
Seventh Hungarian Conference on Computer Graphics and Geometry, Budapest, 2014

Hatching Animated Implicit Surfaces

László Szécsi and Ferenc Tükör

Budapest University of Technology and Economics, Budapest, Hungary

Abstract
This paper presents a highly parallel algorithm for the stylized, real-time display of fluids and smoke. We use
metaballs to define a fluid surface from a particle-based fluid representation, but instead of the costly complete
reconstruction of this surface, we only trace the motion of random seed points on it. Hatching strokes are extruded
along the lines of curvature. We propose methods for hidden stroke removal and density control that maintain
animation consistency.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image Genera-
tionLine and curve generation

1. Introduction

Hatching is an artisitic technique that is often emulated in
stylistic animation. Implicit surfaces are becoming increas-
ingly important in real-time applications for visualizing flu-
ids simulated by particle-based methods. Thus, we aim to ex-
tend real-time hatching to deforming implicit surfaces, and
specifically to metaballs. In addition to enabling fluid render-
ing in hatching-stlye NPR, we also consider this approach a
more feasible alternative to expensive polygonization12, 18,
ray casting15, 3, or screen-space filtering20, when visualizing
scientific isosurface or fluid simulation data.

2. Previous work

In pencil drawings artists convey the shape and illumina-
tion of objects with the density and orientation of thin hatch
lines23, 7. To mimic this, we should define a density and a di-
rection field in the image plane that is as close as possible
to what an artist would use. Density is influenced by illu-
mination, while the direction field is determined either by
the principal curvature directions6, the tone gradient10, or in
case of animation, the direction of motion.

Hatch strokes should appear hand-drawn, with roughly
similar image-space width, dictated by brush size, but they
should also stick to surfaces to provide proper object space
shape and motion cues. Hatches can be generated into tex-
tures and mapped onto animated objects, with level-of-detail
mechanisms to approximate image space behavior17. In ab-

sence of surface parametrization, this approach is not appli-
cable to implicit surfaces.

Hatch strokes can be generated directly in image
space9, 11. In order to avoid the disturbing shower door effect,
lines can be moved along with an optical flow or image space
velocity field, but placing new strokes on emerging, previ-
ously non-visible surfaces still poses problems. Especially if
strokes are long, following curvature or feature curves of ob-
ject surfaces, they should maintain this even when only tiny
fractions have become visible. This cannot be assured when
only using image space information. For implicit surfaces,
it is often prohibitively expensive to render a full image, or
even to find isosurfaces in some pixels.

Several works13, 19 proposed the application of particles or
seeds attached to objects, extruding them to hatch strokes in
image space. The key challenge in these methods is the gen-
eration of the world-space seed destribution corresponding
to the desired image-space hatching density. This approach
is well-suited to implicit surfaces.

Much effort was directed at rendering implicit surfaces,
esp. metaballs photorealistically in real time, based on ray
casting8. This is computationally demanding as it requires
a high number of field function evaluations to find the visi-
ble isosurface in every pixel. The stylisation of the result is
straightforward only with image-space techniques, as no sur-
face parametrization or visibility-independent object-space
shape information is extracted.

Several apects of stylized rendering of implicit surfaces

Szécsi and Tükör / Hatching Animated Implicit Surfaces

have been studied. Brazil et al.22 use seed points to gener-
ate render points on isosurfaces. They require the user to
edit seed point distribution manually, excluding application
for deforming surfaces. Elber5 proposed the approach of first
obtaining a Euclidean-space on-surface uniform point distri-
bution, then extruding strokes along symbolically computed
principal curvature directions25, 16. For the generation of uni-
formly distributed points on implicit surfaces, they refer the
reader to Witkin24, who proposes an adaptive resampling of
deformed implicit surfaces, for purposes of sculpting, by the
means of repulsion forces, fissioning and killing operating
on a set of floater particles. Kooten et al.21 employ a similar
concept more specifically for isosurface rendering of meta-
ball models. Both solutions require a full self-spatial join
on surface particles to compute repulsion forces, and allow
particles to float on surfaces. We consider this detrimental
for our purpose of hatching stylization, as hatch lines not
moving with the surface could provide inappropriate mo-
tion cues. A rejection-based density control approach from19

does not require repulsion forces to achieve desired distru-
bution.

