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Abstract 18 

There is still no general solution to Eigen's Paradox, the chicken-or-egg problem of the 19 

origin of life: neither accurate copying, nor long genomes could have evolved without one 20 

another being established beforehand. But an array of small, individually replicating genes 21 

might offer a workaround, provided that multilevel selection assists the survival of the 22 

ensemble. There are two key difficulties that such a system has to overcome: the non-23 

synchronous replication of genes, and their random assortment into daughter cells (the units 24 
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of higher-level selection) upon fission. Here we find, using the Stochastic Corrector Model 25 

framework, that a large number (τ >= 90) of genes can coexist. Furthermore, the system can 26 

tolerate about 10% of replication rate asymmetry (competition) among the genes. On this 27 

basis, we put forward a plausible (and testable!) scenario for how novel genes could have 28 

been incorporated into early evolving systems: a route to complex metabolism. 29 

Highlights 30 

• We find that the non-synchronous replication of genes and their random assortment 31 

into daughter cells result in a threshold-like drop in the maintainable number of 32 

individually replicating genes. We term this phenomena the second error threshold in 33 

reference to the first error limit caused by mutations (cf. Eigen’s Paradox) 34 

● Multilevel selection can supports no less than a 100 genes: the larger the cells are, the 35 

more genes they can uphold 36 

● This system can mitigate a limited amount of competition asymmetry, further aiding the 37 

coexistence of genes 38 

1. Introduction 39 

It has been forty years since Manfred Eigen proposed the theory that mutations in 40 

molecular replication, a phenomenon considered conducive to the adaptation and speciation 41 

of the extant biota, could have posed a fundamental obstacle to the spontaneous formation of 42 

life (Eigen, 1971). The idea can be presented simply: early living systems lacking proof-43 

reading processes had to tolerate a high rate of mutation; such mutation pressure precludes 44 

sustaining information in long chromosomes; but shorter genomes are unable to store proof-45 

reading enzymes. For example, in the RNA world scenario “one cannot have accurate 46 

replication without a length of RNA, say, 2000 or more base pairs, and one cannot have that 47 
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much RNA without accurate replication” (Maynard Smith, 1979). This is Eigen’s Paradox 48 

which still troubles origin of life research: maintenance of information is a central topic of this 49 

field (Kun et al., 2015). 50 

The notion of the error threshold was put forward with DNA genomes and peptide 51 

enzymes in mind. The 2000 base long RNA in Maynard Smith’s example would code for an 52 

enzyme of length 600+. A quick look at UNIPROT yields DNA-dependent DNA polymerases 53 

(E.C. 2.7.7.7) that are smaller than this, albeit mostly DNA polymerase IV, which is quite 54 

error prone. On the other hand, reliable information replication evolved during the RNA 55 

world (Joyce, 2002; Kun et al., 2015; Yarus, 2011). The RNA world is the era in the history 56 

of Earth during which information was stored in RNA and catalysis was mostly done by RNA 57 

enzymes (ribozymes). At the moment there is no known general RNA-based RNA 58 

polymerase ribozyme. There is a ribozyme which can catalyse the template based 59 

polymerization of up to 98 nucleotides (Wochner et al., 2011), and given a very specific 60 

template a ribozyme can copy longer strands as well (Attwater et al., 2013) on par with its 61 

size of roughly 200 nucleotides. Still 200 nucleotides is a long sequence when we take 62 

prebiotic replication fidelity into account (<99%, (Orgel, 1992)). 63 

The error threshold, in the simplified treatment of John Maynard Smith (1983), is: 64 

ln /L s µ< , meaning that the maximum sustainable genome size ( L ) is less than the quotient 65 

of the natural logarithm of the selective superiority ( s ) of the sequence to be copied 66 

(‘master’) and the error rate ( µ ). Selective superiority is the ratio of the average Malthusian 67 

growth rates of selected sequences (here, only the master) versus the rest (here, its mutants). 68 

Let us say that the error rate is 0.01µ =  (Orgel, 1992). Based on the above inequality, this 69 

only allows the sustainment of sequences shorter than 100L <  monomers (with the standard 70 

assumption that ln 1s ≈ ). Thus the putative replicase ribozyme of 200 bases length (Wochner 71 

et al., 2011) seems to be too long. 72 
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Recent advances paint a brighter picture. An order of magnitude longer functional 73 

ribozymes can be maintained (with the error rate being equal) if the structure of the 74 

ribozymes, and the neutral mutations it allows, are taken into account (Kun et al., 2005; 75 

