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Abstract
This paper presents a real-time procedural texturing algorithm for hatching parametrized surfaces. We expand
on the concept of Tonal Art Maps to define self-similar, procedural tonal art maps that can service any required
level-of-detail, allowing to zoom in on surfaces indefinitely. We explore the mathematical requirements arising
for hatching placement and propose algorithms for the generation of the procedural models and for real-time
texturing.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

Photo-realism has been in the focus of rendering systems
for decades. Photo-realistic rendering aims at creating im-
ages that are indistinguishable from real-world photographs,
which is made possible by the precise simulation of physics
laws during the rendering process. How accurately physics
is applied in the rendering algorithm determines the level of
realism of the result.

Computer graphics also tries to mimic artistic expres-
sion and illustration styles7, 16, 18. Such methods are usually
vaguely classified as non photo-realistic rendering (NPR).
While the fundamentals of photo-realistic rendering are in
optics that are well understood, NPR systems simulate artis-
tic behavior that is not mathematically founded and often
seems to be unpredictable. Therefore, the first step of NPR
is to model the artist establishing a mathematical model de-
scribing his style, and then solve this model with the com-
puter. The result will be acceptable if our model is close to
the not formally specified artistic behavior. During the his-
tory of NPR, many individual styles were addressed. Hatch-
ing is one of the basic artistic techniques that is often emu-
lated in stylistic animation.

Hatching strokes should appear hand-drawn, with roughly
similar image-space width, dictated by pencil or brush size,
but they should also stick to surfaces to provide proper ob-

ject space shape and motion cues. Both properties must be
maintained in an animation, without introducing temporal
artifacts. We call these the requirements of image space and
world space consistency. The two requirements are in con-
tradiction when the relation of image space surface to object
space surface is being altered, i.e. when surface distance or
viewing angle is changing. The rendering process should re-
solve this contradiction while presenting natural randomness
inherent in manual work10, 1.

This paper presents a hatching style NPR rendering algo-
rithm that can be implemented in real-time. The main scien-
tific contributions are

• the introduction of self-similar tonal art maps,
• an algorithm for generation of self-similar seed sets,
• a single pass, real-time hatching algorithm using the

seed sets, with automatic, procedural, continuous level-
of-detail (Figure 1) .

The organization of the paper is as follows. In Section 2
we summarize the related previous work on NPR. Section 3
introduces the idea of Self-similar Procedural Tonal Art
Maps. In Section 4, we derive the mathematical construct
for the placement of hatching strokes that meets the self-
similarity requirements. We discuss the interpretation of the
model in Section 5, including the level-of-detail scheme and
stroke sizing. Tone representation is added in Section 6. A
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Figure 1: Teapots rendered with the same shader and set-
tings, featuring different levels of detail.

detailed description of the final algorithm, and the discus-
sion of results and future work conclude the paper.

2. Previous work

2.1. Density and direction fields

In pencil drawings artists convey the shape and illumination
of objects with the density, orientation, length, width and
shade of thin hatching strokes23, 9. To mimic this, we should
find a density and a direction field in the image plane that is
as close as possible to what an artist would use. The density,
length, width and shade should be influenced by the current
illumination, while the orientation is determined by the un-
derlying geometry. Artists may use several layers of strokes,
aligned at different angles to the direction field. If we de-
fined the direction field directly in the image plane, it would
be difficult to convey 3D shape or motion. Thus, it is bene-
ficial to determine these directions on object surfaces either
from geometric curvatures6 or from the tone13. The princi-
pal curvature directions6 of the surface define a field that is
an intuitive representation of shape information.

In this paper, we do not address the problem of
the curvature field generation, but assume that a proper
UV parametrization is already known for surfaces, where
isoparametric curves follow desired hatching directions.
Proposing an algorithm tailored to specifically for our ap-
proach is left for future research.

