
Seventh Hungarian Conference on Computer Graphics and Geometry, Budapest, 2014

Realtime, coherent screen space hatching

Zoltán Lengyel,1 and Tamás Umenhoffer1 and László Szécsi1

1 Budapest University of Technology and Economics, Department of Control Engineering and Information Technology

Abstract
In this paper we present a screen space hatching algorithm which provides time coherent placing of hatching
lines relative to object surfaces. While with screen space techniques we can easily achieve consistent image space
hatching density, it is hard to make hatching lines express surface features, and to make them follow the underlying
geometry. Drawing individual textured lines can provide high quality results, but their direction and amount of
bending should be calculated according to the 3d geometry. We propose a method that combines illumination
gradient, and curvature based line direction calculation to support a wide variety of objects. To achieve surface
position coherency during animation we use image space velocity maps to move the individual hatch lines, and
use rejection sampling and low discrepancy sequences to filter out high density areas where the flow accumulates
lines, and fill in the vacant areas. The multi-pass algorithm is implemented entirely on the GPU using geometry
shaders and vertex transform feedback.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

A wide range of techniques in computer graphics target
non-photorealistic (NPR) or illustrative image production,
among them the synthesis of hand-drawn art. Like photo-
realistic techniques, NPR techniques are also based on three
dimensional objects, but try to mimic the look of traditional
media. The 3D modelling and rendering pipeline has great
efficiency benefit compared to handmade image generation,
but it is very hard to reproduce the visual look of classic
techniques. 3D rendered images have a restricted freedom
regarding geometry borders, smooth lighting transitions and
surface materials. Though several techniques exists, that can
well mimic special traditional techniques, their applicabili-
ties are limited.

Animation movies focus less on rendering speed but on
rendering quality, but this does not mean that render time
is not important. Increased rendering time can have serious
cost influences, thus NPR techniques made for offline ren-
dering should also keep processing time low. An other im-
portant aspect is that preprocessing requirements should also
be treated carefully, as in a production environment the mod-
elling, the rendering, and the final compositing is done in
separate packages, which have their own specialities, thus
sharing data between them can be very hard. Huge prepro-

cessing or per-frame geometry processing is also not feasible
for realtime applications.

The biggest limitation of most NPR techniques both for
realtime and for production purposes is time coherency. It is
hard to ensure that stylized lines, illustrative surface details
or lighting features follow the geometry during animation.
If these features are fixed in image space it produces an an-
noying artifact called shower door effect, as it seems like
the NPR effect is caused by a distorting glass door we are
looking through. These artistic features should move with
the geometry without any sudden change or flickering.

In this paper we focus on pen and ink illustration and pen-
cil drawings, where the lighting and shadows and the shape
of the objects are represented with the density and orien-
tation of thin hatch lines. To mimic the traditional 2D tech-
nique we should ensure that hatching line density, line length
and width is consistent in screen space. Hatch lines should
be placed more densely in shadowed areas, and they should
be completely missing in lit areas. Also their orientation and
bending should well describe the underlying geometry.



Lengyel, Umenhoffer, Szecsi / Screen space hatching

(a) (b)
(c) (d)

Figure 1: Basic elements of the hatching rendering algorithm from left to right: hatch line positions in screen space (a), rotated
and bent lines (b), rejected lines according to lighting (c), adding edge detected contours (d).

2. Previous work

The most obvious way to add artistic look to our objects is to
paint an artistic texture for them. This also works for hatch-
ing: we can use an image of hatch lines and map this as a
repeated texture to our objects. Choosing the detail of this
image is not as simple as in case of usual textures. As we
move closer to the surface more lines should appear. Consis-
tent image space line density can be achieved with mipmap-
ping, multiple texturing and texture blending 6 4 5 9 8 12.
One drawback is that the maximum detail is limited as the
number of mipmap levels and texture resolution is also lim-
ited. The other problem is that a proper parametrization is
needed, and not only to avoid texture seams, but to make the
lines follow geometry features. Manual UV layout creation
is rather time consuming, and seams can not be eliminated
completely. Automatic methods need to calculate principal
curvature directions from the geometry and orient smaller
hatching patches usually placed in screen space.

