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2Konkoly Observatory, MTA CSFK, H-1121 Budapest, Konkoly Thege M. út 15-17, Hungary
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ABSTRACT
HD 181068 is the brighter of the two known triply eclipsing hierarchical triple stars in the
Kepler field. It has been continuously observed for more than 2 yr with the Kepler space
telescope. Of the nine quarters of the data, three have been obtained in short-cadence mode,
that is one point per 58.9 s. Here we analyse this unique data set to determine absolute physical
parameters (most importantly the masses and radii) and full orbital configuration using a
sophisticated novel approach. We measure eclipse timing variations (ETVs), which are then
combined with the single-lined radial velocity measurements to yield masses in a manner
equivalent to double-lined spectroscopic binaries. We have also developed a new light-curve
synthesis code that is used to model the triple, mutual eclipses and the effects of the changing
tidal field on the stellar surface and the relativistic Doppler beaming. By combining the stellar
masses from the ETV study with the simultaneous light-curve analysis we determine the
absolute radii of the three stars. Our results indicate that the close and the wide subsystems
revolve in almost exactly coplanar and prograde orbits. The newly determined parameters
draw a consistent picture of the system with such details that have been beyond reach before.
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1 IN T RO D U C T I O N

The Kepler space telescope, in addition to its primary science aims,
has led to a new era in the investigation of multiple star systems.
Among the highlights we find the discoveries of the first triply
eclipsing triple systems (Carter et al. 2011; Derekas et al. 2011)
and some interesting studies of multiple star systems (Feiden,
Chaboyer & Dotter 2011; Steffen et al. 2011; Gies et al. 2012;
Lehmann et al. 2012).

Binary and multiple systems have an important role in astro-
physics. The most accurate way to measure stellar parameters is
through eclipsing binaries, and their distance determination is also
very accurate. Their light curves provide essential information on
the internal structure of the components, their atmospheres and their
magnetic activity. In the case of non-circular orbits and multiple
systems, the orbital elements can change significantly, allowing

� E-mail: borko@electra.bajaobs.hu

detailed insights into the time variation of these parameters. The
special geometry of the very rare and new category of eclipsing
systems, namely the triply (or mutually) eclipsing triple systems,
enables fast and easy determination of further characteristics
that otherwise could only be studied with great effort on a long
time-scale.

As an example, we refer to the spatial configuration of such hier-
archical triple systems, which is a key parameter in understanding
their origin and evolution (see e.g. Fabrycky & Tremaine 2007,
and references therein). In the absence of mutual eclipses, the two
ways to determine the mutual (or relative) inclination in a hierarchi-
cal system are (a) astrometric (or, more rarely, polarimetric) mea-
surements of the spatial orientations of the two orbits individually
and (b) indirect dynamical calculation from the measured mutual
gravitational perturbations of the bodies. The first method requires
long-baseline optical (or very long baseline radio) interferometric
measurements for the most interesting close binaries, which typi-
cally have milli-arcsecond angular separations. It is therefore not
surprising that, starting with the pioneering work by Lestrade et al.
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(1993) on Algol, this method has only been applied to about a
dozen binaries (see also O’Brien et al. 2011; Peterson et al. 2011;
Baron et al. 2012; Sanborn & Zavala 2012, for more recent results).
The applicability of polarimetric measurements (although does not
require high-category instruments) in this field is even more re-
stricted (see e.g. Piirola 2010). The second method, the detection of
gravitational perturbations, requires accurate, frequent and contin-
uous photometric eclipse time determination. This method will be
described in detail in the next section.

The situation is much easier in the case of mutual eclipses, where
the shape of the light curve (especially around the ingress and
egress phases) contains direct and unique information about the
system geometry. This is discussed in detail by Ragozzine & Hol-
man (2010) and Pál (2012). The former authors list several other
values of multitransiting systems, mainly in the context of multiple
planetary systems. Their model has been successfully applied to
analysing complex light curves and determining the corresponding
geometrical and physical parameters (both for the orbits and the
individual bodies) for different multiple transiting planetary (Doyle
et al. 2011, Kepler-16; Lissauer et al. 2011, Kepler-11; Carter et al.
2012, Kepler-36; Welsh et al. 2012, Kepler-34b-35b) and stellar
systems (Carter et al. 2011, KOI-126).

KOI-126 and HD 181068 are the first representatives of the new
category of the triply eclipsing triple systems. Both are also mem-
bers of a very small group of compact hierarchical triple stellar sys-
tems. They contain a close binary, with orbital periods P KOI

1 = 1.77
and P HD

1 = 0.91 d, and a more distant component forming a wider
binary with the centre of mass (CM) of the close pair with periods
P KOI

2 = 33.92 and P HD
2 = 45.47 d, respectively. The main special-

ity of the two systems is their triply eclipsing nature, which means
that both the inner and the outer binaries show eclipses. They have
other, very peculiar characteristics. Both belong to the most compact
triple stellar systems, and there is only one known hierarchical triple
system with a shorter outer period, namely λ Tau, with P2 = 33.03 d.
Furthermore, these two systems are unusual even amongst the very
few similarly compact triples in having reversed outer mass ratio.
In other words, in these two objects the wide, single component
is the more massive star, and also the largest and brightest. Before
Kepler, the highest known outer mass ratio did not reach 1.5, and
for 97 per cent of known hierarchical triplets it remained under 1,
i.e. almost in all the catalogized systems, the total mass of the close
binary exceeded the mass of the tertiary component (see Tokovinin
2008). (The question of whether this comes from observational bias
is not discussed here.) In contrast, the outer mass ratios of these two
new systems are qKOI

AB ∼ 3.0 and qHD
AB ∼ 1.9, respectively.