3. Implicit surfaces and metaballs

An implicit surface is defined as an isosurface at value L of
field function f (x) with the implicit equation f (x) = L. The
gradient g(x) is ∇ f (x). Gaussian and mean curvatures K and
H, the principal curvatures κ1 and κ2, principal curvature
directions t1, t2 can be computed1 using the Hessian H(x)
(see in Appendix A). Where the determinant D = H2 −K is
close to zero, the principal curvatures are not well defined,
and we regard the surface point as umbilical.

Metaballs14, 2 constitute a special case where the fluid is
represented by a number of balls or atoms as

f (x) =
M−1

∑
j=0

f j (x) =
M−1

∑
j=0

ρ j
(∥∥x−a j

∥∥) , (1)

with M as the number of atoms, ρ j the generator of ra-
dial basis function f j(x) for an atom centered at a j. If
∃R j ∈ R : ∀r > R j : ρ j(r) = 0, then we call R j the effec-
tive radius of atom j. The gradient g(x) and Hessian H(x)
can be computed as sums of atom gradients g j(x) and atom
Hessians H j(x). See Appendix B for formula derivations for
popular radial basis functions. When atoms are animated,
they have velocity q j(t) at time instance t.

Seeds are particles that we move along the deforming iso-
surface. The velocity vk for a seed at position sk is found as21

(see Appendix C for details):

vk = vfl
k− (2)

g(sk)
[
vfl

k ·g(sk)+(f (sk)−L)Φ+∑M−1
j=0 g j(sk) ·q j

]
∥g(sk)∥2 ,

where the flow velocity vfl
k is:

vfl
k =

∑M−1
j=0

∥∥g j(sk)
∥∥q j

∑M−1
j=0

∥∥g j(sk)
∥∥ .

4. The algorithm

Our algorithm moves seeds along a metaball surface similar
to21, applies a screen-space approximate version of the den-
sity control approach from19, and extrudes textured triangle
strips along principal curvature directions. We propose a so-
lution for the seed visibility problem based on the idea em-
ployed by variance shadow maps4. The algorithm performs
the following steps in every frame of an animation:

1. Seed initialization.
2. Seed animation.
3. Seed filtering by visibility testing and rejection.
4. Curve extrusion from seeds.
5. Triangle strip extrusion from curves.
6. Stroke weighting and rendering.

Along the process, various weighting factors—wprox for
proximity to isosurface, wage for age , wvis for visiblity, wrej

for density control by rejection—for seeds are computed.
The product of these wΠ is used in the final rendering step
for opacity weighting, with the optimization that seeds with
zero weight need not to be extruded into hatch strokes. The
weight without density control, wpre = wproxwagewvis is used
for estimating pre-rejection density.

When seeds are initialized, they are placed randomly
on atom-centered spheres within the effective radius. They
are not guaranteed to be on the compound isosurface, and
the isosurface-projected distribution might not be uniform.
Those requirements are to be achieved by consequent seed
animation and rejection steps, over the course of several
frames. Seed points are re-initialized after a fixed lifetime
to avoid excessive clustering. Seed point ages are evenly
distributed, so that only a small percentage of seeds are re-
initialized in every frame. Weight wprox is computed as a
smooth step function on the difference of the filed value at
the seed point and the desired isosurface. This is to eliminate
seeds not yet converged to the surface. Weight wage fades to
zero at the beginning and the end of the seed lifetime to avoid
suddenly appearing and disappearing hatch lines.