2.2. Uniformly spaced and random hatching styles

In hand-made artwork, the artist may choose to pay atten-
tion to the distance of strokes and keep similar distance be-
tween them. The method of Zander25 integrates the vector
field to produce strokes also guaranteeing that they are sep-
arated which provides very high quality still images. Unfor-
tunately, this kind of spatial control of strokes is in contra-
diction with temporal coherence. We have to accept that not

all hatching styles are created equal regarding their applica-
bility to animation. Specifically, to reproduce a given shade,
we cannot apply strokes that are placed at strictly identical,
fixed image space distances, and follow object space motion
at the same time. When zooming in or changing the viewing
angle, either one of the conditions must be broken. Violat-
ing object space consistency will cause the shower door ef-
fect, meaning the user has the impression that strokes are not
fixed to objects but are floating on them. If we allow the reg-
ular hatching distance to change, coverage will deviate from
the desired shade. The continuous level-of-detail feature of
hatching is absent from these techniques.

Counterpointing the above considerations against overly
regular hatching, it is also important that strokes are dis-
tanced evenly in a statistical sense, and that the distribution
of distances between them does not depend on the direction.
As strokes make the shading anisotropic, the distribution of
stroke locations itself should not only be uniform but also
isotropic. Otherwise, superimposed the two will result in
direction-dependent patterns, where strokes clump together
for unfortunate orientations.

2.3. Image space methods

To guarantee consistency with the image, hatching strokes
can be generated directly in image space11. In order to avoid
the shower door effect, strokes can be moved along with
an optical flow or image space velocity field, but placing
new strokes on emerging, previously non-visible surfaces
still poses problems. Especially if strokes are long, following
curvature or feature curves of object surfaces, they should
maintain this even when only tiny fractions have become
visible. This cannot be assured when only using image space
information.

2.4. Seed-based methods

Several works14, 20 proposed the application of particles or
seeds attached to objects, but extruding them to hatch-
ing strokes in image space. Strokes are obtained by inte-
grating the direction vector field started at seed points or
particles25, 15. The key problem in these methods is the gen-
eration of the world-space seed distribution corresponding to
the desired image-space hatching density. This either means
seed killing and fissioning24—even using mesh subdivision
and simplification4—, or rejection sampling20. These tech-
niques are mostly real-time, but require multiple passes and
considerable resources. Compositing hatching strokes with
three-dimensional geometry is not straightforward: depth
testing of extruded hatch curves against triangle mesh ob-
jects must be using heavy bias and smooth rejection to avoid
flickering. While this allows for modeling some human in-
consistencies in performing the same hidden line removal
task, it is also extremely ponderous to eliminate them should
they not be desired.
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In our work, we use the notion of seeds to discuss hatch-
ing stroke position and distribution patterns. However, we
are not concerned by seed positions in object space, rather
in parameter space, and we do not extrude seeds to triangle
strip geometry.

2.5. Texture-based methods

In order to make the pencil strokes consistent with the 3D
objects, hatches can be generated into textures and mapped
onto animated objects12. This requires surface parametriza-
tion. Unfortunately, this approach does not provide natural
pencil art, where each stroke is drawn in image space. There,
every stroke has roughly similar width which is determined
by the pencil of the artist and is independent of the distance
or the viewing angle of the depicted surface. From another
point of view, the fact that pencil art is naturally produced
in image space implicitly assumes a level-of-detail mecha-
nism, which renders objects with fewer pencil strokes if they
are farther away and thus cover just a smaller portion of the
image5.

The most characteristic limitation of texturing-based
hatching approaches is limited level-of-detail support. Sim-
ple static textures perform extremely poorly, as the width of
hatching strokes is fixed in UV space, and—through the UV
mapping—also in object space. Note that changing the UV
mapping depending on viewing distance is not only insuffi-
cient to address projection distortion, but also would result
in the hatching pattern floating on the surface.

Figure 2: A Tonal Art Map with the nesting property. Strokes
in one image appear in all the images to the right and down
from it. From Praun et. al16.

Thus, simple texturing does not allow for hatching that
is uniform in screen space. A level-of-detail mechanism
called Tonal Art Maps has been proposed to alleviate this
problem16. Using this technique, several texture images are
pre-drawn, representing different tones and hatching scales.
Figure 2, taken from the referred paper, shows such a set of
maps. When rendering surfaces, the appropriate texture in
every pixel can be selected based on the desired tone and
on-screen hatching stroke width. In order to avoid sharply
clipped hatching strokes at boundaries of discrete zones, the
patterns fade into each other using interpolation.