Despite the similarities of KOI-126 and HD 181068 to each other,
there are remarkable differences between the two systems. On one
hand, KOI-126 consists of three nearly spherical main-sequence
stars, where the members of the close binary have such low surface
brightnesses that their light-curve modelling is largely equivalent
to those of the multiple planetary systems. This is not true for
HD 181068, where all the three stars are tidally distorted, have al-
most equal surface brightnesses and show evidence of intrinsic light
variations, all of which make light-curve modelling of HD 181068
more difficult than for KOI-126. On the other hand, dynamical anal-
ysis of HD 181068 is much less complex than for KOI-126, because
of the much simpler and apparently constant orbital configurations.
As a consequence, our method of light-curve analysis is much closer
to the traditional eclipsing binary star light-curve modelling meth-
ods (see Kallrath & Milone 2009, for a review) than the procedures
applied for systems like KOI-126.

In this paper, we analyse more than 2 yr of Kepler observations
of HD 181068. We mainly concentrate on determining the funda-
mental astrophysical parameters of the three stars and orbital ele-
ments of the close and wide orbits. These quantities by themselves
carry very important information already about the system and their
members’ origin and evolution and, furthermore, give the necessary
input parameters for other forthcoming studies, for example for a
comprehensive study of pulsations of the red giant component. Nev-
ertheless, due to the uniqueness of the studied system, our aim is
not simply to give a case study. The specifics of HD 181068 allow
us to present methods never used before. For example, in our pe-
riod study (Section 3), which depends on the analysis of the eclipse
timing variations (ETVs) for both the close and the wide systems,
we determine the (inclination-dependent) masses of the wide binary
members in a new manner. While the radial velocity curve of the
most massive A component is known, the missing second radial
velocity curve of the spectroscopically unseen B component (i.e.
the close binary itself) is replaced by the light-time orbit of the B
component deduced from the ETV analysis of the shallow eclipses.
This method is fundamentally different from the one followed by
Steffen et al. (2011) for KOI-928, for example, because it does
not use the dynamical part of the ETV, only the simple geometri-
cal light-time contribution. More details are given in Section 3. In
Section 4, the light-curve analysis procedure is described in detail,
while Section 5 contains the discussion of the results. Finally, the
details of our light-curve synthesis and analysis code, and some
additional examples of calculations of certain quantities purely in
a photometrical and geometrical way from the mutual eclipses, are
given in the appendices.

It is important to establish a clear notation for this system. In
Derekas et al. (2011) the three components were labelled A, B and
C (in order of decreasing masses and luminosities). Here, we use
the more clarified and expressive denotations, A, Ba, Bb. As before,
A denotes the most massive and luminous component (the main
component of the wider A−B binary), while Ba and Bb refer to the
members of the close binary formed by the two red dwarfs, formerly
denoted by B and C. When referring to any physical quantities of the
individual stars, we use subscripts. For example, mA and mBa denote
the masses of the A and Ba components, respectively, but mB refers
to the total mass of the close binary, i.e. (mBa + mBb), and mAB stands
for the total mass of the hierarchical triple. With this notation we
can avoid the confusion with the indices of the orbital parameters
of different orbits used for the period study. Namely, following the
common usage, the elements of relative orbit of the Bb component
around its companion Ba are subscripted with 1, whereas the relative
orbit of the ternary component A, around the CM of the Ba−Bb

subsystem (symbolically represented with B), is associated with the
subscript 2. However, in terms of light time and the radial velocity,
the absolute orbit (i.e. the orbit of some star around the CM) is
to be considered, rather than the relative orbits. In these cases,
those absolute orbital elements, which numerically differ from the
corresponding relative orbital element, were naturally denoted by
the alphabetic sign of the given star, or subsystem.

2 O B S E RVAT I O N A N D DATA R E D U C T I O N

The analysis is based on photometry from the Kepler space telescope
(Borucki et al. 2010; Gilliland et al. 2010; Jenkins et al. 2010a,
2010b; Koch et al. 2010). The data set is 775 d long, observed in six
quarters (Q1–Q6) at long cadence (LC; time resolution of 29.4 min)
and three quarters (Q7–Q9) at short cadence (SC; time resolution of
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Figure 1. Example of a primary (upper panel) and a secondary (lower
panel) shallow minimum to illustrate the states before (black triangles) and
after (red crosses) the detrending of the minima. The dashed line is the fit
used for the detrending (see Section 2.1).

