
Seventh Hungarian Conference on Computer Graphics and Geometry, Budapest, 2014

A Geometry Model for Logarithmic-time Rendering

László Szécsi

Budapest University of Technology and Economics, Budapest, Hungary

Abstract

Complex geometries, like those of plants, rocks, terrain or even clouds are challenging to model in a way that
allows for real-time rendering but does not make concessions in terms of visible detail. In this paper we propose
a modeling approach called KRS, or kernel-reflection sequences, inspired by iterated function systems. KRS visu-
alization avoids expanding the procedural definition into polygons all along the rendering pipelines. The model is
composed of kernel geometries and reflection transformations that multiply them. We show that a distance function
can be evaluated over this structure extremely effectively, allowing for the implementation of real-time sphere trac-
ing in pixel shaders. We also show how the algorithm easily delivers continuous level-of-detail and minification
filtering. We discuss how exploiting screen-space coherence can enhance ray-casting performance. We propose
several techniques to hide symmetry that could be disturbingly obvious when viewing the models from certain
angles. In order to prove that the seemingly limited model can be used to realize various natural phenomena in
uncompromising detail without obvious clues of symmetry, we render trees, grass, terrain and rock in real-time.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism Fractals

1. Introduction

Geometries occurring in nature typically feature intricate de-
tail and great extents at the same time. They pose challenges
throughout both the modeling and the rendering pipeline,
from content creation to final visualization. The usual ap-
proach of modeling triangle meshes and rendering them
through incremental rasterization fails at both stages. First,
every leaf in a forest cannot be modeled manually. It has to
be scripted, thus already requiring a procedural description
of the geometry, and a way of expanding that description
to a visualizable representation. Second, the resulting geom-
etry can be too complex to be rendered in real-time even
with the immense triangle throughput of the latest graphics
hardware. That gives emergence to convoluted level of detail
techniques, which all need to address the issue of transition
between different triangle mesh representations.

The later in the pipeline the procedural description is ex-
panded, the less stages can prove to be a bottleneck. CPU ex-
pansion would require large amounts of geometry to be com-
municated to the graphics hardware. With geometry shaders,
this is no longer necessary, which has propelled the use of
procedural geometries in real-time applications to consid-

erable momentum6. However, a large number of triangles
would still need to be rasterized, and level-of-detail schemes
are still necessary.

In this paper, we propose a formally limited, but prac-
tically versatile procedural modeling and visualization ap-
proach that defers the expansion of the procedural geometry
to the final, pixel shader stage. In other words, we show that
ray tracing of the procedural geometry can be done in real-
time, at a computational complexity superior to rasterization,
and thus vastly outperforming incremental rasterization for
sufficiently complex geometries.

2. Previous work

IFS, or iterated function systems were conceived by
Hutchinson5. An IFS describes self-similar geometry by
specifying a set of functions mapping the self-similar com-
ponents to itself10. The geometry is the attractor of the it-
eration of the function system, meaning the geometry can
be approximated with arbitrarily small error by iterating any
initial bound point set. IFSs are capable of generating ge-
ometries of fractal dimensions, occasionally resembling nat-



Szécsi / Logarithmic-time Rendering

ural phenomena, but usually with an easily discernable pat-
tern.

CSG, or constructive solid geometry defines geometries
as results of regular set operations on point sets, which
are either specified in the same manner, or are primitives.
These primitives are usually given as implicit surfaces.
Self-similar, natural geometries can be generated by intro-
ducing circles in the construction graph, leading to cyclic
object-instantiation graphs, or CSG-PL-Systems2. Efficient
ray tracing can be performed by generating bounding objects
for self-similar components12.

F-rep7 defines objects as sets of points for which a func-
tion is non-negative. It supports set operations and recursion.

Sphere tracing was proposed by Hart3. It is an iterative
technique for ray intersection against a geometry for which
a distance function is known. This distance function must re-
turn a tight underestimation for the distance of a point and
the ray traced geometry, or, in other words, the radius of an
unbounding sphere 4 centered at the point. The algorithm
progresses by advancing a point along the ray with this dis-
tance, to the surface of the unbounding sphere.

Procedural models can be expanded to triangle meshes
in geometry shaders. Algorithms for L-systems8 and split
grammars have been discussed by Sowers9.