In an animation, as the required hatching density is chang-
ing, it is important that strokes stay at their on-surface po-
sitions. It is allowed for new hatching strokes to appear

when the density increases, and for existing strokes to van-
ish, should the density decrease. However, strokes should not
be appearing and vanishing in the same vicinity at the same
time. Therefore, denser hatching textures should always con-
tain the strokes of sparser textures as a subset. This is called
the nesting property, also observable in Figure 2.

Tonal Art Maps, however, only support a range of hatch-
ing scales as defined by the most detailed and least detailed
map levels. Thus, when zooming in onto a surface, we can-
not have finer hatching than what texturing with the most
detailed map level would produce, resulting in classic tex-
ture magnification artifacts, and huge and sparse hatching
strokes in image space. Also, there is a trade-off between the
number of detail levels used and the quality of transitions
between those levels. With too few textures, a large number
of strokes fade in at the same time, resulting in an image
with non-uniform stroke weights. While this is acceptable in
most cases, as weaker pencil strokes can possibly be used by
artists, it is a limitation to the degree of screen-space unifor-
mity we can achieve.

3. Self-similar Tonal Art Maps

Our idea is to make Tonal Art Maps infinitely loopable, by
making the nesting property recursive. Hatching strokes are
positioned at seeds. The texture is broken into four tiles,
forming a 2× 2 grid. In all four quarters, the seeds must
be the subset of the complete seed set scaled down to fit
the quarter. That way the seeds are nested in the pattern we
get by repeating them twice along both axes (see Figure 3).
Thus, when we zoom in to any of the quarters, it is possi-
ble to add new strokes re-creating the original most detailed
hatching pattern, where the process can be restarted (see Fig-
ure 4). This is the recursive nesting property of the seed set,
which we will define more formally in Section 4. Following
the classic Tonal Art Map scheme, this would require four
sequences of images, describing how the individual quarters
evolve into the full hatching pattern. However, we will never
actually create these images, but describe them procedurally,
and use this extremely compact representation for rendering.

First, in Section 4, we deal with the problem of placing the
hatching strokes to assure the recursive nesting property. We
start by considering seed point placement only, addressing
hatching stroke length and width in Section 5.

4. Self-similar seed generation

We need a set of seed points to place strokes at. Let the set
of all seed points be S = {s0, . . . ,si, . . . ,sN−1}, where si =
(siu,siv). These positions are defined in the seed space, the
relation of which to the UV space we explore in Section 5.

Let us define the operator D as follows:

Ds = (frac(2su) , frac(2sv)) ,

where the frac function yields the fractional part of a number.
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Figure 3: The smallest possible seed set with the recursive
nesting property. The four large circles indicate seeds, small
circles are the seed pattern repeated on a 2×2 grid.

Figure 4: The recursive nesting property ensures that by
adding seeds to any of the quarters we can reproduce the
original seed pattern. Seed markers decrease in size, but
seed positions are unchanged.

Geometrically, this operation is a scaling by the factor of
two, using the nearest corner of the unit square as the pivot
point (Figure 5). Numerically, if we consider the binary radix
fraction form of the seed coordinates, the operation removes
the first binary digit after the binary radix point, shifting the
rest to the left (Figure 6). Note that in the unit square, there
is always only a zero on the left side of the radix point.
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Figure 5: Geometric interpretation of operator D. Seeds are
projected to double their distance from the nearest corner.
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Figure 6: Interpretation of operator D on binary fractions.
For periodic fractions, the bits can be cycled.

The operator can be extended to sets as:

DS = {Ds | s ∈ S} .

Set S has the recursive nesting property if

DS⊆ S.

This means that if there is a seed si, then its image Dsi must
also be a seed. A sequence of N seeds then must be found as

si+1 =Dsi, if 0≤ i < N,

because all seeds will trivially be mapped to another seed.
However, DsN−1 must also be in S. This can be true if

s0 =DsN−1.

Considering the interpretation of D on binary fractions, we
can conclude that seeds must be generated by shifting the bit
patterns of coordinates s0u and s0v, and after N steps we need
to arrive back at s0. This is possible if s0u and s0v are peri-
odic binary fractions of period N (or a divisor of N). Such
periodic binary fractions are easy to generate e.g. using the
Bernoulli(1/2) process, finding individual bits as indepen-
dent coin flips. Even though such a process generates points
that are evenly distributed in the statistical sense, a concrete
small set of seeds generated in such a way could be not fill-
ing the space evenly.