58.9 s). Since HD 181068 is a ∼7 mag star, it is heavily saturated,
resulting in charge bleeding. Therefore, the SC observations were
obtained using a custom made aperture mask. This was uploaded
directly to the spacecraft lookup table and shaped precisely to match
the shape of the target on the detector including the bleeding area.

2.1 Measuring the times of minima

The 2.1-yr-long observations cover ∼885 orbital cycles of the close
pair and 17 revolutions of the wide system. Approximately 10 per
cent of the eclipses of the close binary (hereafter we refer to them as
shallow minima) occur during the eclipse events of the wide system
(hereafter deep minima) and cannot be observed. Additionally, a
few hundred events escaped observation due to data gaps. In all,
1177 of the 1770 shallow minima were analysed. The analysis of
these minima was quite a complex task. As shown by Derekas et al.
(2011), the red giant component shows oscillations on a time-scale
similar to the half of the orbital period of the short-period binary.
In addition, there are long-term variations, discussed in Section 4,
which slightly distort the shape of the shallow minima, as shown in
Fig. 1. This distortion has a significant effect on the measurement
of the exact times of minima.

To correct for these distortions, we applied the following method
in determining the times of minima. We took the ±0.225 d interval
around each minimum and fitted low-order (4–6) polynomials out-
side the eclipses. Then we corrected each subset, which resulted in
a detrended light curve. Finally, to determine the times of minima,
we fitted low-order (5 and 6) polynomials to the lowest parts of the
minima.

We also analysed the available deep minima. Out of the 34 events
we were able to determine times of minima in 28 cases. (One of these
events was omitted from the final analysis, due to its large deviation
from the general trend of the data, which might be caused by its

Table 2. Times of minima for the wide system.

BJD Cycle numbera BJD Cycle numbera

245 4977.0831 −11.5 245 5363.5693 −3.0
245 5022.5375 −10.5 245 5386.3163 −2.5
245 5045.2970 −10.0 245 5409.0662 −2.0
245 5068.0335 −9.5 245 5431.7818 −1.5
245 5113.5169 −8.5 245 5454.5345 −1.0
245 5136.2170 −8.0 245 5477.2681 −0.5
245 5158.9550 −7.5 245 5499.9950 0.0
245 5204.4405 −6.5 245 5545.4559 1.0
245 5227.1669 −6.0 245 5590.9390 2.0
245 5249.9048 −5.5 245 5613.6734 2.5
245 5272.6355 −5.0 245 5659.1425 3.5
245 5295.3893 −4.5 245 5681.8955 4.0
245 5318.1113 −4.0 245 5704.6063 4.5
245 5340.8384 −3.5 245 5727.3559 5.0

aHalf-integer values refer to secondary minima.

incomplete sampling.) To determine these times of minima, first
we removed the effects of the intrinsic brightness variations from
the light curves, and then fitted each outer transit and occultation
event individually with our newly developed simultaneous light-
curve solution code. Both the code and the complete light-curve
analysis are described in Section 4.

The determined times of minima are listed in Tables 1 and 2 for
the close and the wide pairs, respectively.

3 A NA LY SI S O F THE ECLI PSE TI MI NG
VA R I AT I O N S ( E T V s)

3.1 The close binary

In order to study the ETVs, the following linear ephemeris was
calculated for the shallow minima:

MINI−shallow(BJD) = 245 5051.236 25 + 0.d905 677 × E, (1)

where E is the cycle number. The corresponding ETV diagram is
plotted in Fig. 2.

We see a sinusoidal variation with a period identical to the eclips-
ing period of the wide system. There is also a smaller, long-term
variation that might either be part of a longer period variation or
represent a secular trend, as is the case with several close binary
systems. First, we analyse the periodic behaviour of the ETV, and
then the possible secular (parabolic) term will also be discussed.

3.1.1 Short-period variations: general remarks

To detect further periodicities, a discrete Fourier transform (DFT)
was calculated for the ETV curve. The resulting amplitude spec-
trum shows that the odd harmonics of the fundamental frequency
are also present (see Fig. 3), while only the first even harmonic (i.e.

Table 1. A sample of times of minima for the close pair (the whole table is published only electronically; see the Supporting Information).

BJD σ Type BJD σ Type BJD σ Type BJD σ Type

245 4963.8399 0.0010 II 245 4994.6312 0.0010 II 245 5101.5010 0.0010 II 245 5132.2946 0.0010 II
245 4964.2926 0.0010 I 245 4995.0838 0.0010 I 245 5101.9551 0.0010 I 245 5132.7470 0.0010 I
245 4965.1967 0.0010 I 245 4995.5359 0.0010 II 245 5102.4099 0.0010 II 245 5133.1999 0.0010 II
245 4965.6478 0.0010 II 245 4995.9891 0.0010 I 245 5102.8605 0.0010 I 245 5133.6511 0.0010 I
245 4966.1021 0.0010 I 245 4996.4429 0.0010 II 245 5103.3130 0.0010 II 245 5134.1046 0.0010 II

 at E
L

T
E

 on Septem
ber 28, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Dynamical masses, absolute radii and 3D orbits of HD 181068 1659

Figure 2. ETVs in the shallow minima. The triangles and circles mark the LC and SC data, respectively. The solid line stands for the Q1–Q9 fit, while the
dashed line represents the weak secular (parabolic) trend.

