The effective temperature of mutations
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Biological macromolecules experience two seemingly very different types of noise acting on different time
scales: i) point mutations corresponding to changes in molecular sequence and ii) thermal fluctuations. Exam-
ining the secondary structures of a large number of microRNA precursor sequences and model lattice proteins,
we show that the effects of single point mutations are statistically indistinguishable from those of an increase in
temperature by a few tens of Kelvins. The existence of such an effective mutational temperature establishes a
quantitative connection between robustness to genetic (mutational) and environmental (thermal) perturbations.

Biological systems are robust [1], and robustness is consid-
ered to be a fundamental feature of complex evolvable sys-
tems [2]. Molecular phenotypes, such as stable protein folds
and functional RNA structures, have provided fundamental in-
sight into the origin and principles of robustness in biological
systems [3—10]. In these systems perturbations on different
time scales, i.e., rare changes in sequence and omnipresent
thermal fluctuations, seem very different. Surprisingly, sev-
eral computational [11-14] and experimental [15-19] studies
suggest a qualitative similarity between the effects of muta-
tions and temperature. Stable proteins are in general more tol-
erant to point mutations [12, 15], and in the case of RNA, the
set of structures explored by thermal fluctuations are highly
correlated with the minimum free energy structures of single
point mutants[11, 14].

The correlation between the effects of point mutations and
temperature is less surprising if we recognize that each degree
of freedom of the molecule has an average thermal energy of
kgT/2 =~ 2.5/2 kJ/mol (where kg is the Boltzmann constant
and T" ~ 300 K is the absolute temperature) and the typical
free energy change associated with a point mutation is also
of the order of a kT (approximately 4 kJ/mol for a protein
[20], and about twice this large for the breaking of a hydrogen
bond in a nucleotide base pair). Despite this similarity in ener-
gies, for single instances of the system, i.e., individual copies
of protein or RNA molecules, permanent changes in sequence
are clearly different from ephemeral thermal kicks. However,
the distinction between mutational effects and thermal fluc-
tuations becomes less manifest in large populations and over
longer time scales where many possible point mutations are
explored as molecules are copied (transcribed and translated)
repeatedly via mechanisms prone to errors. From this per-
spective, perturbations of the phenotype (e.g., the protein fold
or RNA secondary structure) resulting from mutations can be
expected to have similar effects to thermal perturbations: both
jostle the system between structural states with energies that
differ by only a few times the thermal energy scale.

Here we demonstrate that this qualitative analogy between
mutational and thermal perturbations can be taken to a quanti-
tative level, and the effect of point mutations is well described
as an effective increase in temperature. For the original, so
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called wild type (WT), sequence let the probability of the sys-
tem being in any of its possible structural states (e.g., protein
folds or RNA secondary structures) be denoted by

_GWT(i,T)> 0

Pyr(i,T) = T

where Gwr(i,T) is the free energy of structure ¢ and
Zw(T) is the partition function, and let the probability of the
same structure transformed to an effective temperature 7o be
defined as

Posi (i, T, Togt) = GWT(’T)) , ()

1
Zew(T,Tea) " ( FnTer
with normalization constant Z.g (T, To ). Note that this trans-
formation preserves the relative contributions of the enthalpic
and entropic components of the free energy at the original
temperature 7'. The mutation averaged probability of the sys-
tem assuming structure ¢ can be defined as

N,
] 1 mut )
Pmut(zaT) = N . E pm(laT) 3 (3)
mut =1

where the summation index m runs over all possible point
mutations (of total number Ny,,¢) and p,,(i,7) denotes the
probability of structure ¢ for mutation m.

Examining the secondary structures of a large number of
microRNA (miRNA) precursor sequences and model lattice
proteins, we demonstrate that in most cases there exists a
well defined effective temperature T}, for which the trans-
formed probability distribution of the wild type approximates
the average probability distribution of single point mutants
with unanticipated precision:

Pmut(ivT) ~ Pcﬁ'(ivTv T:H) . (4)

In other words, we show that the effect of mutations are fully
described by considering only the free energies Gwr (¢, 1) of
the secondary structures ¢ of the single wild type sequence and
a single effective temperature 1.

We used the 23766 miRNA precursor sequences of
miRBase version 9.0 [21] upto the length of 250 nucleotides.
For each of these WT sequences we (i) generated all of its
single point mutants, and then (ii) determined the equilibrium
probability distributions (at 7' = 300 K) of the secondary
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FIG. 1. The effects of single point mutations and an increased
effective temperature on the frequency of the 33 most frequent
structures. For a typical miRNA and a typical lattice protein we plot
the equilibrium frequencies of structures (enumerated in decreasing
order of their frequencies) in the WT distribution (blue bars); in the
distribution transformed to the the optimal effective temperature 7 g
defined in the main text (red bars); and in the mutation averaged
distribution (green bars). Due to the large number of structures, only
the first 33 structures are shown. The complete distributions (after
binning) are displayed in Fig. 2. The insets illustrate the minimum
free energy structures.

structures of the WT and the mutant sequences, by using the
computational tools developed by Hofacker et al. [22] and
sampling 10 structures for each sequence. To establish the
generality of our results we also analyzed a markedly different
system, the model of 3 x 3 x 3 compact lattice proteins [5, 23].
In this model a protein is represented by a self-avoiding chain
of beads placed on a 3 x 3 x 3 square lattice and the free
energy of a given structural state of a given sequence is de-
fined as the sum of the interaction energies between nearest
neighbors [24]. We first randomly selected 12000 sequences,
and designated them as the WT. Subsequently, similarly to the
miRNA precursor sequences, for each of these WT sequences
we (i) generated all of its single point mutants, and (ii) deter-
mined the free energies of all 103346 possible structural states
of the WT and the mutant sequences, in order to compute the
equilibrium probabilities defined in Egs. (1) to (3).