In an infinite random sequence, we expect any fixed-
length subsequence to appear with exactly the same prob-
ability. Extending that to finite sequences, we expect possi-
ble fixed-length subsequences to appear with frequencies as
uniform as possible when cycling through the sequence. Bit
sequences with such a property are called uniform cycles17.
Although no proof for the existence of arbitrary-length uni-
form cycles is known, all possible uniform cycles can be
enumerated for modest lengths. The bit sequence for the u
and v coordinates could be found independently, but then
coincidentally identical substrings could appear. Instead, we
can combine their respective bits to form crumbs (quater-
nary equivalent of binary bits or decimal digits), forming a
quaternary periodic fraction. To distribute points evenly, the
crumbs of one period must form a quaternary uniform cycle.

In order to understand what uniformity means in the geo-
metrical sense, let us find the intuitive meanings of the crumb
values. Recall that the first crumb in the quaternary represen-
tation of a seed point is the combination of the first bits of
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the binary fractions for its coordinates. Thus, the value of
the first crumb indicates in which quarter of the unit square
the seed point is. Then the second crumb indicates in which
1
4 ×

1
4 square it is within the quarter, and so on. As we gen-

erate our seeds by cycling the crumb pattern, the number of
times a subpattern of some length shows up is exactly the
number of seeds in the corresponding squarelet. If N = K4

with some K integer, then exactly one seed will fall in every
cell of a K2×K2 grid (see Figure 7). This is very similar to
the elemental interval property of the low discrepancy Hal-
ton sequence8, 19.

Another obvious connection is that with iterated func-
tion systems (IFS)2, and the chaos game method of generat-
ing their attractors3. Just like our construct, the chaos game
transforms an initial point repeatedly. The transformation is
randomly picked from a set each time. However, if the trans-
formations map the attractor to disjunct areas, then it can be
unambiguously determined for a point which the last trans-
formation was. Then, starting with a point, the sequence can
be traced back deterministically. In fact, the randomness is
all encoded into the choice of the initial point. In our case,
we are playing this deterministic version of the chaos game
with four transformations, each mapping the unit square to
one of its quarters. The attractor of this system is the unit
square itself. We only take care that the sequence returns to
itself, and thus we can work with a finite number of seeds.
As for the crumb pattern, every crumb value there indicates
one of the four transformations picked in the chaos game. If
we use a uniform cycle, than all transformations appear the
same number of times, and this is true for all sequences of
transformations of given length, too.

Unfortunately, no polynomial-time algorithm is known
for generating binary or quaternary uniform cycles of arbi-
trary length. In fact, we know of no proof that those exist
for any N. However, in practice it is possible to find cycles
of modest length by enumerating a set of required snippets
and performing a brute force search over their permutations
until a valid uniform cycle is found17. For N = 16, this can
even be done manually, arranging the snippets 00, 01, 02,
03, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, yielding
e.g. the quaternary sequence 0012202332131103. Note that
all crumbs appear four times, and all snippets of two crumbs
only once.

However, manual arranging for greater N = K4 would be
extremely ponderous, so it is required to define a suitable al-
gorithm, based on the following considerations. Each snip-
pet is a sequence of length K:

pi = {πi1, ...,πiK}

Let G= (P,E) be a directed graph, where P= {p1, ..., pN} is
the set of snippets, and E = {(pi, p j) | (πi2 = π j1), ...,(πiK =
π j(K−1))}. Thus, an edge connects two snippets if we get
one from the other by dropping the first crumb and append-
ing another one. A valid uniform cycle can be found by

searching for a proper Hamiltonian cycle in the graph G.
Starting with any vertex, the brute force method picks an
edge randomly to an available position (see Figure 8), mark-
ing the current vertex as expended, and proceeding to the
vertex along the selected edge. If there is no directed edge
to an available vertex, the algorithm steps back to a previous
state. Otherwise, we proceed similarly until a Hamiltonian
cycle is found.
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Figure 8: A part of the graph for N = 64. We are looking for
a Hamiltonian cycle.