Seed point animation is based on the technique proposed
by21, without using repulsion forces to achieve uniform den-
sity, thus eliminating the need for a self-spatial join on seeds.
Seed animation according to Equation 2 requires the field
value and the gradient. We compute these, and also the world
space stroke direction along the isosurface. The computa-
tion of the stroke direction involves first finding the pure and
mixed second derivatives forming the Hessian, the principal
curvatures and curvature directions, the determinant D indi-
cating whether the seed is at an umbilical point, the cosine
of the view angle cosΘ indicating whether the seed is near a

Szécsi and Tükör / Hatching Animated Implicit Surfaces

silhouette, and the local illumination normalized to a desired
tone V at the seed.

Generally, the stroke direction is the principal curvature
direction of the isosurface, but near umbilical points, we em-
ploy a custom direction, obtained as the cross product of the
surface normal and a per-atom direction vector. The choice
of this per-atom vector might be random, or subject to artis-
tic consideration. In order to produce simple outlines, a dif-
ferent direction scheme is applied to lines near the silhou-
ette: the stroke direction there is perpendicular to both the
view direction and the surface gradient (see Figure 1). The
three direction schemes are combined based D and cosΘ, so
that there are no abrupt changes in the stroke direction. For
any direction t, the corresponding curvature κ can be found
as κ = κ1 (t · t1)

2 +κ2 (t · t2)
2 .

Seed points have to pass two filters to see if they should
be extruded into hatch strokes. The first is the visibility test
needed to decide if the seeds are seen from the camera.
For this purpose, we render all seeds as isosurface-oriented
billboards into a low-resolution buffer, outputting fragment
depths and their squares. Using the idea of variance shadow
maps4, this low-resolution depth map is heavily filtered by
two-pass separable Gaussian filtering. The resulting approx-
imate variance depth map can be used for a smooth and le-
nient rejection of hidden seeds, producing visibility factor
wvis. As we are emulating the hand-drawn style, the error—
from approximating the isosurface with billboards, using a
low-resolution map, agressive filtering, and testing for visi-
bility only at seeds—is not only acceptable, but welcome.

The second rejection step is to achieve an illumination-
dictated screen space density of seed points (Figure 2). The
full cover density ϒfull is an artistic parameter that specifies
the seed density corresponding to surfaces devoid of illumi-
nation. This, modulated by seed tone Vk gives the desired
on-screen density near a seed. Let us refer to the local den-
sity of all screen-projected seed points (weighted by wpre) as
ϒpre. The ratio of Vkϒfull/ϒpre gives the percentage of seed
points to be kept. If all seed points have a random normal-
ized priority value pk, then those with priorities above the
desired percentage should be rejected. The ϒpre density is
approximated by rendering all visible seeds, extruded into
approximate hatch strokes, with additive blending, weighted
by wpre into a low-resolution buffer, and performing heavy
filtering to eliminate rasterization artifacts. Note that what
we get is not exactly the density of seeds, but an approximate
density of hatching coverage. Thus, it helps to eliminate not
only the clustering of seeds, but also the clustering of aligned
strokes. Weight wrej is computed as a smooth step function
of Vkϒfull/ϒpre − pk. Thus, rejection is performed smoothly,
thus avoiding temporal visual artifacts, i.e. suddenly disap-
paring, appearing, or flickering hatch lines.

The seeds surviving visibility testing and rejection are ex-
truded into curves. For short strokes, it is sufficient to use the
local curvature at the seed, but longer lines require integra-

tion along the isosurface. In the latter case, visibility testing
has to be performed for all samples. Curves are extruded into
triangle strips to a uniform image space width. This width,
and also the length of strokes, is an artistic parameters.

In the final rendering step the stroke is textured with an
artist-drawn stroke image, with weights applied as opacity
modifiers. We only discard the seeds if the weight would
indeed be zero.

5. Implementation

The steps of our algorithm are implemented in five passes,
depicted in Figure 3.

seed

data

seed

animation

atom

data

isosurface

depth

depth

splatting

Gaussian

blur

pre-rejection

stroke density

stroke

extrusion

Gaussian

blur stroke

extrusion

with

rejection
frame

buffer

Figure 3: Passes of the implementation.