3. Kernel-reflection sequences

Let us start with self-similar geometry defined by an IFS.
For the attractor point set A it is true that:

A =
m−1∪
j=0

F jA,

where F j is a contractive, invertible linear transformation for
any j, and the number of component transformations is m.
This attractor can be obtained as a limit of the sequence:

Ai+1 =
m−1∪
j=0

F jAi,

A0 = K0,

where K0 is an arbitrary point set, which we will call a ker-
nel set. At this point, because of the contractiveness of the
operators, the limit is independent of the choice of K0. Later,
we will abandon contractiveness and this will not be true.
In practice, A is approximated as An with a suitably large n.
For all equations below, i ∈ {0, . . . ,n− 1} must be true un-
less otherwise noted. As we wish to use sphere tracing, the
kernel set will be defined by distance function k0(x), which
gives the geometric distance between point x and K0.

First, let us generalize this construction by allowing dif-
ferent linear transformations on different iterations. F j,i de-
notes the jth transformation operator for iteration i. Then,

without the loss of generality, we can assume that m = 2,
as the polyadic union can always be expressed as a compo-
sition of dyadic unions. Thus, the recursive formula for Ai
becomes

Ai+1 = F0,iAi∪F1,iAi.

For sphere tracing, an underestimation ai(x) for the dis-
tance between point x and Ai is required. As described by
Hart3, this can be obtained if the Lipschitz constants of the
transformations (denoted by LipF) are known.

ai+1(x)≤min
(

ai(F
−1
0,i x)LipF−1

0,i ,ai(F
−1
1,i x)LipF−1

1,i

)
,

a0(x) = k0(x).

The recursive computation of this formula for an(x) re-
quires 2n evaluations of k0(x), which means that the perfor-
mance would be exponential in n, and linear in the number
of generated kernel instances. Thus, the algorithmic com-
plexity of sphere tracing could be at best identical to incre-
mental rendering of the same geometry, but with a much
worse constant factor. It is also notable that ray tracing in
general has logarithmic average complexity11, but it is linear
in worst case, and recursively traversing subdivision hierar-
chies makes it ill-fit for GPU processing.

If bounding hulls are known, then bounds for ai(F
−1
0,i x)

and ai(F
−1
1,i x) can be obtained, and the performance can be

significantly improved by prioritization and lazy evaluation
of recursion branches. However, we aim for complete, un-
conditional elimination of the recursion in order to get an
algorithm that has linear complexity in n, and thus logarith-
mic complexity in the number of kernel instances. Such an
algorithm can be implemented as an iteration, effectively ex-
ecutable on graphics processors. To those ends, we drasti-
cally limit the transformations we can use. Let F0,i always
be identity and F1,i ≡Ri, a reflection on the plane of equa-
tion mi ·x−ci = 0. We always choose mi to have unit length,
thus the value of mi ·x− ci also gives the signed distance of
point x to the plane. The operator Ri means reflection on this
plane.

Rix = x−2(mi ·x− ci)mi.

The Mi operator denotes the reflection of a direction vector:

Miω = ω−2(mi ·ω)mi.

Both the indentity and reflection transformations are
isometries, thus their Lipschitz constants are unity. Identity
and reflection are not contractions, and the sequence is di-
vergent. The kernel geometries are preserved at their origi-
nal size and detail. Increasing n will increase the extents of
the set. Now, the sequence of attractor iterations is as simple
as:

Ai+1 = Ai∪RiAi,



Szécsi / Logarithmic-time Rendering

x

plane of

reflection

L
i

ℜ
i
L
i

unbounding

sphere

+

Figure 1: The distance of the closest point and its reflected
image.

A0 = K0.

We further assume that

mi ·x− ci > 0−→ x /∈ Ai,

mi ·x− ci ≤ 0−→ x /∈RAi.

This means that the geometry is composed of two disjoint
parts on the two sides of the mirror plane, which are reflected
images of each other (see Figure 1). We call this the assump-
tion of kernel separation. A simple test can tell which part
is at less distance to point x. We just need to determine if
the point is behind or in front of the mirror plane, that is,
whether mi · x− ci ≤ 0 . The closest point of the geometry
must be on the same side. (If it were not, the reflected im-
age of the closest point would be even closer, resulting in
contradiction.)

This construction allows only for reflection-multiplied in-
stances of the same, unscaled kernel geometry. While this
might be enough to model some natural phenomena, hier-
archies (like branches of a tree) and non-symmetric parts
are not covered. In order to remedy this, let us add a new
kernel set Ki at each iteration. These are defined by a se-
quence of possibly all different ki(x) distance functions,
where i ∈ {0, . . . ,n}. To emphasize the difference in con-
struction, we replace the notation Ai with Li, and call Li an
expansion level. These also form a finite sequence, where
Li+1 is recursively defined as:

Li+1 = Ki+1∪Li∪RiLi,

L0 = K0.