Algorithm 1 Quaternary uniform cycle generation
1: function UNIFORM(set of snippets P,sequence Q)
2: if |Q| ̸= N then ◃ sequence incomplete
3: ρ← random crumb from (0,1,3,4)
4: for δ← ρ,ρ+3(mod 4) do ◃ all continuations
5: p← (q1−K ,q2−K , ...,q−1,δ) ◃ form snippet
6: if p ∈ P then ◃ snippet available
7: P′← P\ p ◃ expend snippet
8: Q′← Q ∥ δ ◃ append to Q
9: Q̌← UNIFORM(P′,Q′) ◃ continue

10: if Q̌ ̸= ∅ then
11: return Q̌ ◃ success
12: end if
13: end if
14: return ∅ ◃ nothing worked, fail branch
15: end for
16: else ◃ sequence complete
17: for i← 0,K−1 do ◃ check wrapping snippets
18: p←

(
qi−(K−1),qi−(K−2), . . . ,qi

)
19: if p /∈ P then
20: return ∅ ◃ mismatch, reject Q
21: end if
22: P← P\ p
23: end for
24: return Q ◃ accept Q
25: end if
26: end function

The formal algorithm (Algorithm 1) builds a growing
sequence Q = (q0,q1, . . . ,q−2,q−1) of crumbs ultimately
forming a quaternary uniform cycle. Note that the indices
in Q are understood (mod |Q|), where |Q| is the length of
Q. The algorithm tests, for all possible continuations of Q,
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Figure 7: Seeds generated by a uniform cycle are uniformly distributed in the sense that one seed falls in every grid cell.

whether the resulting snippet is still available in set P. If it is,
we expend the snippet from P and append the continuation
to Q. When Q is complete, it is verified that the additional
snippets generated by cycling the sequence are identical to
those remaining in P. If they are, we have found a cycle con-
taining all snippets once, and only once.

We can obtain a uniform cycle specifying the position for
an initial seed by calling UNIFORM with an initial sequence
of a random snippet (e.g. 000) and a snippet set P with all
possible snippets, save for the initial one in Q. Having ob-
tained the crumbs of the initial seed, we get further seeds by
repeatedly applying operator D on these numbers, cycling
the crumbs within the period.

5. Seed and stroke scale

Although, as evidenced by Algorithm 2 in Section 7, scal-
ing seeds and strokes to match the required level of detail is
fairly simple in practice, its rigorous discussion is quite in-
volved. The process is analogous to that of mipmapping22,
the difference being that in our case all levels are identical,
but scaled by powers of two. Thus some additional consid-
erations for recursion and scaling between detail levels are
needed.

As the scale of mapping UV texture coordinates to the
viewport is changing, to preserve the same on-screen den-
sity, the hatching detail must be smoothly increased or de-
creased. Shall more detail be required, the original seed pat-
tern should be repeated in all four quarters, continuing recur-
sively until the desired seed density is achieved. To get lower

density, the square should be regarded as a quarter of a big-
ger square, and only the relevant subset of the seeds used,
also repeated recursively. Thus, from the mapping scale, a
nesting level ⌊M⌋ needs to be found, so that we know the
scale at which the generated seeds can be interpreted as
meaningful UV space positions.

Let L be the mapping of seeds to texture coordinates.

u = Ls,

where s is a seed space position and u the texture coordi-
nates. Locally, L must be an isotropic scaling. Globally, the
scaling factor will vary for different points on the object sur-
face, but it may change only by powers of two, to allow the
self-similar nesting to work. For simplicity, we postulate that
the scaling factor must always be a power of two. We show
later in this section that this is without the loss of general-
ity. Our objective is to find the scaling factor for any given
surface point. In this discussion, we are looking for an arbi-
trary scaling factor first, and then select a power of two that
approximates it.

Let T be the inverse of the texture mapping operator, de-
fined by the model parametrization. Thus,

x = T u,

where x is the model space position.

Let G be the complete model-to-viewport-space mapping
of the image synthesis pipeline, including the model, view,
projection, and viewport transformations, all defined by ob-



Szécsi, Szirányi and Umenhoffer / Texture-based NPR

ject and camera setup. Thus,

v = Gx,

where v is the viewport space position.