The first pass performs seed animation. All seed data is
stored in textures used as data tables, where rows correspond
to atoms, and the elements of the rows are individual seed
points. Aging and re-initialization of seeds is performed by
a rotating pipeline. In fact, in every texture row, seed at-
tributes are shifted out to the right and reinitialized seeds
shift in from the left, at a constant rate. The textures are also
shifted vertically, to account for newborn and dying atoms,
if so dictated by fluid simulation. For computation of quan-
tities derived from the field function we used a regular grid
space subdivision scheme to access relevant atoms.

The second pass produces the variance depth map of the
isosurface to be used for a visibility filtering. Billboards are
only extruded for seeds already converged to the surface to
avoid unnecessary occlusion by seeds that are still trying to
find their place. The depth values are blurred using a Gaus-
sian filter, in accordance with the VSM technique, eliminat-
ing jagged edges in the depth map that could cause flickering
hatch strokes in the final image.

The fourth pass is used to produce an image of ϒpre

values. These are needed for rejection of seeds later, to
achieve uniform screen space density. It extrudes hatch
strokes from all visible seed points, and applies the same
opacity weighting to them—for visibility, age and proximity
to the isosurface—, as would be when rendering on-screen
strokes. Rejection for density, however, is not applied, since
the goal is to approximate the hatcing density from all visi-
ble seeds. After visibility determination and curve extrusion,
the hatch strokes are rendered, given color and opacity val-
ues that smoothly fall off towards the edges of the strokes.
The output of this pass is rendered to a texture, using addi-
tive blending to generate high density values for high den-
sity areas on the screen.The ϒpre density values also need to

Szécsi and Tükör / Hatching Animated Implicit Surfaces

Figure 1: Hatching of an LSD molecule discarding seeds near silhouettes (left) and rotating strokes to produce outlines (right).

Figure 2: Uniform hatching of an LSD molecule with and without illumination.

be blurred, to avoid rasterization artifacts caused by jagged
edges of approximate hatch strokes.

In the final pass, the process of rejection and opacity
weighting based on visibility and hatch stroke extrusion is
the same as it was during rendering the ϒpre density. In addi-
tion, this pass also weights seed points using the ϒpre values,
and illumination values calculated on the fly, before extrud-
ing the hatch strokes themselves. If the compound weight of
the seed is positive, the strokes are extruded, textured, and
opacity is modulated by all weighting factors.

6. Results and future work

We ran our tests on a PC with an ATI5850 graphics card. At a
resolution of 1024×768, with 65K seeds, which we deemed
sufficient for rendering quality, and regardless of the number
of atoms, we measured frame rates around 20 FPS.

Extruding long hatch curves requires several curvature
samples on the isosurface, and as curves travel into zones
of different curvature characteristics they tend to cross each
other. Density estimation at seeds is also less accurate in
this case. Therefore, we wish to investigate the possibility
of using several linked seeds points for every hatch curve.
Another limitation of the method is that the seed density
cannot exceed that provided by rendering all seeds at unit
weight. This is made worse if the distribution of seed points
gets uneven because of seed motion. Thus, we plan to add
seed fissioning and killing to improve performance and pro-
vide much wider level-of-detail support without increasing
the seed count.

7. Acknowledgements

This work has been supported by OTKA PD-104710 and
the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences.

References

1. Alexander G Belyaev, Alexander A Pasko, and
Tosiyasu L Kunii. Ridges and ravines on implicit sur-
faces. In Computer Graphics International, 1998. Pro-
ceedings, pages 530–535. IEEE, 1998.

2. J.F. Blinn. A generalization of algebraic surface draw-
ing. ACM Transactions on Graphics (TOG), 1(3):235–
256, 1982.

3. N.K.R. Bolla. High quality rendering of large point-
based surfaces. Master’s thesis, International Institute
of Information Technology, Hyderabad-500 032, IN-
DIA, 2010.