The another main group of techniques generates new ge-
ometry for hatch lines. Here we distinguish between object
space and image space methods. Object space methods place
hatching lines directly onto the rendered surface in 3D space
11 1 3. The lines are rendered as polygon strips. Principal cur-
vature directions should also be calculated to make the lines
follow the surface. The strength of these methods is that lines
are tied onto the surfaces providing straightforward tempo-
ral coherence. On the other hand visibility calculation of the
lines can cause biasing problems, and it is also hard to en-
sure uniform distribution of hatching lines in image space.
With these techniques lines go through the same transform
pipeline as all other rendered polygons.

Hatching lines can also be drawn in image space 2 10.
These techniques work with uniformly placed hatch lines in
screen space. Determining the direction of the lines needs
special considerations. The lines should illustrate the under-
lying surface, thus a proper image space directional field
should be created. Different approaches use different quan-
tities to calculate this vector field. They might use the tone
gradient of an input image, or use screen space principal cur-
vature direction data. The later can be calculated in screen

space if some necessary information like camera space depth
or normal vectors can also be rendered. Principal curvature
directions could also be computed from the processed geom-
etry and projected onto the image plane, but this requires ge-
ometry processing. Image space methods often suffer from
temporal incoherence.

3. Motivation

Our goal is to develop a hatching rendering technique that
defines individual lines in screen space, but keeps time co-
herency so no flickering or sudden change appears. Lines
should have an even distribution in screen space, moving
closer to objects should make more hatching lines appear.
Line direction and curving should well express surface fea-
tures, they should accurately fit onto the 3D surface. Anima-
tion should be supported with moving the lines with the ob-
jects in screen space but still maintaining even screen space
density.

We should avoid complex geometry processing, moreover
we should make our algorithm independent of the geometry,
and rely only on standard outputs of common renderers like
image buffers. This enables us to implement the algorithm in
an interactive post processing framework. As the main goal
is to use the technique interactively all calculations should
be kept on the GPU.

4. Proposed algorithm

Our technique is based on 7. Hatching lines are rendered as
individual triangle strips. Even density of hatching lines can
be easily achieved with placing the lines randomly on screen
using a uniform distribution. Illumination can be depicted
with filtering out particles at highlight areas. Figure 1 shows
the main components of screen space hatching generation.

Our main contribution to the base work is to support time
coherent line animation. Lines are moved according to a ve-
locity map, which results an uneven distribution. To fix the
uneven particle density we filter out dense regions and fill
in sparse regions. The final steps are to calculate hatching
direction and blending for the particles and render them as



Lengyel, Umenhoffer, Szecsi / Screen space hatching

Init
uniform distribution

uniform distribution

flow

density

Move Filter Fill

Final

Rejection
Line

Render

depth normal ID luminance

line direction

and curvature

 calculation

Scene

Figure 2: Basic elements of the proposed algorithm. In initialization phase uniform screen space particle density is generated.
In each frame buffers containing normals, depth, illumination, object ID, and screen space velocity are rendered. Particles are
advected according to the velocity. The resulting density is not uniform which will be equalized with a filtering process followed
by inserting in new random particles. Final screen space density is usually defined by a luminance map, so further particles are
rejected. As a last step lines are drawn as textured line primitives.

textured line srtips. The final particles after the fill and filter
process will be the input of the next rendered frame. The
necessary information for the algorithm is several buffers
rendered in each frames. These buffers store such data that
is common both in realtime and in production environments:
depth map, normal map, illumination, id map and velocity
map. Figure 2 shows the main components of the proposed
algorithm.

Our second contribution new to 7 is that we propose an au-
tomatic hatching direction calculation that combines several
surface features. The following subsections cover the main
components of the algorithm in details.