With these, the transformation from seed space to the
viewport can be written as

v = GT Ls. (1)

Note that all operations are dependent on the surface point,
and some may be non-linear.

Let h be the detail direction, a differential direction vec-
tor in the seed space. If strokes are isotropic, e.g. only dots,
then the choice is arbitrary. Typically, however, strokes have
a dominant direction. While scaling in this dominant direc-
tion only influences stroke length, scaling perpendicularly
has significant impact on hatching density. The detail vector
should align with this perpendicular direction.

What we are interested in is how the detail direction is
scaled by the mappings G, T , and L. Therefore, let us intro-
duce the notation

stretch(O,d) = |JOd|
|d| ,

where O is a mapping, d is a direction vector, and JO the
Jacobian matrix of mapping O at the surface point in ques-
tion. Then the scaling factors exercised on direction h by the
mappings can be written as:

L = stretch(L,h),

T = stretch(T ,JLh),

G = stretch(G,JT JLh).

With these, Equation 1 can be linearized and applied to
differentials, yielding the formula for the scaling of the detail
direction as

|hvp|= GT L|h|,

where |hvp| is the length of the detail direction vector as
it appears in the viewport. The geometry factor G and tex-
ture distortion factor T can be computed easily, and L is the
scaling that should be introduced by the choice of the detail
level.

The ratio F = |h|/|hvp| captures how densely seeds ap-
pear in the viewport. This is a free artistic parameter, and a
global constant, as we do not consider density modulation
for tone yet. As with regular texture mapping, choosing a
lower value of F results in more detail—more seeds, thus
more hatching strokes per unit area—, but also more repe-
tition as the texture coordinates wrap around. With this, the
desired detail factor L−1 can be expressed as

L−1 = GT F,

where all factors are known. Note that if L contained an addi-
tional constant scaling factor, it would have the same effect
as F here, so introducing another free parameter would be
superfluous. Our postulation that L is a scaling with a power
of two was without the loss of generality.

To make use of the nesting property, L should be a scaling
with a power of two, thus L ≈ 2⌊M⌋, where we call integer
⌊M⌋ the nesting level. We first compute the real number M
form L−1 as

M = log2 L =− log2 L−1 =− log2 GT F,

then take the integer part to get the nesting level ⌊M⌋. This
gives us the scaling factor between seed space and texture
coordinates as

u = 2⌊M⌋s.

In practice, it is the texture coordinates of a surface point that
are known when shading is performed, and the seed space
coordinates need to be computed as

s = 2−⌊M⌋u.

The solution is exact if M is an integer, and integer values
define detail levels. For non-integer values of M, the dense
level ⌊M⌋ has to transition into the sparse level ⌊M⌋+ 1
smoothly. Therefore, we need to scale strokes appropriately
and fade out those that are not visible in the sparse level
(Figures 9 and 10).
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Figure 9: 2D depiction of smooth transition between detail
levels by stroke width modulation.

The stroke width and length in viewport space are artistic
parameters, expressed as the two-dimensional vector e. By
the definition of F , we know that the seed space stroke size
should be Fe, if L were not quantized to powers of two. In
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Figure 10: 2D depiction of smooth transition between detail
levels by stroke opacity modulation.

order to compensate for the quantization, we need to scale
seed space stroke sizes by

2M

2⌊M⌋ = 2M−⌊M⌋ = 2frac(M) = 2m,

where m can be seen as an interpolation factor between nest-
ing levels, going from 0 at the dense level to 1 at the sparse
level. Intuitively, if the dense and sparse levels are identical
but for a factor of two, the strokes need to grow to twice their
size as the nesting level increases.

s

si

s-si
s-si

s-s + (0.5, 0.5) (mod 2)i

Figure 11: Computation of stroke space position (without
scaling or rotation) and sparse level quarter indicator bits.
X marks the shaded point. Its seed space position is s, the
seed processed is si, the position relative to the seed is s− si,
which is mapped to the unit square surrounding the seed to
get s̃− si.