4. William Donnelly and Andrew Lauritzen. Variance
shadow maps. In Proceedings of the 2006 symposium
on Interactive 3D graphics and games, pages 161–165.
ACM, 2006.

5. Gershon Elber. Interactive line art rendering of
freeform surfaces. In Computer Graphics Forum, vol-
ume 18, pages 1–12. Wiley Online Library, 1999.

6. Ahna Girshick, Victoria Interrante, Steven Haker, and
Todd Lemoine. Line direction matters: an argument
for the use of principal directions in 3d line drawings.
In Proceedings of the 1st international symposium on

Szécsi and Tükör / Hatching Animated Implicit Surfaces

Non-photorealistic animation and rendering, pages 43–
52. ACM, 2000.

7. A. Hertzmann and D. Zorin. Illustrating smooth sur-
faces. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages
517–526. ACM Press/Addison-Wesley Publishing Co.,
2000.

8. Y. Kanamori, Z. Szego, and T. Nishita. GPU-based
fast ray casting for a large number of metaballs. In
Computer Graphics Forum, volume 27, pages 351–360,
2008.

9. Yongjin Kim, Jingyi Yu, Xuan Yu, and Seungyong Lee.
Line-art illustration of dynamic and specular surfaces.
In ACM Transactions on Graphics (TOG), volume 27,
page 156. ACM, 2008.

10. Yunjin Lee, Lee Markosian, Seungyong Lee, and
John F Hughes. Line drawings via abstracted shading.
In ACM Transactions on Graphics (TOG), volume 26,
page 18. ACM, 2007.

11. Zoltán Lengyel, Tamás Umenhoffer, and László Szécsi.
Screen space features for real-time hatching synthesis.
In Proceedings of the 9th conference of the Hungarian
Association for Image Processing and Pattern Recog-
nition, KEPAF ’13, pages 82–94, 2013.

12. W.E. Lorensen and H.E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. In ACM
Siggraph Computer Graphics, volume 21, pages 163–
169. ACM, 1987.

13. Barbara J Meier. Painterly rendering for animation. In
Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 477–
484. ACM, 1996.

14. H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shi-
rakawa, and K. Omura. Object modeling by distribution
function and a method of image generation. The Trans-
actions of the Institute of Electronics and Communica-
tion Engineers of Japan, 68(Part 4):718–725, 1985.

15. T. Nishita and E. Nakamae. A method for display-
ing metaballs by using bézier clipping. In Computer
Graphics Forum, volume 13, pages 271–280. Wiley
Online Library, 1994.

16. Afonso Paiva, Emilio Vital Brazil, Fabiano Petronetto,
and Mario Costa Sousa. Fluid-based hatching for tone
mapping in line illustrations. The Visual Computer,
25(5-7):519–527, 2009.

17. Emil Praun, Hugues Hoppe, Matthew Webb, and Adam
Finkelstein. Real-time hatching. In Proceedings of the
28th annual conference on Computer graphics and in-
teractive techniques, page 581. ACM, 2001.

18. László Szirmay-Kalos, György. Antal, and Ferenc

Csonka. Háromdimenziós grafika, animáció és játék-
fejlesztés. ComputerBooks, Budapest, 2003.

19. T. Umenhoffer, L. Szécsi, and L. Szirmay-Kalos.
Hatching for motion picture production. In Computer
Graphics Forum, volume 30, pages 533–542, 2011.

20. W.J. van der Laan, S. Green, and M. Sainz. Screen
space fluid rendering with curvature flow. In Proceed-
ings of the 2009 Symposium on Interactive 3D Graphics
and Games, pages 91–98. ACM, 2009.

21. K. van Kooten, G. van den Bergen, and A. Telea. Point-
based visualization of metaballs on a GPU. GPU Gems,
3:123–148, 2007.