4.1. Hatching particle generation

The first step is to define a set of particle positions (seed
points) in screen space, at which final lines will be rendered.
These particles should have a uniform distribution to evenly
cover the image plane, and they should show no recognizable
pattern to mimic the random behaviour of hand drawn hatch
lines. This can be easily achieved with placing the lines ran-
domly on screen using a uniform distribution. Artist-defined
global density can be implemented with fewer or more ran-
dom samples on screen.

Random particle generation is the initialization phase of
our algorithm, where we create a huge buffer of random po-
sitions using Halton sequences. The size of this buffer is
much bigger than the desired line number count as later,
during animation more and more random positions will be

requested. If we ran out of the buffer, we start from the be-
ginning. For each particle we also store an additional random
number from the unit interval which we call priority. Priori-
ties should also have a uniform distribution in image space.
This can be easily achieved using low-discrepancy series like
Halton sequences with using the normalized sequence num-
ber as priority, but as we use only a part of the buffer and
need priorities from the whole unit interval, it was easier to
define an additional random sequence for priorities too. For
smoother animation we can also store additional line data for
each particle like line length, width, direction or curvature.

4.2. Particle movement

As the camera or any objects in the scene move, we should
ensure that the seed positions will move with the surface.
This is crucial to avoid the unwanted shower door effect. As
we are working in image space, the most obvious solution
is to use a screen space velocity map, or in other worlds:
an optical flow. As our algorithm is based on 3D scenes we
can produce this map quite easily and accurately. We can use
the camera matrices and the world matrices for each object
from the previous frame, transform the vertex positions with
both the new and the previous transformations from which
movement can be calculated with a simple vector difference.

Using this flow map particles are advected. After moving
particles, some will remain in its original position, some will
move to an other image position and some will fall outside
the screen. For most of the movements this results an uneven
particle distribution.



Lengyel, Umenhoffer, Szecsi / Screen space hatching

4.3. Filtering dense areas

After particle movement we should restore the even artist-
defined particle density. Our first step is to filter out too dense
areas. This filtering means that we should keep a particle
only if drawing that particle will not make its local neigh-
bourhood too dense. Refreshing density during each particle
draw is not an option in a real-time environment as depen-
dency between the rendering of each line can make parallel
hardware implementation impossible. To overcome this we
should make the rejection of a single line dependent only on
a local desirable density but not on the influence of previ-
ously rendered lines. To achieve this we use the theory of
rejection sampling.

The classic rejection sampling problem is when we would
like to achieve a desired distribution, but we can not use
the inversion method. With rejection sampling we choose
a well known distribution which is easy to create and upper
bounds the desired distribution. The simplest distribution to
use is the uniform distribution with an appropriate scale. If
we assign a random priority for each sample of the uniform
distribution and reject the sample if its priority is above the
desired distribution, the remaining samples will have the de-
sired distribution.

On our specific case the desired distribution is a uni-
form distribution and our particles have an uneven distri-
bution which locally exceeds the desired uniform distribu-
tion. To filter out the particles we should know the density
at the neighbourhood of each particle. To do this we ren-
der a small disk shaped snippet at each particle with a linear
falloff and blend them together with additive blending. The
result is a bit noisy density function. The radius of the snip-
pets and their power defines the locality and smoothness of
the density map, these parameters are set empirically. Note
that these parameters should depend on the resolution and
the number of desired hatching lines. After parameter tun-
ing we used the following expressions which worked well
for different resolutions and line numbers:

snippet_size =
√

number_o f _pixels
desired_line_number ∗

6.5
window_resolution

snippet_power = 0.04∗ linearFallo f f ()

If the density map is given we examine each particle and
reject them if their priority scaled with the underlying den-
sity is above the desired uniform density. As priorities are
uniformly distributed, lines will be rejected uniformly thus
the resulting density in high density areas will also match the
original uniform distribution. After this filtering step particle
priorities should also be mapped back to the unit interval, as
high priority particles were filtered out. This will ensure the
uniform priority distribution again.