For every seed si, we need to find stroke space coordi-
nates zi corresponding to seed space position s. To cover the
complete seed space, the seed pattern is repeated indefinitely

in unit tiles. Strokes extend beyond tile boundaries (see Fig-
ure 11). Stroke extents in seed space must to be less than
one, so that they do not overlap with themselves. The posi-
tion of shaded point s relative to seed position is s− si, but
this contains the offset of the tile. We introduce the following
notation

(̃su,sv) = (frac(su +0.5)−0.5, frac(sv +0.5)−0.5)

for wrapping the space to the origin-centered unit square.
With this, the stroke coordinates are

zi = Rs̃− si�(2mFe),

with � standing for the elementwise division, and R is a
rotation matrix in two dimensions for cross-hatching stroke
alignment. Stroke coordinates can be used to access the
stroke texture. Contributions for all seeds must be compos-
ited.

To be able to tell whether a dense seed is present on the
sparse level, we need to know which quarter of the sparse
level we are in, and whether the seed appears in that quarter.
The parity bits of the tile’s row and column indices indicate
the quarter. Which tile we are is thus exactly identified by
the integer part discarded with s̃− si. This can be computed
as

w =
⌊
s− si +(0.5,0.5)

⌋
.

Recall that the sparse level has the same seeds as the dense
level, scaled up by a factor of two. A dense level seed that
also appears in the sparse level must therefore be a scaled-
up image of a seed in the dense level. This is true for every
dense level seed that was generated by the D operator from
a seed in the respective quarter. To see what the predecessor
of a seed was, we need to check the final bits in the cycled
bit pattern. If those are identical to the parity bits of w, then
the seeds exits on both levels. Others have to be faded out as
m increases.

Fading strokes out can be accomplished in several ways.
We can use alpha blending or stroke width modulation, and
we can fade out all strokes simultaneously or one after the
other, as the detail decreases. Modulating all strokes simul-
taneously allows them to blend smoothly, without abruptly
appearing or disappearing strokes, but a large number of
strokes will be semi-transparent or intermediate-sized, not
achieving uniform hatching. If strokes appear one after the
other, the method of modulation hardly matters, as they ap-
pear more abruptly, but the image space consistency is bet-
ter. Note that because of the self similar property, hatching
strokes only appear or disappear only when hatching needs
to grow denser or sparser, and no flickering is present.

6. Tone

In order to convey illumination, we need to be able to modu-
late hatching density depending on the locally desired shade
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or tone. The challenge is to preserve the quality of hatching.
In our scheme, seeds cannot be removed without breaking
the recursive nesting property. The number of seeds could
be decreased by decreasing the length of the quaternary uni-
form cycle, with the overall pattern remaining consistent
and most seeds changing positions only slightly, but there
would inevitably be seeds that have very different positions.
Thus, the only option remains to use several sets of self-
similar seeds, and overlay them. Fortunately, this is in per-
fect agreement with artistic practice9, where about four dis-
tinct tones are rendered by overlaying strokes, usually at an
angle, which is known as cross-hatching.

Thus, four seed sets are generated, and the contributions
of a seed set are added if the desired local tone is darker than
an associated threshold. However, to avoid clipping strokes
at tone segment boundaries, this transition also has to be
smooth. Again, strokes can be faded out together, produc-
ing a smoother animation, but with a lot of semi-transparent
strokes, or one after the other, producing more abruptly ap-
pearing strokes of more consistent appearance.

7. Implementation

Once proper seed sets have been generated, the algorithm
can be implemented in a single shader (Algorithm 2).
The quaternary uniform cycles {b1, . . . ,b4} defining the
seed sets, rotation matrices for cross-hatching alignment
{R1, . . . ,R4}, the global, non-modulated seed density F ,
and stroke size e are uniform global inputs. The smoothstep
function sstep[ν,µ](λ) clamps and normalizes λ to [ν,µ], then
performs a Hermite interpolation. The shader psuedocode
presented here uses four hatching layers for tone. It fades
strokes one after the other, using opacity modulation, both
for tone and detail interpolation. The contributions of strokes
are composited with the alpha blending logic, but within the
shader. The stroke texture sampler must return zero alpha for
out-of-range texture coordinates.

It has to be noted that this implementation uses 4N texture
samples. With a seed set of 64 elements, this is 256 sam-
ples per pixel. Although these are samples from the same,
presumably small stroke texture, this is still a brute force ap-
proach that can be improved if we filter strokes by proximity.