Figure 3. The DFT amplitude spectrum of the ETV curve (lower solid line).
In order to illustrate the possible data-sampling origin of the odd harmonics,
the spectrum of a similarly sampled sine function with f0 frequency is also
plotted (upper dashed line).

Figure 4. The phased ETV curve together with the best linear least-squares
fit for the Q1–Q9 data. Note that the quadratic term has been subtracted.

2f0) exists, and its amplitude is smaller than that of the 3f0 and 5f0

components. To check whether this structure is a consequence of
the non-uniform sampling (i.e. the missing data during the deep
eclipses, when the eclipse events of the close pair cannot be ob-
served, see Fig. 4 below), we calculated a simple circular light-time

orbit solution (i.e. we first fitted a sine curve with the fundamental
frequency of the DFT spectrum). Sampling this solution at the loca-
tions (i.e. cycle numbers) of the observed data, and calculating the
DFT spectrum of this data set, we found that the two spectra have
very similar structure (see Fig. 3), confirming our conjecture that
the odd peaks are a data-sampling effect. Consequently, we restrict
our analysis on the main peak (f0) and its second harmonic (2f0).

Considering the fundamental term, it is clear that its main source
should be the gravitational interaction between the inner, close bi-
nary and the wider, more massive giant star. This interaction has at
least two consequences: (i) the geometrical light-time effect (LITE)
and (ii) a dynamical effect, due to the gravitational perturbations
of the third body on the close, inner binary. In the case of LITE,
the amplitude of the effect increases with the separation, as seen in
dozens of systems (see e.g. Qian et al. 2012; Pop & Vamoş 2012, for
most recent examples). Conversely, the amplitudes of the dynam-
ical terms scale with (P 2

1 /P2) which, due to various observational
biases, makes this phenomenon difficult to detect with traditional
ground-based observations. A detailed analysis of this topic can
be found in Borkovits et al. (2003, 2011). To our knowledge, the
only system in which the dynamical effect was clearly detected by
classical ground-based, small-aperture photometric observations is
IU Aurigae (Mayer 1990; Özdemir et al. 2003). Nevertheless, for
compact systems like the recently discovered KOI-126 (Carter et al.
2011), KOI-928 (Steffen et al. 2011), the amplitude ratio may be
reversed, as was clearly shown for KOI-928 by Steffen et al. (2011).

For HD 181068, we first consider the LITE contribution. Its shape
and amplitude are

ETVLITE = aB sin i2

c

(
1 − e2

2

)
sin uB

1 + e2 cos v2
, (2)

ALITE ≈ 1.d1 × 10−4 mA

m
2/3
AB

sin i2P
2/3
2

(
1 − e2

2 cos2 ωB

)1/2
, (3)

where aB, i2, e2, ωB, P2 are the semimajor axis, inclination, ec-
centricity, argument of periastron and period of the binary’s orbit
around the common CM of the triple system. Furthermore, v2 is the
true anomaly of the eclipsing pair in this orbit, uB = v2 + ωB is its
true longitude measured from the intersection of the orbital plane
and the plane of the sky, and c is the speed of light. (Inclination,
eccentricity, period and true anomaly are simply given subscript 2,
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because their values are identical to those of the relative wider orbit,
traditionally centred on the inner binary.) Note also that in equation
(3) masses should be given in solar masses, while period in days.
Substituting the values found by Derekas et al. (2011) (i.e. mA ≈
3 M�, mAB ≈ 4.6 M�, i2 ≈ 87.◦6, P2 ≈ 45.d5, e2 = 0), we get

ALITE ≈ 1.5 × 10−3 d, (4)

or ∼2.4 min.
Now, considering the dynamical perturbation term, whose am-

plitude should be proportional to (Borkovits et al. 2011)

Adyn ∼ 1

2π

mA

mAB

P 2
1

P2

(
1 − e2

1

)1/2

(
1 − e2

2

)3/2 . (5)

For the present system this results in

Adyn ∼ 1.9 × 10−3 d, (6)

which is similar to the LITE. However, as we now point out, a more
detailed analysis shows that the ETV curve should be LITE domi-
nated. Although the harmonics of the fundamental frequency could
arise from the eccentricity of one of the orbits, there is strong evi-
dence from the radial velocity solution of Derekas et al. (2011) that
both orbits are circular, which is further supported by the locations
and shapes of the secondary minima with respect to the primary
minima in both the close and wide orbits (see the next section).