Thus, an expansion level consists of two symmetric in-
stances of the previous level, and an additional kernel set.

We call such a construct a KRS, or kernel-reflection se-
quence. Formally, it is an ordered pair of two finite se-
quences, one consisting of kernel sets, and another of reflec-
tion operators.

KRS = (K0, . . . ,Kn;R0, . . . ,Rn−1)

L
i+
1 \ K

i+
1

L
i

ℜ
i
L
i

x

unbounding

sphere

nearest point

found

actual

nearest

point
+

Figure 2: Clipped kernel part might influence the distance
estimate.

The distance function for a KRS is:

li+1(x) = min(ki+1(x), li(x), li(Rix)),

l0(x) = k0(x).

In order to evaluate the formula, we do not have to compute
all the terms. As Li and RiLi are known to be mirrored im-
ages, we can decide which distance is going to be smaller by
finding on which side of the mirror plane x is.

li+1(x) =
{

min(ki+1(x), li(x)) if mi ·x− ci ≤ 0
min(ki+1(x), li(Rix)) if mi ·x− ci > 0

Note that if the assumption of kernel separation does not
hold, with this decision we implicitly enforce it by clipping
the distance functions to the mirror plane. Therefore, we do
not need to take care of this assumption when picking ker-
nels or reflection planes. The returned value might be smaller
than the actual distance. In Figure 2, x is on the negative side,
so Li is closer. The clipped part of the kernel is also consid-
ered, making the underestimation somewhat less tight, but
still a conservative choice for sphere tracing. The iterative
algorithm to evaluate the distance is given in Algorithm 1.

Algorithm 1 Returns distance between x and the KRS.
1: function DISTANCE(x)
2: p← x
3: d← kn(p)
4: for i = n−1 downto 0 do
5: if p ·mi− ci > 0 then
6: p←Rip
7: end if
8: d←min(d,ki(p))
9: end for

10: return d
11: end function

4. Ray-casting

There are multiple options for the GPU visualization of a
KRS, practically any IFS visualization method could be gen-
eralized. Most prominently, kernel instance transformations



Szécsi / Logarithmic-time Rendering

can be computed in geometry shaders, and then kernel ge-
ometries rendered with geometry instancing. However, the
main motivation behind the construction of KRSs is that they
can be ray-traced with an iterative algorithm. Thus, in this
paper, we focus on visualization with ray-casting. A full-
viewport quadrilateral is rendered, and pixel shaders find the
intersection points using sphere tracing. The search is termi-
nated when the ray has passed through the scene or when
the computed distance falls below an error treshold level.
The value is inversely proportional to the camera depth, and
is set to assure that the final unbounding sphere, projected
onto the viewport, is smaller than a pixel. A higher tresh-
old level will, in practice, make the kernel geometries ap-
pear thicker, as points in close proximity are considered to
be members. Therefore, geometries at a large distance will
merge into smoother formations, loosing sub-pixel details.
This, combined with the smooth shading and texturing tech-
niques we describe in Sections 6.1 and 6.2, eliminates alias-
ing and achieves automatic, continuous level-of-detail.

4.1. Acceleration with unbounding spheres

The sphere tracing process can be accelerated if we ex-
ploit the screen-space coherence of the ray-casting prob-
lem. Shaders processing neighboring pixels will execute
very similar steps, at least in the beginning. These can be
avoided, if, in a cheap preprocessing step, we can find tighter
free distances to start sphere tracing from. Various algo-
rithms could be based on the idea that when an unbounding
sphere is found, the information might be useful for more
than one pixel. Unbounding spheres may be rasterized with
depth buffering suitably set up, or stored in a searchable data
structure and queried from final ray-casting pixel shaders.
We conjecture that any such method will produce a starting
distance field of practically similar quality, when the cost
compared to the full ray-casting itself has to be negligible.
We base this claim on the intuitive recognition that a free
distance map coarser than the viewport resolution can only
be useful in front of the first layer of depth. For those expen-
sive, and not uncommon rays that have passed by the geom-
etry closely, the map can give no more clues.