22. Emilio Vital Brazil, Ives Macêdo, Mario Costa Sousa,
Luiz Velho, and Luiz Henrique de Figueiredo. Shape
and tone depiction for implicit surfaces. Computers &
Graphics, 35(1):43–53, 2011.

23. Georges Winkenbach and David H Salesin. Computer-
generated pen-and-ink illustration. In Proceedings of
the 21st annual conference on Computer graphics and
interactive techniques, pages 91–100. ACM, 1994.

24. Andrew P Witkin and Paul S Heckbert. Using particles
to sample and control implicit surfaces. In Proceed-
ings of the 21st annual conference on Computer graph-
ics and interactive techniques, pages 269–277. ACM,
1994.

25. Johannes Zander, Tobias Isenberg, Stefan Schlechtweg,
and Thomas Strothotte. High quality hatching. In Com-
puter Graphics Forum, volume 23, pages 421–430. Wi-
ley Online Library, 2004.

Szécsi and Tükör / Hatching Animated Implicit Surfaces

8. Appendix A - curvature computation

All quantities are functions of x, which we will omit in the
notation for easy of reading.

The Gaussian curvature K is

K =− 1

∥g∥4

∣∣∣∣H g
gT 0

∣∣∣∣ . (3)

With normal n =− g
∥g∥ , and Laplacian ∆f = ∂2f

∂x2 +
∂2f
∂y2 +

∂2f
∂z2

the mean curvature H is

H =
1

∥g∥

[
nTHn−∆f

]
.

The principal curvatures are:

κ1 = H +
√
(H)2 −K,

κ2 = H −
√
(H)2 −K.

We need to construct the matrix(
n ·nT − I

)
H− Iκ1 ∥g∥ ,

where I is the indentity matrix, then take the maximum
length one out of the three possible pairwise cross products
of its rows. Normalized, it gives principal direction t1. Then,
t2 = t1 ×n.

Let us introduce the vectors of pure and mixed second-
order partial derivatives as

p =
[

∂2f
∂x2

∂2f
∂y2

∂2f
∂z2

]T

and

m =
[

∂2f
∂x∂y

∂2f
∂y∂z

∂2f
∂z∂x

]T
.

With these Hessian is

H =

px mx mz
mx py my
mz my pz

 .

Let us introduce the notation for a swizzle of a vector y

yyxz =

yz
yx
yz

 ,

and similarly for any order of elements. With this the de-
terminant of equation 3 can be computed without explicitly
constructing the matrix as∣∣∣∣H g

gT 0

∣∣∣∣=
2(p◦myzx) · (gyzx ◦gzxy)

−(pzxy ◦pyzx) · (g◦g)

+(m◦m) · (gzxy ◦gzxy)

−2(mxzy ◦myxz) · (gxzy ◦gzyx),

where ◦ is the Hadamard product operator.

9. Appendix B - gradients and Hessians

We continue using notation form Appendix A. In order to be
able to evaluate the curvature forumulae, we need to com-
pute the field function, its gradient, and Hessian. Those are
all obtained as the sum of respective functions for metaball
atoms. Here we give the formulae for the infinite support
Blinn and finite support Wywill functions. We give all base
functions, gradients and Hessians as functions of d = x−a,
where a is the atom position. This is to avoid having to sub-
tract a at every instance of x.

The Blinn base function is:

f Blinn(d) = 1

∥d∥2 .

The gradient is:

gBlinn(d) =−d 2

∥d∥4 .

The vector of pure second derivatives p(d), using e = d ◦d
is:

pBlinn(d) =
6e−2(eyzx + ezxy)

∥d∥6 .

The vector of mixed second derivatives m(d) is

mBlinn(d) =
8d◦dyzx

∥d∥6 .

The Wywill base function has finite support. Let R be
the effective atom radius, and introduce the shorthand δ =
∥d∥/R. With these, the Wywill base function is:

f Wywill(d) =

{
0 if δ > 1,

1+ −4δ6+17δ4−22δ2

9 if δ ≤ 1.