4.4. Refill sparse areas

After the filtering process we still need to fill in vacant areas.
To do this we take an other set of random samples and try to

fill the image with them. Here we also use the former density
map and keep particles only if their priority is above the un-
derlying density value. Thus at coarser areas we keep more
particles, and where we already reached the desired density
we reject all new particles. Again, particle priorities should
be mapped back to the unit interval. The new particles are
placed at the end of the former filtered particle buffer. At
this stage we again have a uniform particle position and pri-
ority distribution in image space, but particles are moving
with the surfaces wherever it is possible, which makes the
illusion of being defined in object space.

4.5. Illumination

Hatching density also depicts current lighting conditions,
thus illuminated image regions should have coarser hatching
density than areas in shadows. Here again we face the clas-
sic problem of rejection sampling. Our desired distribution
is the illumination value, and we have a uniform distribu-
tion to reject samples from. Each particle, whose priority is
below the inverted luminance value will be rejected. At this
step particles are not removed only their rendering is passed,
thus they will stay in the particle buffer which will be the
input of the next frame.

We can make animation more smooth if we don’t let sud-
den disappear and appear of lines due to luminance change
or flow filtering. We can store the line length for each par-
ticle, decrease this length if the particle is marked for re-
moval and remove it only if its length reached zero. The
same can be used for new lines: they start with a small line
length and in each frame their length will be increased. For
smooth luminance change we don’t even need to store pre-
vious length values they can be calculated on the fly by ap-
plying a smoothstep function centred at the rejection priority
cutoff value. Note that original solution is equivalent with a
step function at the inverted luminance value.

4.6. Line direction and bending calculation

Before final rendering the lines, we need to define their di-
rection and amount of bending. These features should be
chosen in a way that they describe the underlying geometry
well, and mimic the way an artist would orient them. Due
to our experiments presented in 7, we can say that no single
feature exists that can be used for all types of geometry (see
figure 3). On the other hand principal curvature directions
are commonly used in NPR techniques to orient lines, and
artist also find it as a natural orientation.

Principal curvature can be calculated from the curvature
tensor which is the Hessian of the depth field. As surface
normals describe the depth gradient the Hessian matrix can
be defined in terms of the directional derivatives of the sur-
face normal:

H =

(
∂⃗n
∂⃗u · u⃗

∂⃗n
∂⃗v · u⃗

∂⃗n
∂⃗u · v⃗

∂⃗n
∂⃗v · v⃗

)



Lengyel, Umenhoffer, Szecsi / Screen space hatching

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Hatching using luminance (top) and principal curvature features (bottom). Different geometry types need different
approaches to represent main surface features.

where u⃗ and v⃗ are orthonormal tangent vectors on the sur-
face. In our case, they are the projections of the screen space
unit x⃗ and y⃗ vectors to the surface. In other words, the Hes-
sian is the screen space directional derivatives of the screen
space normal vectors. The gradient is computed with a Sobel
filter and its value is compensated with the projected length
of the surface normal. The eigenvalues and eigenvectors of
this matrix define the maximum and minimum normal curva-
ture values and their corresponding directions, thus the prin-
cipal curvature and principal curvature direction.

We should note that using the normal vectors as first or-
der depth gradients will lead to clearly visible tessellation
in the second order features, as normal vectors are only lin-
ear approximations of a smooth surface. In some cases this is
does not produce obvious artifacts as lines are not placed too
dense to make these sudden changes annoying. On the other
hand when moving closer to the surface the relative density
gets higher, thus these triangle borders will be visible. We
also found that during the animation of the particles, some
of them can randomly move across of one of these borders,
which makes flickering orientation changes. To overcome
these problems we used an edge preserve smoothing filter
on the normal vectors before derivation.

In our tests we found that luminance gradient is also a
good feature that can describe the geometry well, and can

handle some special cases that principal curvature directions
not. These cases include surfaces with no curvature like flat
geometry, or with no principal curvature like a sphere. On
the other hand some geometry like a torus can be better de-
scribed with principal curvature directions (see figure 3).