We implemented a scheme that divides the viewport into
tiles, and traces beams of primary rays that pass through
a tile. Sphere tracing progresses along the ray through the
center of the tile up to the last unbounding sphere that cov-
ers the complete solid angle of the beam (Figure 3). Then,
this sphere and a few more are stored for the tile, and used
when ray-casting in pixels of the tile. Care is taken to en-
sure that the union of all stored spheres, intersected by the
beam is convex as seen from the eye. Figure 4 depicts this
process. At the ray exit point on the last stored unbounding
sphere E, a new, tentative unbounding sphere T is generated.
The next stored sphere F must touch the intersection of the
two unbounding sphere shells, and its tangents there must go

ray
tile

beam

KRS

last unbounding sphere

to cover the beam

viewport

eye

Figure 3: Traversing a ray for a tile, up until the last sphere
that covers the beam.

E
T

ray
F

eye

eye-convex boundary

KRS

Figure 4: Finding an unbounding sphere that makes a con-
vex profile. (Note that the center of T has been placed further
away than the free distance for a more readable figure.)

through the eye. This acceleration scheme resulted in about
10-30% less rendering time.

4.2. Acceleration with procedural bounding geometry

Free distances for sphere tracing can also be found by ren-
dering bounding objects. Here, we can easily avoid the expo-
nential explosion, as a choice of level-of-detail is not critical.
Abrupt changes in the bounding geometry will not influence
the correctness of sphere tracing, and there are no popping
artifacts.

5. Techniques to hide symmetry

There are two features of a KRS that strain its credibil-
ity as a natural occurrence. Symmetry might be visible and
identical motifs are repeating. One countermeasure is that
non-symmetric kernel elements are added on every iteration.
More importantly, planes of reflection should be selected so
that the eye can only be near to a few of them at the same
time. If the eye is not near to the mirror plane, the symme-
try of the 3D object will not be perceived on a 2D image.
Thus, it cannot happen that our geometry appears like an ob-
viously artificial fractal pattern from a viewpont. The unde-
sirable symmetry effects on the global scale are eliminated.
Figure 5 offers a comparison.



Szécsi / Logarithmic-time Rendering

Figure 5: Spheres reflected by aligned mirrors and un-
aligned mirrors.

Figure 6: A tree with isometric transformations and with
Lipschitz distortion.

Fighting symmetry on the local scale is more challenging.
There will always be a viewpoint from where two subsets
are visibly the reflected images of each other. This can only
be handled if the symmetry is indeed broken.

5.1. Combination of multiple KRSs

Where a single KRS cannot produce the desired effect of
natural disorder, the union of multiple KRSs can. When, in
a forest, there are three completely different trees between
the two that are mirror images of each other, symmetry is
undetected. Sphere tracing multiple KRSs can be effectively
implemented by maintaining the free distance along the ray
for all components, and always advancing the ray to the min-
imum. Compared to the single KRS case, the performance is
only decreased where different silhouettes overlap.

Procedural or projective texturing can also be considered
to be a way of combining features that exhibit periodicity
at different frequencies. We will detail techniques in Sec-
tion 6.2.

5.2. Distance distortion

The Lipschitz constant of KRS transformation functions is
unity, resulting in exact values for the distance (save for non-
separated kernels). By sacrificing some performance, we can
handle any Lipschitz transformation of the KRS geometry as
described by Hart 3. The resulting geometry does not have to
be symmetric any more (Figure 6).

Figure 7: Rock composed of planar kernels with flat and
smooth shading.

6. Combination with other real-time techniques

KRS ray-casting can only be a viable alternative to
geometry-shader produced geometries if it supports all the
incremental image synthesis techniques contributing to real-
ism.

6.1. Local shading

KRS kernels are solids with well defined surface normals.
The only difficulty is their transformation from kernel space
to world space. If bi is one if p ·mi− ci > 0 and zero other-
wise, then the complete transformation of the kernel is:

pworld =R
bn−1
n−1 ◦R

bn−2
n−2 ◦ · · · ◦R

b0
0 ·pkernel.

The normal ν must be transformed with the inverse transpose
of the transformation matrix. The inverse of a reflection is it-
self, transposition and inversion both turn the order of matrix
multiplication.

νworld =M
bn−1
n−1 ◦M

bn−2
n−2 ◦ · · · ◦M

b0
0 ·νkernel.

Unfortunately, the evaluation of this formula requires us ei-
ther to record decision variables bi during Algorithm 1, or to
maintain a product transformation as the iteration proceeds
in decreasing order of i. The latter solution is desirable, as
it scales better with increasing n. However, it is even more
efficient to transform the world space light vector (and view
vector, if necessary) into kernel space, and evaluate the shad-
ing there.