Szilágyi et al., 2014; Takeuchi et al., 2005). Second, it seems that intragenomic recombination 76 

may have shifted the threshold by about 30% (Santos et al., 2004). Third, the processivity of 77 

replication (i.e. the constraint that during template-based replication, nucleotides have to be 78 

inserted one by one into the growing copy) may have somewhat filtered against errors, 79 

provided erroneous insertions had slowed down replication (Huang et al., 1992; Mendelman 80 

et al., 1990; Perrino and Loeb, 1989): erroneous copies would have thus suffered from an 81 

inherent fitness disadvantage (Leu et al., 2012; Rajamani et al., 2010). It may also have 82 

alleviated the error threshold by about another 30%. 83 

While such a relaxed error threshold seems less problematic, the replication of whole 84 

genomes that could run a primitive metabolism is still out of reach. Ribocells (cells whose 85 

metabolism is run by RNA enzymes) require at least one ribozymes of each of the essential 86 

enzymatic functionalities to be considered viable: they can produce the biomass component 87 

necessary for growth and reproduction. Cells lacking even one of the functions cannot 88 

reproduce. Thus all information needs to be replicated, which can only be done if all 89 

ribozymes replicate individually. Individual known ribozymes are short enough to be 90 

faithfully copied (Szilágyi et al., 2014). However, if individual genes are replicated, they have 91 

individual growth rates inside the cell. Sequences having the highest growth rates will 92 

dominate the ribozyme population, and other genes will be lost (cf. the Spiegelman 93 

experiment (Kacian et al., 1972)). Thus while the error catastrophe can be overcome by 94 

replicating the whole set of genes required for the cell as individual replicators, it creates 95 

another problem, that of non-synchronous replication. How much information can be 96 
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integrated via the compartmentalization of individually replicating ribozymes? Is such a 97 

system complex enough to overcome the error catastrophe? 98 

The Stochastic Corrector Model (SCM) is a group selection / package model framework; it 99 

was developed to investigate the above compartmentalized system, which has the potential to 100 

solve the problem of information integration. Szathmáry and Demeter (1987) have shown that 101 

given a low number of replicators inside a cell having a far from optimal copy number 102 

distribution (the goal distribution can be arbitrary), stochastic separation of the genes into the 103 

daughter cells can ameliorate the copy number distribution of the parent cells. Previous works 104 

on the SCM have focused on cells with only two (Grey et al., 1995; Zintzaras et al., 2010) or 105 

three genes (Zintzaras et al., 2002). A few enzymes can coexist without a problem even 106 

without full compartmentalization, i.e. on surfaces (Boerlijst, 2000; Czárán and Szathmáry, 107 

2000; Hogeweg and Takeuchi, 2003; Könnyű and Czárán, 2013; Takeuchi and Hogeweg, 108 

2009). And in vesicle models the coexistence of a few enzymes was demonstrated (Hogeweg 109 

and Takeuchi, 2003; Takeuchi and Hogeweg, 2009). But, the maximal number of coexisting 110 

genes was not investigated except by Fontanari et al. (2006), who have shown that arbitrary 111 

number of genes can coexist, if their replication rates are the same and the population size is 112 

infinitely large. However, neither of these assumptions is realistic—and as we will show–both 113 

of them critically affect the outcome. 114 

Here we investigate how many independently replicating genes can coexist in a cell, 115 

despite the potential for information loss due to random assortment to daughter cells and non-116 

synchronous replication. Information loss due to mutations in individual ribozymes is not 117 

investigated here. We already know that the error threshold limit the amount of information 118 

that can be maintained, and including it now would hamper our ability to assess how many 119 

genes can coexist despite different replication rates and random assortment into daughter 120 

cells? We show that these also limit the sustainable length of information. To distinguish 121 
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these two sources of limitation, we term Eigen’s limitation ‘first error threshold’ and the 122 

limitation investigated here ‘second error threshold’. 123 

2. Methods 124 

We follow the dynamics of a population ( N ) of ribocells. The biomass of the cells is 125 

produced by an abstract metabolism requiring τ  different enzymatic functions. Ribozymes 126 