8. Results

We have tested the algorithm on an NVIDIA GeForce GTX
780, with 1920×1200 full-screen resolution. With four tone
layers and 64 seeds per layer (Figure 12), we achieved an
interactive performance of 20 frames per second. With 16
seeds (Figure 13), the performance went up to 80 FPS, con-
firming our expectation that rendering time is linearly pro-
portional to the number of seeds.

We examined the options of fading in strokes between lev-
els and tone layers simultaneously of one after the other.

Algorithm 2 Shading a surface point
1: function SHADE(texture coords u,position x)
2: {b1, . . . ,b4}← uniform crumb cycles
3: F ← global seed density
4: e← stroke size
5: {R1, . . . ,R4}← cross-hatching rotations
6: a← tone from illumination in [0,5]
7: c← 1 ◃ paper color
8: for j← 1,4 do ◃ for all tone layers
9: T ← texture distortion at x

10: G← geometry factor at x
11: M←− log2 GT F ◃ detail factor
12: s← 2−⌊M⌋u ◃ seed space
13: m←M−⌊M⌋
14: for i← 0,N−1 do ◃ for all seeds
15: si← 0. ∥ b j ∥ b j ∥ . . . ◃ seed from crumbs
16: α← sstep[ i

N+1 ,
i+1
N+1 ]

(a− j) ◃ tone fade

17: w← ⌊s− si +(0.5,0.5)⌋ ◃ sparse quarter
18: if w ̸≡ b j(mod 2) then ◃ not in sparse
19: α← α sstep[ i

N+1 ,
i+1
N+1 ]

(m) ◃ detail fade
20: end if
21: zi← Rs̃− si⊘ (2mFe) ◃ stroke space
22: y← strokeTex[zi] ◃ sample from texture
23: α← αyα ◃ texture alpha
24: c← (1−α)c+αy ◃ alpha blending
25: b j← b j 	 1 ◃ circular shift
26: end for
27: end for
28: return c
29: end function

Figure 12: Teapot rendered with 4 tone layers, 64 seeds per
layer, at 20 FPS, 1920×1200.

Simultaneous fading (Figure 14) always resulted in thin or
semi-transparent strokes appearing in conspicuous patterns.
Fading strokes individually (Figure 15) resulted in just the
occasional stroke being in a transient state briefly, accept-
ably simulating the stroke appearing as a result of an artistic
process. The overall image consistency was in this case per-
fect. With strokes fading in individually, whether we used
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Figure 13: Teapot rendered with 4 tone layers, 16 seeds per
layer, at 80 FPS, 1920×1200.

Figure 14: Teapot rendered with simultaneous stroke fading.

opacity or line width weighting for fading did not cause a
significant visual difference. This was due to the fact that
in any method based on local shading like ours, detail level
can change strongly along a stroke. Some parts of the stroke
will therefore be completely visible and others completely
invisible, and the transition is both spatially and temporally
confined.

Figure 15: Teapot rendered with individual stroke fading.

In animation, the object space coherence, as expected with
a parameter space approach, was impeccable. Flickering was
not observed. The pattern in which the strokes appear and
disappear when zooming in or out is conceivably random.

9. Future work

Our method could be significantly accelerated by not con-
sidering all seeds in every pixel. For this, we need to create
a texture representing the unit square in seed space, where
every texel contains a list of those strokes that may over-
lap with the texel. This can simply be pre-generated for any
seed be rendering all strokes at their maximum size into an
S-buffer21. We expect that with this addition the proposed
method will be barely slower that simple texturing.

When a surface is visible at an integer detail factor, all
strokes are completely visible. Otherwise, some may be in
a transient state fading in. This difference is unnoticeable
when strokes fade individually, but we conjecture that this is
the reason why simultaneous fading does not produce unac-
ceptable results. Therefore, we would like to introduce the-
ory for mixed-weight detail levels, where integer level pat-
terns are indistinguishable from interpolated ones. We also
believe this will lead us to the implementation of a new artis-
tic parameter that allows intermediate strategies between si-
multaneous and individual fading. In this overlapped fading
model, a customizable, but fixed percentage of strokes will
be in transitional state at any time and detail level.

We also plan to examine interaction with outline render-
ing approaches, and investigate whether we can simulate
overdraw with screen space filtering.
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