With

G =
4
(

6δ4 −17δ2 +11
)

9R2 ,

the gradient is:

gWywill(d) =

{
0 if δ > 1,
−dG if δ ≤ 1.

The vector of pure second derivatives p(d), using e = d ◦d
is:

pWywill(d) =


0 if δ > 1,

4e(17−12δ2)
R4 −

G
G
G

 if δ ≤ 1.

Szécsi and Tükör / Hatching Animated Implicit Surfaces

The vector of mixed second derivatives m(d) is:

mWywill(d) =

{
0 if δ > 1,

dxyz ◦dyzx
4(12δ2−17)

9R4 if δ ≤ 1.

10. Appendix C - seed motion explained

Seeds are particles moving along the deforming isosurface.
There are three effects that contribute to this motion: fluid
motion, field shift, and correction.

10.1. Fluid motion

The fluid medium itself is moving. Its motion is defined for
atoms with atom velocities q j How we construct the flow
velocity at a point from these relies on the requirement that
points on the isosurface should remain on the isosurface.
How much the linear motion of an atom influences the iso-
surface depends on the length of the base function gradient at
the isosurface point. Thus, linear atom velocities should be
weighted with this gradient length to get the flow velocity:

vfl(s) =
∑M−1

j=0

∥∥g j(sk)
∥∥q j

∑M−1
j=0

∥∥g j(sk)
∥∥ .

The seeds need to travel along the isosurface, so the fluid
velocity must be projected on it. The component perpendic-
ular to the surface is found as

vperp
k =

g(sk)
(

vfl
k ·g(sk)

)
∥g(sk)∥2 ,

and thus the projected fluid velocity is

vpfl
k = vfl

k −vperp
k = vfl

k −
g(sk)(vfl

k ·g(sk))

∥g(sk)∥2 .

10.2. Surface pull

Seeds need to move towards the isosurface either because
they are distant due to initial or accumulated error, or be-
cause the isosurface itself has moved. For both effects, we
will be able to find the desired rate of change in field value
at the seed δ =

∂ f (sk)
∂t , and need to compute the seed velocity

vpull
k = ∂sk/∂t from this. We move the seed along the gradi-

ent, so vpull
k = ξg(sk) with some ξ. It must be true that

δ = (ξg(sk)) ·g(sk).

Solving this for ξ gives

ξ =
δ

∥g(sk)∥2 ,

and then

vpull
k =

g(sk)δ
∥g(sk)∥2 .

10.2.1. Correction

As neither the temporal nor the spatial linearizations applied
are accurate, the seeds positions would accumulate error and
drift away from the isosurface. Also, when initialized, the
seeds are are random positions and need to be drawn to the
isosurface rapidly. Therefore, a correction term with bold-
ness factor Φ is applied. The boldness factor Φ is the inverse
of the time in which the seed is supposed to reach the isosur-
face. Thus, δcorr is (L− f (sk))Φ. However, large Φ values
can lead to instabilities near strongly non-linear regions of
the field function.

vcorr
k =

g(sk)(L− f (sk))Φ
∥g(sk)∥2 .

10.2.2. Field shift

As atoms move, the field value at a sk is going to increase
or decrease. This change will make the isosurface of L move
along the gradient. The rate of change at seed k due to atom
j moving is:

δshift
j =−g j(sk) ·q j,

and the total effect of all atoms is:

δshift =−
M−1

∑
j=0

g j(sk) ·q j.

This makes the shift velocity:

vshift
k =−

g∑M−1
j=0 g j(sk) ·q j

∥g∥2 .

10.3. Complete seed velocity

All terms, save for the unprojected fluid velocity, contain the
gradient divided by its length squared. Their sum can there-
fore be written as:

vk = vfl
k −

g(sk)
[
vfl

k ·g(sk)+(f (sk)−L)Φ+∑M−1
j=0 g j(sk) ·q j

]
∥g(sk)∥2