(catalysts) replicate individually and there could be more than one ribozyme of each type in 127 

the cell. The internal composition of the cell, i.e. the number of ribozymes and their 128 

distribution among the metabolic functions, determines the metabolic activity ( iR ), which in 129 

turn affects the growth and replication of the cell. Accordingly, a cell i  containing 130 

],1[ maxνν ∈i  independently replicating ribozymes distributed among the τ different genes 131 

each having ji,ν  copies ( ∑
=

=
τ

νν
1

,
j

jii ) has a metabolic activity
1 max

j i
i

j i

R
ετ τ ν ν

ν ν=

⋅ 
= ⋅ 

 
∏ . Thus we 132 

assume that each gene catalyses an essential reaction in the metabolic pathway, producing 133 

intermediers (e.g. monomers) for the replication of the ribozymes. We further assume that 134 

there is an optimal distribution in the copy number of the different ribozymes, which 135 

corresponds to the highest metabolic activity inside the cell. We arbitrarily assign this 136 

optimum to the most even distribution, where every different ribozyme (gene) is present with 137 

an identical number of copies. We also presume that the greater the size of the cell, i.e. the 138 

number of ribozymes it harbours, the faster its metabolic activity will be. An arbitrary 139 

exponent (ε ) weights these two components (evenness of distribution and ribozyme number). 140 

In pilot studies, we found that a selection focusing on the inner distribution is beneficial for 141 

the sustainability of the genome. In the studies to be presented we used 0.3ε = . 142 

The population dynamics is the following: a cell is chosen randomly, in proportion to its 143 

metabolic activity ( iR ); this cell gains one new ribozyme. Next, a ribozyme ( j ) is chosen 144 
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randomly from the ribozymes in the selected cell, proportionately to its replicase affinity ( ja145 

); this ribozyme is copied. The new ribozyme belongs to the same type and has the same 146 

replicase affinity as its parent. 147 

If the number of ribozymes inside a cell reaches a maximal number ( maxν ), then the cell 148 

splits into two. The ribozymes get into one of the daughter cells independently and randomly. 149 

The two new cells take the place of the parent cell and another one, which will perish, chosen 150 

randomly (with uniform probability): the population dynamics is a Moran process. Thus we 151 

assume constant population size, and fitness independent death-rate. 152 

Pilot studies have shown that 50 “generations”, i.e. 50N cell divisions, are enough for the 153 

system to reach equilibrium. 154 

The initial cells start with cell max / 2v  ribozymes, with each function (gene) represented 155 

evenly. 156 

3. Results 157 

Genes can coexist in the SCM, and the parameter range in which coexistence is possible 158 

increases with population size ( N ) (Fig. 1) and gene redundancy within the cell (Fig. 2), 159 

furthermore, the more equal the replication rates of the individually replicating genes, the 160 

more genes can coexist (Fig. 3). 161 

A larger population size allows more genes (functionally different ribozymes) to coexist 162 

(Fig. 1). This is not surprising, given the fact that an infinite population size guarantees 163 

coexistence (Fontanari et al., 2006). However, it is also important to know how infinity is 164 

approached. It seems that for most of the parameter space, an increase in population size has a 165 

meagre effect on cell viability. Thus, while it is possible to increase population size to achieve 166 

the coexistence of any number of genes, the additional population size required for it can be 167 

unrealistically large; e.g. nearly two magnitudes of increase in population size do not raise the 168 
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fraction of viable cell when 45τ > . Because of computational limits, we did most of our 169 

simulations with 1000N = . Thus our estimates are conservative, as increasing population 170 

size would allow for a slightly greater coexistence of replicators. 171 

 172 

Figure 1. Fraction of viable cells increases with population size. Darker and wider lines 173 
represent systems with more required functions (τ ). In all cases there are max 2160ν =  174 
ribozymes in the cells. All cells are viable if 18τ < , and none is viable if 45τ > . 175 
 176 

Given a number of genes that need to coexist there exists a redundancy (maximum ribocell 177 

size, which translates to more ribozymes of each type) that allows it. The transition between 178 

the ribocell size that precludes coexistence and which ensures a viable population is 179 

threshold-like (Fig. 2). Increasing the maximum number of ribozymes inside the cells, and 180 

with it the achievable redundancy for each gene, increases the fraction of viable ribocells. The 181 

increase is sigmoid in shape with a very steep increase at certain point. This point is the 182 

second error threshold, i.e. the redundancy below which given number of genes cannot 183 

coexist. Thus at any given ribozyme abundance, there is a maximum to how many genes can 184 

coexist. Reaching a higher maintainable ribozyme diversity requires an increase in the number 185 

of ribozymes a cell can harbour. As a good rule of thumb, the maintainable genetic diversity 186 