Accepting that both orbits are nearly (or exactly) circular, the
LITE contribution is restricted to the fundamental term, and there
is no dynamical addition to this term. In this situation, the only
dynamical terms that can give non-vanishing contributions are as
follows:

ETVdyn = 3

8π

mA

mAB

P 2
1

P2

{
sin2 im sin 2(u2 − um2)

+1

2
cot i1 sin im[sin um1 cos 2(u2 − um2)

+ cos im cos um1 sin 2(u2 − um2)]} (7)

(see equation 461 of Borkovits et al. 2003). As before, indices 1
and 2 refer to the elements of the close and wide relative orbits,
respectively. Furthermore, im denotes the mutual inclination of the
two orbital planes, while um1 and um2 stand for the angular distances
of the intersection of the two orbits from the plane of the sky,
measured on the respective planes (see Fig. A2 in Appendix A).
We see that in the case of coplanarity, all these terms vanish due
to sin im = 0. For the present situation, the second and third terms,
arising from nodal regression (the precession of the orbital plane of
the close pair), can also be simply omitted independently from the
mutual inclination, due to the almost edge-on view of the orbital
plane, as 1

2 cot i1 = 1
2 cot 87.◦6 ≈ 0.02.

As a consequence, we are in a very fortunate situation. Provided
we accept that the 45.5-d-period sinusoidal ETV is caused by the
above-described geometrical and dynamical effects, the signals of
the two phenomena could very easily be disentangled. First, the
amplitude of the P2-period component gives information about the
physical dimensions of the close binary’s orbit around the CM of
the triple system. Combining this result with radial velocity mea-
surements of the giant companion makes it possible to determine
the masses mA and mAB (as a function of the photometrically known
sin i2) in a similar manner to a double-lined spectroscopic binary

1 We corrected here the erroneous negative sign in the nodal term (i.e. in
front of 1

2 cot i1).

(SB2). Secondly, the 1
2 P2-period term makes it possible to deter-

mine the relative (or mutual) inclination of the two orbits, i.e. the
spatial configuration of the triplet.

Taking into account the above considerations, the ETV analy-
sis was carried out as follows. First, a general linear least-squares
method was applied to search for the best fit in the following form:

f (E) = c0 + c1E + c2E
2 +

2∑
j=1

(aj sin jωE + bj cos jωE), (8)

where the frequency was taken from the DFT analysis and was
held fixed. Note that its physical meaning is ω = 2π Pe1

Pe2
, where

Pe1 and Pe2 stand for the eclipsing periods of the close and wide
binaries. These quantities, strictly speaking, are neither equal to the
anomalistic periods P1 and P2 (which appear in the amplitudes of the
dynamical terms) [e.g. for γ systematic velocity Pei = Pi(1 + γ

c
)]

nor necessarily constant, especially when c2 �= 0. Nevertheless, for
our purposes, these differences are not significant.

We carried out two fitting procedures: one for the complete data
series and another only for SC Q7–Q9 data. Instead of estimating
and using individual measurement errors for each data points, we
applied a simple weighting scheme. Namely, weights σi = 0.d0005
and σi = 0.d001, estimated from the eclipse time determination pro-
cedure, were chosen for SC and LC minima, respectively. After a
preliminary fit, points above the 3σ limit were removed, and the
procedure was reiterated. We list our results from the two data sets
in Table 3, while the corresponding fitted curves are shown in Fig. 2.

Table 3. Fitted and derived parameters (and their formal errors in the last
digits) from the general linear least-squares fit to the ETV curve.

Parameter Q1–Q9 Q7–Q9

f0

(
= P1e

P2e

)
0.019 897(2)

c0 −0.000 018(51) 0.004 275(1206)
c1 −0.000 0002(3) −0.000 0125(40)
c2 0.5(4) × 10−9 10.8(33) × 10−9

a1 0.001 040(28) 0.001 128(34)
b1 −0.001 004(27) −0.001 028(33)
a2 −0.000 001(29) 0.000 006(35)
b2 0.000 089(26) 0.000 067(31)

TBab-primin (BJD) 550 51.236 232(51) 550 51.240 526(1206)
P1e (d) 0.905 6768(3) 0.905 6645(40)
�P1e (d cycle−1) 1.1(8) × 10−9 21.6(66) × 10−9

P2e (d) 45.518(4) 45.517(5)
aB sin i2 (R�) 54(1) 57(1)
(uAB)0 (◦) −44(1) −42(1)
TAB-primin (BJD) 550 45.4(1) 550 45.2(2)

aA sin ia2 (R�) 33.43(5)
mA/mAB 0.617(5) 0.629(5)
mAB sin 3i2 [M�] 4.30(15) 4.76(20)
mA sin 3i2 [M�] 2.65(10) 3.00(13)

mA/mAB sin 2im 0.042(12) 0.031(14)
ibm (◦) 15(2) 13(3)
um2 (◦) 91(9) or 271(9) 95(15) or 275(15)

ic2 (◦) 87.7
i
b,d
1 (◦) 88(2) or 88(2) 87(3) or 89(3)
��b, c (◦) 15(2) or −15(2) 13(3) or −13(3)

aTaken from Derekas et al. (2011);
b 180◦ − im, 180◦ − i1, 180◦ − �� give equivalent solutions;
cFixed from the light-curve solution;
dThe second values are valid for um2 + 180◦.
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We also show the phased graph in Fig. 4. The polynomial terms (i.e.∑
ciEi) were subtracted from this latter curve. In Table 3, along with

the direct output of the least-squares fits, the derived physical and
geometrical quantities, and their standard errors are also tabulated.