When kernels and mirrors are not selected so that kernel
separation is upheld, there is likely to be a visible discontinu-
ity of surface normals where the plane of reflection intersects
the mirrored geometry. These can be smoothed by interpo-
lating between normals or light directions near these planes.
This technique allows the generation of smooth surfaces
from a kernel as simple as an infinite plane. Figure 7 com-
pares flat and smooth shading of a surface composed of pla-
nar kernels. The shading algorithm complete with light di-
rection interpolation is listed as Algorithm 2. The lerp func-
tion performs linear interpolation between its first two argu-
ments weighted by the third argument clamped to unit range.



Szécsi / Logarithmic-time Rendering

Figure 8: Texturing with kernel parametrization on tree
branches and triplanar projection on terrain.

The etreshold distance influences the amount of smoothing.
To eliminate aliasing artifacts, it should be inversely propor-
tional to the camera depth. The shading algorithm runs only
once, after sphere tracing has found the intersection point.

Algorithm 2 Returns the diffuse shaded color of KRS at
point x with surface normal ν illuminated by light from di-
rection τ. r is the incoming radiance and d is the diffuse
BRDF coefficient.

1: function SHADE(x,ν,τ,r,d)
2: p← x
3: ω← τ
4: d← kn(p)
5: for i = n−1 downto 0 do
6: e← p ·mi− ci ◃ signed distance to plane
7: if e > 0 then
8: p←Rip
9: end if

10: ρ←Miω
11: ω← lerp(ω,ρ,e/etreshold +0.5)
12: d←min(d,ki(p))
13: end for
14: return d
15: end function

6.2. Texturing

The kernel solids are usually simple objects (e.g. torus seg-
ments) that lend themselves to easy u,v parametrization.
There are two cases when this solution is not feasible. First,
if we use kernels where such a parametrization is not trivial.
Second, if the kernels are simplistic, like infinite planes, that
even the smallest details of geometry are determined by the
reflection transformations. In this second case, texturing all
kernel instances with the same coordinates would produce
an extremely repetitive pattern, emphasizing symmetries un-
desirably. Procedural 3D or triplanar1 texturing is applicable
with convincing results (Figure 8). Procedural geometry and
procedural or wrapped textures combine to eliminate the ob-
servable repetitiveness of each other.

Figure 9: Sponge with ambient occlusion.

6.3. Depth composition

A ray-cast KRS can easily be integrated into scenes rendered
incrementally. The depth buffer can be used for early termi-
nation of rays. The ray casting shader can also output depth
if it is necessary, e.g. if transparent geometry is to be ren-
dered afterwards, or if shading is deferred.

6.4. Collision and destructibility

Based on the distance function and surface normal compu-
tation, a KRS can be integrated into any collision detection
and response scheme.

A KRS is not locally controllable. However, it is possible
to create empty zones by specifying unbounding spheres over
subsets. The regions of these spheres should be skipped dur-
ing sphere tracing. The subset of the KRS within these empty
zones can be substituted with instances of kernel geome-
try rendered incrementally. These solid instances can then
be subjects of any kind of physical simulation. E.g. when a
branch of a tree in a forest should break, the complete tree is
covered with an empty sphere, and an identical tree of rigid
body branches and leaves is built. This can then be manipu-
lated independently.

6.5. Global shading

Beyond sheer triangle throughput, KRS geometry has an-
other key advantage over incrementally rendered geometry.
Sphere tracing can not only be performed for eye rays, but
also for secondary rays. Shadows, reflections, ambient oc-
clusion (Figure 9), or any global illumination techniques
based on ray tracing can be implemented.



Szécsi / Logarithmic-time Rendering

7. Modeling

KRSs appear to be limited at what can be modeled with
them. At an iteration count and scale large enough for the
individual kernels not to be distinguishable, the geometry
tends to resemble the 3D equivalent of a Lévy C-curve. How-
ever, a forest from the air, a cloud in the sky, a hilly land-
scape, or a battered rock look exactly like that, from far
enough. In this section we are going to present a few ex-
amples of application.

7.1. Coral, terrain and rock

Those natural features that are traditionally well modeled
by IFS are good candidates for KRS. The variation in scale
that is lost because we only use isometries is compensated
by additional kernels and any statistical self-similarity in-
duced by the choice of our transformations. When model-
ing these geometries, the choice of kernel sets is also less
important: spheres or infinite planes are sufficient. The sep-
aration of kernels is neither desirable nor always possible.
Even the smallest details will be defined by the transforma-
tions. Smooth shading and procedural or triplanar texturing
greatly enhance the visual quality.