(number of genes) is equal to the square root of the maximum number of ribozymes. At 187 

1000N =  about a 100 different ribozymes can coexist if a cell can house 10,000 ribozymes 188 
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per cell. Once a population passes the error threshold and becomes viable, further increase in 189 

gene redundancy has negligible effect. 190 

 191 

Figure 2. Maximum gene diversity. The fraction of viable ribocells is displayed as 192 
function of the number of types (τ ) and the number of ribozymes per ribocell (ribocell 193 
size, ν ). Please note that the logarithm of the number of types and ribocell size is on the X 194 
and Y axes, respectively. 195 
 196 

The above investigations assume that each functionally different ribozyme (different 197 

genes) has the same affinity to the replicase, thus there is no competition asymmetry in the 198 

system. Three different scenarios are compared with the above results: (1) all affinities are the 199 

same, except for the affinity of one of the ribozymes, which is higher; (2) all affinities are the 200 

same, except for one, which is lower; and (3) affinities have two values, low and high, and the 201 

ribozymes of half (or about half in the cases of an odd number of genes) the genes have low, 202 

the other half have high affinity. Competition asymmetry causes the competitive exclusion of 203 

some of the genes, and consequently the loss of viability of the cells. When affinities differ as 204 

much as 10%, then in the case of a single competitively superior gene, coexistence is already 205 

lost at 12τ =  (Fig.3a). In the case when there is a single competitively inferior gene, a 206 

considerable number of genes can coexist. In this case, the results are only different from the 207 



10 
 

equal affinities scenario if 96τ ≥  (Fig.3a). The stochastic corrector can tolerate all of these 208 

scenarios when the difference in the affinities is even lower, i.e. 1% (Fig.3b) or 0.1% (Fig.3c). 209 

 210 

 211 

Figure 3. Mean fraction of viable cells with non-equal affinities to the replicase. 212 
"Equal" (solid square) 1.. 1a τ = ; "One lower" (open upward triangle) 1..( 1) 1a τ − =  and aτ a=213 

); "1:1" (solid circle) 1..( / 2) 1a τ =  and ( / 2) 1..a τ τ a+ = ; and "one higher" (open downward 214 

triangle) 1 1a =  and 2..a τ a= . (a) 0.9a = , (b) 0.99a = , (c) 0.999a = . Symbols represent 215 

means from 10 iterations. Other parameters g = 100000; max 25920ν = ; ε = 0.3. 216 
 217 

We found that the relationship between the effect of asynchronous replication and the 218 

genetic composition of the ribocell (cf. metabolic activity) depends on the maximal cell size 219 

(Fig. 4). While a larger ribocell promotes a more even composition for equal replicase 220 
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affinities, for an unequal distribution ( 0.9a = ) this leads to a more adverse composition 221 

instead. There seems to be an optimal protocell size for asynchronous replication where 222 

despite the differences in replicase affinity a mostly even composition is sustained. 223 

 224 

Figure 4. The effect of redundancy on asynchronous replication. In this minimal system of 225 

two genes ( 2τ = ) we compared replicase affinities of equal distribution ( 1 2 1a a= = ) with 226 

those of an unequal distribution ( 1 0.9a = , 2 1a = ). The two lines show a divergent trend with 227 

the growth of protocell size. Note the logarithmic scale. Parameters g = 100000; N = 1000, t = 228 

2, ε = 0.3. 229 

4. Discussion 230 

Non-synchronous replication and random assortment leads to a threshold-like decrease in 231 

the viability of ribocells as the number of type increases. Thus there is a limit to the enzymatic 232 

diversity that can be maintained in an ancient cell. We term this limit the second error 233 

threshold. Despite the second error threshold a sizable number of genes can coexist. Here we 234 

have shown that as many as 100 different genes (types) can coexist if internal copy number is 235 

moderately high and affinities do not differ by more than 1%. 236 
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4.1 Assumptions of the model 237 

The computational analysis presented in this paper focuses on the phenomena we call the 238 

second error threshold. For this reason, we have excluded mutations from our current model. 239 