Before analysing the individual Fourier contributions, we should
stress, however, that there is a discrepancy of about 0.05 d between
the wide-orbit’s period obtained here from the LITE solution and the
one determined from the deep eclipses directly (see later in Section
3.2). This is quite significant, as during the measured 17-cycle-long
interval it would result in a shift of about 0.85 d in the occurrence
of the eclipse events. Our light-curve solution (Section 4) clearly
shows that the correct period is the one obtained from the times of
deep minima in Section 3.2, and not the present one. The origin of
this discrepancy is unclear. It might be caused by the observations of
shallow minima being absent around the extrema of the LITE orbit.
A firm resolution will require further investigations on a longer time
interval. Fortunately, this period difference is too small to influence
the analysis of the Fourier terms described below.

3.1.2 Short-period variations: light-time effect

Considering the light-time contribution first, its most important out-
put is the physical size of the light-time orbit of component B (at
least as a function of inclination i2). Together with the semimajor
axis of component A’s orbit (obtained from radial velocity mea-
surements), this yields the physical masses of the wide binary (i.e.
the mass of the giant component and the total mass of the close
binary). Note that, as one can see in Table 3, the ratio mA/mAB has a
significantly lower standard error than the masses individually and,
furthermore, it does not depend on the inclination i2. Nevertheless,
there is clearly a significant discrepancy between the mass ratios and
the masses derived from the two solutions. The mass ratio depends
strongly on the amplitude of the LITE term. However, the mass of
the giant component resulting from the pure, better quality SC data
accurately confirms the value derived from previous results and as-
trophysical estimations of Derekas et al. (2011). Consequently, in
the following we adopt this second (Q7–Q9 SC-data only) solution.

The second parameter coming from the LITE term, the phase
information, is less useful, but we may use it for an indirect
checking of the accuracy of our solution. This value estimates
a primary eclipsing mid-minimum (i.e. mid-transit of the small
binary in front of the giant component) at BJD 550 45.21 ± 0.d16.
By the use of the direct ETV-determined ephemeris of the wide
binary (see Section 3.2) we measure phase φ = 0.p998 for this
event, i.e. the φ = 0 phase occurred at BJD 550 45.287 62, which
is clearly within the formal error.

3.1.3 Short-period variations: dynamical effects

Now we turn to the dynamical term. The corresponding Fourier co-
efficients (a2, b2) are almost two orders of magnitude smaller than
those of the LITE terms, and they are close to the standard errors.
Consequently, the following results should be considered with great
caution. From the amplitude we get sin 2im ≈ 0.05, which is large
enough to marginally verify the omission of the nodal contribution,
but not large enough to give a numerically trustable output. From
this result we obtain two different values for the relative inclination.
However, as will be shown in Section 5, we can rule out the ret-
rograde orientation photometrically. Therefore, the corresponding
angles are calculated only for prograde relative orbits. By com-
bining the mutual inclination, the phase term (um2) and the visible

inclination (i2) – the latter being known from the light-curve solu-
tion – we can calculate the complete 3D orbit of the triple system.
In Table 3 we also give the difference of the longitudes of the nodes
(��) on the sky, as well as the visible inclination i1 of the close
system. Since i1 is also known from the light-curve solution, this
result might help to resolve the � ambiguity and also serves as an
accuracy check for our solution.

Both solutions seem to indicate a significant (13◦−15◦) mis-
alignment between the two orbital planes. If this fact were real, a
precession of the two orbital planes would occur around the invari-
able plane of the triple system. It can be shown (see e.g. Söderhjelm
1975; Borkovits, Forgács-Dajka & Regály 2007) that the orbital
inclination of the close binary would then vary cyclically with an
amplitude of 28◦−30◦ on a time-scale of 13−14 yr. Furthermore,
the fact that the phase term um2 is close to 90◦ or 270◦ [i.e. the
observable inclinations (i1 and i2) have very similar numerical val-
ues] shows that this hypothetical effect would produce the fastest i1

variations at the present epoch. This means that during the Q1–Q9
observational interval we should have observed more than 10◦ vari-
ation in the visible inclination (i1) of the close pair. This variation
would have resulted in significant changes in the eclipse depths
of the shallow minima. However, according to our analysis (next
section) there is no sign of any eclipse-depth variations in the close
system, and so we have to exclude this possibility. Consequently,
the presence of the first harmonic in the DFT spectrum cannot be
explained by the non-coplanarity of the orbits.