To combine the advantage of both methods we calcu-
late both features and use the luminance gradient based line
direction where principal curvatures are uncertain. These
are the cases when the maximal and the minimal curvature
equals, and where no principal curvature can be calculated.
Figure 4 shows our automatic feature selection technique on
different type of geometries.

4.7. Final render

After line direction and amount of bending is calculated lines
are drawn as curved and textured triangle strips with hard-
ware blending enabled. The lines can be drawn directly to
screen with orthographic projection, as image space samples
do not need any 3D transformations, nor visibility testing.
Additionally we can clip lines on a per pixel basis using an
ID map to prevent them from crossing object borders. This
behaviour is useful in case of longer lines, but shorter lines
can even pass these borders without visible artifacts, which
makes the final rendering even more natural and hand drawn
like.



Lengyel, Umenhoffer, Szecsi / Screen space hatching

Figure 4: Line direction and curving calculated on a per
line decision between luminance and principal curvature
features.

5. Implementation

We implemented the hatching synthesis algorithm in a stan-
dalone application using OpenGL and GLSL shaders. Ge-
ometry buffers like depth and normal maps are rendered in
each frame, and the proposed algorithm uses them as input.
Note that this implementation can also be extended to sup-
port input from an image stream rendered with an offline ren-
derer. Image processing of the buffer inputs like gradient cal-
culation, principal curvature calculation or blurring was im-
plemented with full screen quad fragment shaders and render
to texture.

The main work flow of the algorithm is to process a dy-
namic array of particle data. This data processing can be im-
plemented with geometry shaders. The input of the shaders
are point primitives storing the particle data. A geometry
shader instance processes one particle and alters this data
if necessary, or it can completely reject it. The output of the
geometry shader is also a point primitive, which can be sent
to the rasterizer, or in our specific case it can be fed back to
an other buffer on the GPU without actual drawing. Output
feedback can be directed to a specific position in the GPU
buffer, so merging of two buffers is also possible (this is
needed in the particle refill phase). The number of lines that
was written to the buffers can be queried with the OpenGL
API, so we can always know the actual valid line count in
our buffers.

To get the actual density map, a geometry shader extrudes
small quads from each particle, and the pixel intensities are
calculated in the fragment shader. During final line render-
ing a geometry shader creates bended line strips from the
particle points and sends them to the rasterizer. Our imple-
mentation keeps all calculation and necessary data on the
GPU from input data processing to final display.

6. Results

As our algorithm works completely in screen space the per-
formance does not depend on the actual geometry only on

screen resolution. We should note that creating the input
buffers need additional scene rendering passes thus the per-
formance is afterall influenced by geometry complexity. This
can be eased with the use of multiple render targets to output
all necessary information in a single render pass. The main
limitation factors are line count and screen resolution. We
found that creating the density map is a critical part of the
algorithm, as because of the blending a serious amount of
pixel overdraw is present. This can be eased with choosing a
smaller snippet radius, which makes the density estimation
more local and bit more noisy. On the other hand using more
lines does not increase the computational cost of this density
rendering phase as more lines results in smaller snippet size
which reduces the number of fragments processed (see the
second column in table 1).

Choosing the snippet size rightly also influences line flick-
ering as we can not create a completely uniform density map
with drawing snippets, thus even without particle movement
some areas will be filtered while others will be filled with
extra particles. This results in a continuous disappear and re-
born of particles even within a static environment which is
an unwanted effect. To handle this we introduced a thresh-
old range around the desired density. Within this range we
treat the area as having the desired density. This threshold
value together with density snippet size and intensity should
be fine tuned to get good results.

The other aspect that greatly decreased the performance
is the edge preserve blurring we applied to the buffers be-
fore taking their gradient (see the third column in table 1).
The cost of this this step depends on the blur kernel and the
screen resolution. If little flickering is not a problem this step
can be skipped.

Number FPS FPS
of lines without filtering with filtering

10000 195 80

20000 190 80

40000 180 75

100000 145 60

200000 100 50

Table 1: Performance tests on a Geforce GTX 480 with
1280x720 screen resolution.