Two typical examples, a miRNA and a lattice protein, are
shown in Fig. 1, displaying the above defined three distribu-
tions truncated to the first 33 most probable structures (ac-
cording to the WT distributions). In order to visualize the
entire distributions, in Fig. 2 we grouped the structures into
20 bins in such a way that each bin accommodated exactly
1/20th of the WT equilibrium probability distribution (Py).
The bins were filled from left to right with structures in de-
creasing order of their WT probability (starting with the most
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FIG. 2. The effects of single point mutations and an increased ef-
fective temperature on the binned distribution of structures. For
a typical miRNA and a typical lattice protein (which are the same as
in Fig. 1) the structures were grouped into 20 bins in such a way that
each bin accommodated exactly 1/20th of the WT equilibrium prob-
ability distribution (blue bars). The bottom panels share bins with the
top panels, and show the number of structures in each bin for the par-
ticular miRNA and a lattice protein considered. For the miRNA se-
quence smaller green squares show the result of sampling additional
structures up to a total of 107, 10% and 10° samples. The bottom
panels show that a few of the most stable structures account for most
of the probability. The histogram of the mutation averaged probabil-
ity distribution (green bars) is tilted to the right, indicating that the
mutations tend to destabilize the most stable structures. Raising the
temperature has a similar effect, as demonstrated by the histogram
of the WT distribution transformed to the optimal effective tempera-
ture T_g defined in the main text (red bars). The insets illustrate the
minimum free energy structures.

probable one, i.e., with the structure having the lowest free
energy Gwr). To ensure that each bin contained equal prob-
ability, structures at bin boundaries were split among neigh-
boring bins. The (generally non-integer) number of structures
belonging to each bin is shown in the panels below the his-
tograms illustrating that a few of the most stable structures ac-
count for most of the probability. Examining Fig. 2 we can see
that the histogram of the WT equilibrium distribution (P,
blue bars) is uniform by construction. The histogram of the
mutation averaged probability distribution (P, green bars),
however, deviates from uniformity and is tilted to the right, in-
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FIG. 3. The distribution of the optimal effective temperature for miRNAs and lattice proteins. In the leftmost panels the Euclidean
distance d(Tes) (solid lines) is plotted as a function of the effective temperature Teg for the two example sequences from Fig. 2. The other
panels summarize results for all sequence considered. The middle panels show the distributions of the optimal effectlve temperatures

(illustrated by the red arrow in the top left panel), while the rightmost panels show the distribution of uncertainties 67

green interval in the top left panel).

dicating that the mutations tend to destabilize the most stable
structures. Raising the temperature has a similar effect.

To quantify the similarity between the temperature trans-
formed and mutation averaged distributions we need to use
a distance measure. If there were an effective temperature
where the temperature transformed distribution would coin-
cide with the mutation averaged distribution, then any dis-
tance measure would give a zero distance at that particular
temperature. The main finding of our work is that although an
exact coincidence never occurs, for almost all of the investi-
gated systems there exists a well defined effective temperature
where the temperature transformed distribution is very simi-
lar to the mutation averaged distribution. Under these circum-
stances the effective temperature at which the distance is min-
imal is highly insensitive to the choice of the distance measure
(which we checked for most widely used measures). Thus, for
simplicity, we use the Euclidean distance

(Teff) = \/Z [Peff(iny Teff) - Pmut(iaT)]z ) (5)

as the distance measure, and define the optimal effective tem-
perature 77, where this distance is minimal. Figs. 1 and 2
show that the transformed distributions at the optimal temper-
ature (P, red bars) approximate the mutation averaged dis-
tributions remarkably well. The only noticeable discrepancy
(mostly observed for miRNAs) occurs at the rightmost bin,
which contains rarely visited, high energy, non-native struc-
tures.