Having ruled out both the eccentricity of the orbit(s) and the non-
coplanarity of the orbital planes, we examined further possibilities
by considering the effects of higher order dynamical terms. Al-
though all the dynamical terms considered e.g. by Borkovits et al.
(2003, 2011) and Agol et al. (2005) disappear for coplanar and
circular orbits, this happens only within the frame of the applied
approximation. The octuple and higher order terms of the perturba-
tion function cause non-vanishing contributions even in this case, as
was shown e.g. by Söderhjelm (1984) and Ford, Kozinsky & Rasio
(2000). In order to check the magnitude of such forces, we inte-
grated the motion numerically and calculated the simulated times
of minima. In our integration both the Newtonian point-mass and the
non-dissipative tidal terms were included. The applied numeric inte-
grator was described in Borkovits, Forgács-Dajka & Regály (2004).
An analysis of the DFT spectrum of this higher order, numerically
generated (and evenly sampled) ETV curve revealed the presence of
the first few harmonics of the orbital periods at a 90 per cent signif-
icance level. As the amplitudes of these peaks are lower by approx-
imately two magnitudes than that of the questionable first harmonic
in the observed curve, we can conclude that these higher order ef-
fects are also insufficient to explain the structure of the Fourier
space. Therefore, we cannot currently give any plausible dynami-
cally originated explanation for the P2/2-period term in the ETV.

3.1.4 Secular variations

As mentioned above, the ETV curve shows weak evidence for con-
tinuous orbital period changes with a constant rate during the whole
observational interval. In order to investigate this feature, we con-
sider the Q1–Q9 data set with longer time coverage, instead of the
previously used Q7–Q9 SC data. The quadratic ephemeris, calcu-
lated from this solution, for the shallow minima is

MINI = 245 5051.236 23(5) + 0.905 6768(3)E + 0.5(4)

× 10−9E2, (9)
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from which the rate of the constant period change is found to be

�P

P
∼ Ṗ = 2

c2

c2
1

∼ 0.038 s yr−1. (10)

The origin of this variation is not clear. As we mentioned, any
orbital precession can be ruled out due to the almost exact copla-
narity. Due to the detached system geometry, none mass-loss, mass
exchange or magnetic cycles can be considered as a reason. Grav-
itational effects induced by an additional, more distant and faint
companion could be responsible. Moreover, some interaction (e.g.
tidal, magnetic or other) with the giant component might also be the
source of this phenomenon. Further observations and investigations
are needed to clarify the origin of the secular variations.

3.2 The wide system

For the deep minima the following linear ephemeris was found by
a linear least-squares fit:

MINI(BJD) = 245 5499.9962(4) + 45.d4711(2) × E. (11)

Due to the coverage of 17 orbital cycles only, and a large scat-
ter of about 0.03 d, no periodic or secular trend can be identified
in the ETV curve. The relatively large scatter may arise from the
irregular, intrinsic variations of the chromospherically active gi-
ant component. As was shown by Kalimeris, Rovithis-Livaniou &
Rovithis (2002), starspots can alter the measured mid-minimum
times by ∼0.01 d. Evidence for starspots (and even of eclipses of
spotted regions) will be given in Section 5. Therefore, we conclude
that during the 2.1-yr-long observed time interval, the period of the
outer orbit remained constant.

4 L I G H T- C U RV E A NA LY S I S

4.1 Light-curve characteristics

The light curve of HD 181086 has at least five different components.

(i) and (ii) The eclipsing features of both the close inner
(Ba−Bb) and the wide outer (A−B) binary subsystems. This cate-
gory includes not only the eclipses themselves, but also other effects
coming from the close binarity, i.e. the ellipsoidal variations arising
mainly from the tidally distorted shape of the giant component A.
As we will show below, relativistic Doppler beaming also produces
a contribution. The reflection effect occurs in the close binary, but
is negligible for the wide system (cf. Zucker, Mazeh & Alexander
2007). The characteristic time-scales of these variations are equal to
the observed eclipsing periods P1, P2 of the two subsystems. Note
that the period ratio is almost exactly P1 : P2 = 5 : 251; hence, in
every fifth revolution on the wide orbit, the shallow eclipses occur
at approximately the same orbital phases of the wide system. Since
the shape and the duration of the deep eclipses are remarkably al-
tered by the varying positions of the close binary members, this
resonance naturally defines five different deep eclipse patterns (or
eclipse families, which are analogous to the Saros cycles). Further-
more, considering two consecutive deep primary eclipses of a given
‘family’ (which occur at cycle numbers E = n and n + 5, respec-
tively), the intervening deep secondary eclipse of the same ‘family’
(located at E = n + 2.5) has a similar egress and ingress pattern, but
with a 0.5 close orbital phase shift, i.e. with an interchange between
the shallow primary and secondary minima. In Fig. 5 we plotted
some typical members (both primary and secondary) of three of the
five ‘families’.

(iii) The strictly periodic and regular light-curve variations are
strongly altered and distorted by irregular or semiregular brightness
changes with more or less similar amplitudes. This feature may
come from the intrinsic variations of the giant primary and suggests
that this star is a chromospherically active object. Some evidence
for large spots can be seen in the different depths and shapes of
primary deep minima (compare Figs 5a and 5b): when the close
binary transits across a darker region, the minimum is shallower.
The irregular variation seems to be continuous, showing certain
quasi-periodicities on a 1–2 month time-scale, and could have some
connection with the orbital and/or rotational periods of the giant
component.