We understand that excluding possible mutations in the enzymatic activities can affect our 240 

results. Increasing mutational rate can push the population over the error threshold (Kun et al., 241 

2015; Takeuchi and Hogeweg, 2012). Here we show that assortment load also leads to a 242 

threshold-like change in the viability of the population, independently of the first error 243 

threshold. Mutations can also produce parasites, sequences that do not contribute to biomass 244 

production, but which contribute to cell size. Thus cells might divide harbouring few enzymes 245 

and many parasites, leading to deficient daughter cells with a higher probability. On the other 246 

hand, such cells have a severe selective disadvantage, and they would divide at a slower rate 247 

compared to cell having few parasites. Efficient information integration despite the presence 248 

of parasites were demonstrated in the stochastic corrector model framework (e.g. (Zintzaras et 249 

al., 2002)), albeit for only 3 genes. The interplay of the two error thresholds will be revisited 250 

in a future study. 251 

We assume that the limiting factor in the metabolism of the cells is the number of enzymes 252 

present. Food scarcity is irrelevant, as it does not differentiate between the ribocells, thus 253 

would not affect selection. 254 

The employed fitness function assumes that an uniform distribution of every different 255 

ribozyme has the highest replication rate. It can be understood as either a linear (serial) set of 256 

all-essential reactions (for example, a chain of reactions that transform food molecule to 257 

monomers), or parallel pathways with equally important end-products (for example, the 258 

parallel production of all NTPs). In essence an arbitrary metabolic network can be employed, 259 

and the metabolic flux through the network can be used as a proxy for fitness (as used in 260 

(Szilágyi et al., 2012)). The added complexity of flux calculation can pose a technical 261 



13 
 

difficulty, as the computational requirement is already quite high, and would necessitate other 262 

simplifying assumptions.  263 

4.1. Minimal gene number of a ribo-organism 264 

Minimal genome sizes found in contemporary organism can be as low as 112 kbases: 265 

Nasuia deltocephalinicola (112 kbasee) (Bennett and Moran, 2013), Tremblaya princeps (139 266 

kbase) (McCutcheon and von Dohlen, 2011), Hodgkinia cicadicola (144 kbase) (McCutcheon 267 

et al., 2009), Sulcia muelleri (146 kbase) (Chang et al., 2015; McCutcheon and Moran, 2007; 268 

McCutcheon and Moran, 2010; Woyke et al., 2010; Wu et al., 2006), Carsonella ruddii (160 269 

kbase) (Tamames et al., 2007), Zinderia insecticola (208 kbase) (McCutcheon and Moran, 270 

2010). However, these symbionts of insects are barely alive in the sense that they lack genes 271 

for membrane and cell wall synthesis, lack transporters, most of carbon metabolism 272 

(McCutcheon and Moran, 2010) and some even lack some genes for DNA replication and 273 

translation. Other symbionts and intracellular parasites have genomes of around 600 kbases 274 

(Mysoplasma genitalium, Buchnera sp. (Islas et al., 2004)) and these minimalistic cells 275 

contain around 500-600 genes. However, the smallest possible genome size could have been 276 

even less (Luisi et al., 2006; Szathmáry, 2005): around 200 (Gil et al., 2004) (Table 1). These 277 

estimates pertain to cells having a DNA genome and peptide enzymes. A minimal ribo-278 

organism can do with less. Jeffares et al. (1998) suggested that the last ribo-organism had a 279 

genome of 10,000-15,000 base pairs. This estimate includes ribozymes involved in translation 280 

and RNA replication, but it lacks enzymes for the control of cell division and the estimates for 281 

intermediate metabolism is rather arbitrary. The last ribo-organism most probably had 282 

translation, but we are more interested in the first cells, and not in the ones just on the verge to 283 

switch to DNA genomes. 284 

A ribocell requires enzymes for the replication of its genetic material, chaperons for its 285 

ribozymes, maybe some enzymes that alters ribozymes much like post-translational 286 
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modification alters peptide enzymes. Cellular processes, such as transport, also need some 287 

RNA enzymes. Moreover, the NTPs (both as monomers for RNA synthesis and as energy 288 

molecules), coenzymes and lipids need to be produced. A good estimate for the minimal 289 

intermediate metabolism covering said functionalities is given by Moya and co-workers 290 

