond to a pivotal point in Qn,m.
Since the event of having an infinite cluster in ω∞(t) is independent of what happens in each fixed
square Qn,m, by countable additivity of {tm,nj }, one concludes that a.s. there are no times tm,nj s.t.
ω̃∞(tm,nj ) has an infinite cluster. This implies that if t 7→ ω̃∞(t) has exceptional times, then all of
these a.s. arise outside of the discontinuity points.

Finally, the fact that E is a.s. of Hausdorff dimension 31/36 follows in a classical way from
the t−5/36 estimate in the correlation bound (12.1) as it is explained for example in [SS10] or in
[GPS10].

It was pointed out at the end of [HMP12] that although the dimension of exceptional times
coincides for the discrete and the continuum dynamical percolation processes, the tail behaviour of
the time until the first exceptional time seems to be different: it is proved to be exponentially small
for the discrete process, but is conjecturally only subexponential in the scaling limit.

13 Miscellaneous: gradient percolation, near-critical singularity,
Loewner drift

13.1 Gradient percolation

In [N08b], the author considers the following gradient percolation model: in the domain [0, 1]2,
consider an inhomogeneous percolation model on 1

nT ∩ [0, 1]2 with parameter p(z) := Im (z), z ∈
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[0, 1]2. As the mesh 1
n → 0, it is straightforward to check that there is an interface between open

and closed hexagons which localizes near the horizontal line y = pc = 1/2. This interface between
the two phases is called the front. Various critical exponents of this front are studied in [N08b]; in
particular, its typical distance from the midline was proved to be f(n)/n = n4/7+o(1)/n; the exact
definition for f(n) should be

f(n)

n
= r

(
1

f(n)

)
. (13.1)

It is furthermore conjectured in [N08b] that the front properly renormalized should have an in-
teresting scaling limit, which is what we wish to discuss now. More than just the front itself, we
can also prove the existence of a scaling limit for the entire gradient percolation configuration. See
Theorem 13.2 below. Then, the front itself will be a measurable function of this scaling limit, in the
same way as the SLE6 trace is measurable w.r.t ω∞ ∈H , as proved in [GPS13, Corollary 2.13].

Before stating a theorem, just like in near-critical percolation, one needs to renormalize gradient
percolation in a suitable manner:

Definition 13.1. For each η > 0, let ωgr
η be the percolation model on ηT with inhomogeneous

parameter p(z) = pc + −1/2 ∨ Im (z)r(η) ∧ 1/2. This ωgr
η is exactly a scaled and centered copy of

the above gradient percolation with η = 1/f(n), as follows from (13.1).

Theorem 13.2 (Scaling limit of gradient percolation). There is a random variable ωgr
∞ ∈H = HC,

the continuum gradient percolation, so that

ωgr
η

(d)−→ ωgr
∞ ,

as the mesh η → 0. Furthermore, this gradient percolation ωgr
∞ corresponds to the inhomogeneous

near-critical ωnc,φ
∞ (λ = 1) with φ(z) := Im (z) defined in Definition 10.1.

Proof. The proof is rather straightforward at this stage of the paper: it is enough to notice that
ωgr
η is well-approximated by ωnc,φ

η (λ = 1) with φ(z) = Im (z) and then to rely on the near-critical
version of Theorem 10.2 as well as on an easy generalisation of Proposition 9.6 to deal with the
convergence of the latter. We leave the details to the reader.

We end this subsection with the measurability of the front. First of all, from the proof of
Theorem 10.7, we have that a.s. for ωgr

∞, there is an infinite cluster in the upper half-plane and a
dual infinite cluster in the lower half plane, which suggests an interface (or front) γ∞ between these
two. Indeed, for any 0 < r < R, consider the subset of the plane

Fr,R := {z ∈ C, ωgr
∞ ∈ A2(z, r, R)} .

In other words, Fr,R is the set of points in C which have 2 arms (one dual, one primal) in the
Euclidean annulus A(x, r,R). Now, it is not hard to show using the proof of Theorem 10.7 that the
set

γ∞ :=
⋂

0<r<R<∞
Fr,R ,

is non-empty, and just like in [GPS13, Corollary 2.13], it is measurable w.r.t. the gradient percolation
scaling limit. We stress here that this is only the set of points in the front, without an ordering that
would give the front as a curve, although that should not be very hard, either. See also [GPS13,
Question 2.14].
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13.2 Singularity of ω∞(λ) w.r.t ω∞(0)

The main result in [NW09] may be stated as follows:

Theorem 13.3 ([NW09]). Let λ 6= 0. Consider the interface γη(λ) in the upper half-plane ηT ∩H
for the near-critical configuration ωnc

η (λ). Then, any subsequential scaling limit for {γη(λ)}η is
singular w.r.t. the SLE6 measure, the scaling limit of γη(0).