7.2. Tree and forest

A tree is a classic hierarchical structure, where the kernel
sets added at each iteration become crucial. The first few ker-
nels and reflections define the leaf geometry and the thinnest
twig. Then, every new expansion level doubles this geome-
try, with a reflection placed so that the two main branches
start from the same point. A new, thicker branch that ends
at the junction is added as the next kernel. For kernels act-
ing as branches, we used toroidal capsules, composed of a
torus segment and two capping spheres. The coefficients of
the distance functions are computed from intuitive model-
ing parameters. First, forking positions along one route from
the trunk to a twig end must be given. Branches along this
route will be the kernels. Then, a control point on every such
branch can be moved to set curvature. Two forking positions
and a control point define the generating circle of the torus.
Branch width gives the section radius. Planes of reflection
must be placed at forking positions, with editable normals.
A forest can be generated by adding more reflections (iden-
tical to those of the terrain, if it is also present) with empty
extra kernel sets.

8. Results

There were two distinct types of test scenes: ones with com-
plex kernels (trees, grass) and ones with simples kernels (ter-
rain, rock). In the following table we give how much time
it took (in microseconds) to trace a single ray on average,
versus the triangle count equivalent of the scene complexity
(how many triangles would be necessary to achieve the same
result.)

Figure 10: A groove of trees.

Triangle count Complex kernel (µs) Simple case (µs)

26 21
212 37
218 50 47
220 54 93
222 58 146
224 61 191
226 64 250
228 65 300
230 68 355
232 71 397

Increasing the expansion level by one resulted in an aver-
age increase of rendering time of 25 microseconds for com-
plex kernels and 3 microseconds for simple ones. We can
conclude that it is possible to achieve interactive speeds on
scenes equivalent to billions of triangles.

9. Conclusion

KRS rendering can be used together with incremental image
synthesis in real-time applications. It is capable of modeling
a wide range of natural geometries, without the possibility
of local control, but with fine details and large extent at the
same time. Features that could only be represented by bil-
lions of triangles, like grasslands or forests, can be rendered
in real time. Thus, KRS can add the desired natural richness
of detail to virtual worlds without the need for customized
level-of-detail techniques.

Animation of KRS geometries is left for future work.
While animation of the model parameters is unlikely to pro-



Szécsi / Logarithmic-time Rendering

duce credible motion, subtle changes to low-index trans-
formations might be acceptable. Time-dependent Lipschitz
transformations appear more promising.

10. Acknowledgements

This work has been supported by OTKA PD-104710 and
the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences.

References

1. Ryan Geiss. Generating complex terrains using the
GPU, chapter 1, pages 7–37. Addison-Wesley Profes-
sional, 2007.

2. M. Gervautz and C. Traxler. Representation and real-
istic rendering of natural phenomena with cyclic CSG
graphs. The Visual Computer, 12(2):62–74, 1996.

3. J.C. Hart. Sphere tracing: a geometric method for the
antialiased ray tracing of implicit surfaces. The Visual
Computer, 12(10):527–545, 1996.

4. J.C. Hart and D.J. Sandin. Louis H Kauffman t. Ray
Tracing Deterministic 3D Fractals. Computer Graph-
ics, 23(3), 1989.

5. J.E. Hutchinson, Dept. of Mathematics, and University
of Melbourne. Fractals and Self Similarity. University
of Melbourne.[Dept. of Mathematics], 1979.

6. H. Nguyen. Gpu gems 3. Part I - Geometry. 2007.

7. A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko.
Function representation in geometric modeling: con-
cepts, implementation and applications. The Visual
Computer, 11(8):429–446, 1995.

8. P. Prusinkiewicz and A. Lindenmayer. The algorithmic
beauty of plants. Springer-Verlag New York, Inc. New
York, NY, USA, 1990.

9. B. Sowers, T. Menzies, T. McGraw, A. Ross, and W.V.
Morgantown. Increasing the Performance and Realism
of Procedurally Generated Buildings. 2008.

10. L. Szirmay-Kalos. Számítógépes grafika. Computer-
Books, Budapest, 1999.

11. L. Szirmay-Kalos and G. Márton. Worst-case versus
average-case complexity of ray-shooting. Journal of
Computing, 61(2):103–131, 1998.

12. C. Traxler and M. Gervautz. Efficient ray tracing of
complex natural scenes. Proceedings Fractals, 97,
1979.