(Gabaldón et al., 2007), who suggested 50 enzymes to be the minimum. We have to note that 291 

this set also included enzymes for dNTP production, which a ribo-organism did not need. A 292 

conservative estimate of 88 ribozymes is afforded by this back of the envelope calculation 293 

(Table 1). Most probably even fewer ribozymes would be enough, as this set of 88 contains 294 

multi-subunit enzymes as well (Gil et al., 2004). We have estimated 60 to be a minimum 295 

(Szilágyi et al., 2012), a more detailed analysis of the minimal set of genes required for a 296 

ribocell will be proposed later (Kun et al. in prep). 297 

It is clear that even with 0.99 replication fidelity, a chromosome packed with 60 genes 298 

cannot be maintained due to the first error threshold. Sixty or even a hundred individually 299 

replicating genes can be maintained in randomly assorting ribocells. We thus conclude that 300 

the information required for a minimal ribocell can be propagated despite the second error 301 

threshold. 302 

Table 1. Estimate of a minimal gene set for a ribo-organism 303 

Function Number of gene in a 
DNA-peptide 

organism 

Number of gene in a 
ribo-organism 

Notes 

Replication of the 
genetic information 

16 16  

translation 106 0  
Enzyme folding, 
modification and 
translocation 

15 15  

Cellular processes 5 5  
Energetic and 
intermediary 
metabolism 

56 52 no need for dNTP 
production 

Total 198 88  
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4.3 Possible evolutionary route to complex metabolism 304 

Metabolisms having hundreds of enzymes and molecules do not appear at once. Most 305 

probably enzymes, and thus functions, were added one at a time (Szathmáry, 2007). A few 306 

enzyme can coexist on surfaces (Boerlijst, 2000; Czárán and Szathmáry, 2000; Hogeweg and 307 

Takeuchi, 2003; Könnyű and Czárán, 2013; Takeuchi and Hogeweg, 2009) as well as in 308 

vesicles (Hogeweg and Takeuchi, 2003; Szathmáry and Demeter, 1987; Takeuchi and 309 

Hogeweg, 2009; Zintzaras et al., 2002). How can we get from a few enzymes to nearly a 310 

hundred? The enhancement of metabolic capabilities afforded by more enzymes is surely 311 

selectively advantageous. On the other hand if the new enzyme cannot establish or coexist 312 

with the “old” ones, then this evolutionary step cannot be taken. Based on our results we can 313 

propose a possible evolutionary route to increasing metabolic complexity, i.e. more genes. 314 

Equal affinities to the replicator ensure that no replicator outcompete the others. Thus the 315 

process could have started by a few (even two) ribozymes with equal replication rates. Now 316 

let us assume that any novel enzyme has a lower affinity to the replicase than the already 317 

established ones, then this enzyme can establish in the system, even if its affinity to the 318 

replicase is lower by as much as 10% compared to the rest of the enzymes (cf. Fig. 3a). 319 

Difference in affinities could not be very high: 60% difference is too much for the 320 

maintenance of a mere 10 enzymes, which is still too few for a metabolism. However, new 321 

enzymes probably evolved from established ones, and thus probably had tag sequences 322 

compatible with the replicase. The system then can evolve to equalize all affinities (Kun 323 

unpublished results), in this case to increase the affinity of the new enzyme. The simultaneous 324 

addition of more enzymes drive the system to extinction, but the addition of a single one 325 

seems to be feasible. Thus enzymes can be added one after the other with the requirement of 326 

only slight difference in affinities to the replicator. 327 
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The proposed evolutionary scenario of gradual increase in metabolic complexity can 328 

progress till the coexistence is no longer possible due to internal redundancy (Fig. 2), which 329 

can be alleviated by increasing the cell’s size at division. Cell sizes do not need to increase to 330 

infinity or even to very high number: at a certain metabolic complexity replication efficiency 331 

and fidelity could increase to a level at which a chromosome can be replicated. Then 332 

integration of the genetic information a chromosome can evolve (Maynard Smith and 333 

Szathmáry, 1993). The chromosome, a major evolutionary transition (Maynard Smith and 334 

Szathmáry, 1995; Szathmáry, 2015; Szathmáry and Maynard Smith, 1995), is made possible 335 

by overcoming the first error threshold. An intermediate solution to the first error threshold is 336 

the individual replication of ribozymes, which introduces the second error threshold. The 337 

second error threshold is alleviated by controlling the distribution of chromosome to the 338 

daughter cells. 339 
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