In the leftmost panels of Fig. 3 the Euclidean distance
d(Teg) (solid lines) is plotted as a function of the effective
temperature T.g for both examples from Fig. 2. If d(T)};)
were exactly zero the d(Teg) curve would have a sharp, sym-
metric, “V”-shaped bottom. This is because the square of the

& (illustrated by the

Euclidean distance (dz( Teor)) is an analytic function, which
to leading order is expected to have a quadratic minimum. In
reality, however, d(T/;) is never exactly zero, and the bottom
of the d(Te.g) becomes rounded, exhibiting a dull, parabolic
minimum at 7 (red arrow in the top left panel of Fig. 3). We
quantify this “dullness” using the half width (green interval
in the top left panel) of the fitting parabola (dashed lines) be-
tween the points where the parabola touches the two tangents
(dotted lines) emanating from the horizontal axis at T

2d(T%)

0T ——cic
T\ T

(6)
where d”(T7%;) denotes the second derivative of d(T,) at the
minimum. This “dullness”, having the dimension of tempera-
ture, provides an estimation for the uncertainty in determin-
ing the effective temperature. Note that the dimensionless
value of the minimal distance d(7;) has no obvious physi-
cal meaning and, unlike the optlmal temperature 7 and the
uncertainty 67, it is sensitive to the choice of the distance
measure.

The middle and right panels of Fig. 3 show the distributions
of the optimal effective temperatures 7 and their uncer-
tainties 01, respectively, for all studied miRNAs (top) and
model proteins (bottom). The typical uncertainty (~ 0.027
for the proteins and ~ 0.037 for the miRNAs) is considerably
smaller than both the width of the corresponding 17 distri-
bution and the typical value of T, indicating the ex1stence
of a well defined optimal effective temperature for nearly all
miRNAs and proteins.

For the miRNAs the length dependence of T can also be
examined, where the length L is defined as the number of nu-
cleotides). The data show that T}z ~ 127"/L + T (Pearson’s
p = 0.582, with p < 2.2 x 10715). This is not surprising if
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FIG. 4. The effect of selection on the effective temperature. Start-
ing from 1000 random amino acid sequences and randomly choosing
a structural state, we performed selection for the increased equilib-
rium frequency of the chosen structure. In each of the 1000 runs
10000 subsequent attempts of introducing random point mutations
were executed. Each attempt was accepted (i) with probability 1 if it
increased the equilibrium frequency of the chosen state; and (ii) with
probability (p’/p)?, if it decreased the equilibrium frequency, where
pand p’ denote the equilibrium frequencies before and after the point
mutation, respectively, and o is the strength of the selection. The up-
per panel shows the optimal effective temperature, the middle panel
the uncertainty, and the bottom panel the average equilibrium proba-
bility of the chosen structure as a function of the selection strength.

we realize that the most probable effect of a point mutation
on the most stable structures is the breaking of a few hydro-
gen bonds and the concomitant increase of the free energy by
an amount consistent with 12kgT. Distributing this increase
uniformly among the L nucleotides as a result of averaging
over point mutations is analogous to raising the temperature
by about 127"/ L.

A similar length dependence of T7}; is expected for the pro-
tein model (and any other systems), as well. Our data for
L = 27 amino acids suggest a temperature increase of about
3T/ L, which is consistent with an energy cost of about 3kgT
of changing an amino acid in the most stable structures. The
wider distribution of T for miRNAs compared to model pro-
teins results, at least in part, from the variation in length of the
miRNAs.

The above results demonstrate a strong analogy between
the effects of mutational and thermal fluctuations on the struc-
tures of biological macromolecules, and justify the introduc-
tion of the concept of effective mutational temperature. The
generality of our results are supported by the analysis of two

markedly different systems: (i) real microRNA precursor se-
quences, shaped by millions of years of evolution; and (ii)
randomly selected artificial lattice proteins, lacking any evo-
lutionary history. Thus, our results also indicate that the exis-
tence of the effective mutational temperature does not require
the systems to have undergone natural selection and, there-
fore, it must have shaped the evolution of macromolecules
from the beginning of life.

An advantage of the model protein system is that it also
allows the study of the effect of selection on the value of the
effective mutational temperature. To address this issue we per-
formed Monte Carlo simulations of selection for the increased
equilibrium frequency of a prespecified structure (see Fig. 4
for the results and the details of the simulations). The results
show that the effective mutational temperature increases with
the strength of selection (which is not surprising, since the ef-
fect of a point mutation on a better adapted and, therefore,
more fragile system is expected to be larger); and the un-
certainty of the effective mutational temperature remains al-
ways small (interestingly, with a minimum near the selection
strengths, where the prespecified structure starts to dominate
the equilibrium distribution).

The diversity of proteins and nucleic acids we find in the
living world are the result of evolution; their properties are
determined by the laws of physics and chemistry [25]. To de-
cipher the interplay of these two kinds of causality we have to
understand the relationship between molecular sequence and
function. The existence of a well defined mutational temper-
ature demonstrates a general property of this relationship: the
biophysics of RNA and protein structures imposes a statisti-
cal equivalence between the effects of mutational and thermal
perturbations. In other words, the biological noise introduced
by point mutations is quantitatively analogous to the physical
noise generated by thermal fluctuations.

In an evolutionary context this implies that selection for ro-
bustness against either of these will produce, as a correlated
by-product, robustness against the other. Our result suggests
an explicit model of how maintaining stability, a major con-
straint in the evolution of biological macromolecules, leads to
stability against point mutations (both at the short time scales
of molecular replication and the long time scales of organism
reproduction), and also facilitates opportunities for molecular
innovation by allowing increased neutral variation [15, 26].
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