7. Conclusion

We presented a real-time hatching rendering algorithm that
randomly places textured hatch lines on the image plane.
Lines are advected according to screen space velocity of the



Lengyel, Umenhoffer, Szecsi / Screen space hatching

(a) (b)

(c) (d)

Figure 5: Frames from an animated sequence. On the left
the initial frame and its corresponding particle distribution
is shown. On the right a later frame and its distribution
is shown after rotating the camera. Uniform distribution is
well preserved during animation. Some particle accumula-
tion still occurs at object borders, but this is not visible on
the final image.

surfaces. Uneven image space particle density caused by par-
ticle movement is equalized using rejection sampling meth-
ods. Lines are rendered as textured line strips to the screen.
The resulting algorithm eliminates the time coherency prob-
lem of screen space methods (see figure 5) but can keep
their advantages like no visibility test is needed, uniform
screen space particle density is maintained and the perfor-
mance is independent of geometry complexity. Hatching
lines can have a wide variety of styles by adjusting line den-
sity, width, length, maximal bending and applying artistic
textures. Our GPU implementation provides real-time per-
formance in high resolution environments.

Acknowledgements

This work has been supported by OTKA ????.

References

1. Gershon Elber. Interactive line art rendering of
freeform surfaces. Comput. Graph. Forum, 18(3):1–12,
1999.

2. Aaron Hertzmann and Denis Zorin. Illustrating smooth
surfaces. In PROCEEDINGS OF SIGGRAPH 2000,
pages 517–526, 2000.

3. Matthew Kaplan, Bruce Gooch, and Elaine Cohen.
Interactive artistic rendering. In Non-Photorealistic
Animation and Rendering 2000 (NPAR ’00), Annecy,
France, June 5-7,2000.

4. Yongjin Kim, Jingyi Yu, Xuan Yu, and Seungyong
Lee. Line-art illustration of dynamic and specular sur-
faces. ACM Transactions on Graphics (SIGGRAPH
ASIA 2008), 27(5), December 2008.

5. Adam Lake, Carl Marshall, Mark Harris, and Marc
Blackstein. Stylized rendering techniques for scalable
real-time 3d animation. In Proceedings of the 1st inter-
national symposium on Non-photorealistic animation
and rendering, NPAR ’00, pages 13–20, New York, NY,
USA, 2000. ACM.

6. Hyunjun Lee, Sungtae Kwon, and Seungyong Lee.
Real-time pencil rendering. In Douglas DeCarlo and
Lee Markosian, editors, International Symposium on
Non-Photorealistic Animation and Rendering (NPAR),
pages 37–45. ACM, 2006.

7. Zoltán Lengyel, Tamás Umenhoffer, and László Szécsi.
Screen space features for real-time hatching synthesis.
In Proceedings of the 9th conference of the Hungarian
Association for Image Processing and Pattern Recog-
nition, KEPAF ’13, pages 82–94, 2013.

8. Afonso Paiva, Emilio Vital Brazil, Fabiano Petronetto,
and Mario Costa Sousa. Fluid-based hatching for
tone mapping in line illustrations. Vis. Comput., 25(5-
7):519–527, April 2009.

9. Emil Praun, Hugues Hoppe, Matthew Webb, and Adam
Finkelstein. Real-time hatching. In In Proceedings of
SIGGRAPH 2001, pages 579–584. ACM Press, 2001.

10. Michael P. Salisbury, Sean E. Anderson, Ronen Barzel,
and David H. Salesin. Interactive penâĂŞandâĂŞink
illustration. In In Proceedings of SIGGRAPH âĂŹ94,
pages 101–108, 1994.

11. Tamás Umenhoffer, László Szécsi, and László
Szirmay-Kalos. Hatching for motion picture pro-
duction. Comput. Graph. Forum, 30(2):533–542,
2011.

12. Johannes Zander, Tobias Isenberg, Stefan Schlechtweg,
and Thomas Strothotte. High quality hatching. Comput.
Graph. Forum, 23(3):421–430, 2004.