Note that in this paper we obtain a scaling limit for ωnc
η (λ), and exactly as in [GPS13, Corollary

2.13], the trace of the interface in the upper half plane is measurable w.r.t. this scaling limit.
However, we did not prove the measurability of the interface as a curve (see [GPS13, Question
2.14]), hence the subsequential limits in the above theorem are not exactly known yet to be an
actual limit. On the other hand, in the spirit of this theorem, we prove the following singularity
result:

Theorem 13.4. Let λ 6= 0, then the near-critical continuum percolation ωnc
∞(λ) is singular w.r.t.

ω∞ = ω∞(0) ∼ P∞.

Remark 13.5.

1. Note that such a result does not imply Theorem 13.3. Indeed it could well be that ωnc
∞(λ) and

ωnc
∞(0) are singular but their interfaces would look “similar”. In this sense, the singularity

result provided by Theorem 13.3 is much finer than ours.

2. This singularity result has been proved independently and prior to our work by Simon Aumann
in [Au13], but with a seemingly more complicated approach (ours being very short: see the
proof below).

Proof. We wish to find a measurable event A so that P
[
ωnc
∞(λ) ∈ A,ωnc

∞(0) /∈ A
]

= 1. Let us start
with the following lemma:

Lemma 13.6. Let λ > 0 be fixed. Let us denote by �u the crossing event which corresponds to the
quad Qu := [0, u]2. There is a constant c = cλ > 0 such that for any u ∈ (0, 1]:

P
[
ωnc
∞(λ) ∈ �u

]
≥ 1/2 + cu3/4 .

Proof of Lemma 13.6. Using Theorem 9.5, we have that

P
[
ωnc
∞(λ) ∈ �u

]
= lim

η→0
P
[
ωnc
η (λ) ∈ �u

]
.

Now, by using the standard monotone coupling, one has uniformly as u→ 0 and η/u→ 0:

P
[
ωnc
η (λ) ∈ �u

]
−P

[
ωη(0) ∈ �u

]
≥ (1− e−λ)η2αη4(η, 1)−1

∑
x∈ηT∩Qu

1

2
Pλ=0

[
x is pivotal for �u

]
≥ (1− e−λ)Ω(1)η2αη4(η, 1)−1u2η−2αη4(η, u)

≥ (1− e−λ)Ω(1)u2αη4(u, 1)−1

≥ C(1− e−λ)u3/4 ,
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where C > 0 is some universal constant. The second inequality is obtained by classical separation
of arms phenomenon plus RSW (see for example Chapter VI in [GS12]). The third inequality relies
on the multiplicativity property. The last one uses [SW01].

Consider now the square [0, 1]2 and for each n ≥ 1, divide this square into n2 squares of side
length 1/n. For each such square Q, one has by the previous lemma,

P
[
ωnc
∞(λ) ∈ �Q

]
= P

[
ωnc
∞(λ) ∈ �1/n

]
≥ cλ n−3/4 .

Let An be the event that there are at least n2

2 + cλ
2 n

5/4 squares in the above 1/n-grid which are
crossed horizontally. Since these events are independent, by a classical Hoeffding inequality, one
can find a constant aλ > 0 so that{

Pλ[An] ≥ 1− a−1
λ exp(−aλ

√
n)

P0[An] ≤ a−1
λ exp(−aλ

√
n)

Clearly, the event A :=
⋃
N≥1

⋂
n≥N An is measurable, and by the Borel-Cantelli lemma it satisfies

P
[
ωnc
∞(λ) ∈ A,ωnc

∞(0) /∈ A
]

= 1, as desired.

13.3 A conjecture on the Loewner drift

We present here a conjectural SDE for the driving function of the so-called massive chordal SLE6:
the Loewner chain of the scaling limit of the interface in near-critical percolation at p = pc + λr(η)
in the upper half plane, with open hexagons on the left boundary and closed ones on the right. As
we mentioned in Subsection 1.4, a general discussion of massive SLEκ’s, with focus on some special
values of κ other than 6, can be found in [MS10].

Since zooming in spatially is equivalent to moving λ closer to 0, we expect the driving function
to be of the form

dWt =
√

6 dBt + dAt , (13.2)

where Bt is Brownian motion and At is a monotone drift, increasing for λ > 0, decreasing for λ < 0.
In other words we expect Wt to be a submartingale when λ > 0. This property does not seem
to be obvious, and will be analyzed in the forthcoming [GP15]. We conjecture the following precise
form for the monotone drift At:

dAt = c′ λ |dγt|3/4 |dWt| = c′′ λ |dγt|3/4 |dt|1/2 , (13.3)

where |dγt| stands for the infinitesimal Euclidean increment length performed by the curve γt. Prior
to proving a scaling limit of massive SLE6 towards this Loewner chain, making sense of a Loewner
chain with such a degenerate drift already appears like a challenging mathematical problem. The
intuition behind this conjecture will be discussed in more depth in [GP15].
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[GPS10] Christophe Garban, Gábor Pete, and Oded Schramm. The Fourier spectrum of critical
percolation. Acta Math. 205, no. 1, 19–104, 2010.
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