(iv) There are further, small-amplitude oscillations in the light
curve with the half of the sinodic period of the close system with
respect to the giant, which strongly indicates a tidal origin.

(v) Finally, flare events were also observed during some of the ob-
servational runs. If these transients have their origins in HD 181086,
then, at least in one case, we can be sure that it comes from the giant
component, since the flare event at BJD 2 455 659 (in Q9) occurred
during the secondary minimum of the wide system, i.e. when the
close pair was totally occulted (Fig. 6).

In the present analysis, we mainly focus on the eclipsing fea-
tures (i)–(ii) of the light curve. As mentioned above, the presence of
mutual eclipses in both subsystems makes it possible (at least theo-
retically) to infer some additional, otherwise unobtainable, physical
and geometrical parameters from the light-curve solution. For ex-
ample, both the fine structure and the variable length of the ingress
and egress phases of the deep minima reveal information on the
mutual inclination of the two subsystems in such a way that even
the usual i, 180◦ − i ambiguity can be resolved, i.e. we can de-
cide whether the revolutions of the two subsystems are prograde
or retrograde relative to each other. Furthermore, the combination
of the shallow and deep eclipses gives an independent solution for
the photometric mass ratio in both the close and the wide systems.
(In Appendix A, some examples are given for mining the extra
information coded into the mutual eclipse geometry.)

4.2 Method of the analysis

In order to carry out this analysis, as a first step we had to separate the
different kinds of variations in the light curve. While the removal
of the transients (or flares) was straightforward, and the small-
amplitude tidally generated oscillations do not modify significantly
the eclipsing structure, the subtraction of the long-term intrinsic
variations was a difficult problem. We resorted to a step-by-step
iterative process, in some steps very similar to a filtering in Fourier
space.

First, we obtained the averaged light curve of the close, Ba−Bb

binary. Since one Kepler quarter covers ∼100 cycles, we expect
that those brightness variations which are independent of the close
binary’s orbital revolution would average out. We therefore binned
and averaged the out-of-deep-eclipse parts of our light curves ac-
cording to the eclipsing phase of the close binary. We applied this
process for six different data sets: the three SC data series (Q7, Q8,
Q9) were taken individually, and also together, the LC Q1–Q6 data
together, and, finally, we converted the SC data into LC ones and
averaged the whole Q1 − Q9-long LC data set into an additional
light curve. We tried different binning numbers and found 300 as
an optimal solution, providing sufficient time resolution and still
containing enough data points in each cell for an effective averag-
ing. (We have also corrected the phase values for LITE, although
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Figure 5. Examples for three of the five ‘families’ of the outer eclipses. The solid curves are the raw (uncorrected) flux curves, while dotted ones are corrected
for the intrinsic variations. The solid and dashed vertical lines denote the small primary and secondary mid-minima, respectively. Note the flatness of the
bottom of the primary minimum-curves in panel b (especially with respect to its counterpart in panel a), which might be the consequence of a transit in front
of a spotted region.

since the cell size was approximately equal to the full amplitude
of the ETV [see the previous section], it had only a minor effect
on the accuracy.) Then, we obtained a light-curve solution with the
PHOEBE code (Prša & Zwitter 2005). Most of the initial parameters
were adopted from Derekas et al. (2011). The effect of the giant
component at this stage was considered simply (and crudely) as a

Figure 6. A possible flare event at BJD 55659 (in Q9) within a secondary
deep minimum. The location and the amplitude of the eruption demonstrate
clearly, that if it is a real flare event, it must have occurred on the giant
component.

constant third light. The initial values of this latter quantity were
taken from the depth of the deep secondary eclipses (where only the
giant component is visible). In the left-hand panel of Fig. 7 we plot
the Q7–Q9 SC average, together with its PHOEBE solution curve.

We also averaged the wide binary’s light curve in a similar man-
ner. In this case we divided one orbital revolution into 1000 bins (see
Fig. 8). Note that the whole Q1–Q9 time interval spans only ∼17
orbital cycles, and there are also some gaps in the data. Therefore,
we cannot expect a well-averaged light curve even for the full data
set. Furthermore, such an averaging smoothes out the shoulders in
the ingress and egress phases of the outer minima, which contain
the most important geometric information.

In orderto recover this information, we calculated a preliminary
net eclipsing and elliptical light curve for the whole triple system.
For this we developed a new light-curve synthesis code, which cal-
culates the motions, gravitational interactions and mutual eclipses
of the three stars simultaneously. The main characteristics of our
code are described in Appendix B.

For the computation of the synthetic curve, most of the input
parameters were taken from Derekas et al. (2011), refining their
values with our results from the ETV analysis and the close binary’s
PHOEBE light-curve solution. After some very minor trial-and-error
fine tunings we found a seemingly satisfactory fit. In Fig. 8 we
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Figure 7. Left-hand panel: the binned, averaged light curve of the Ba−Bb close binary for the Q7–Q9 SC data (upper blue circles) with a typical fit yielded by
PHOEBE (red line), and the standard deviations of the binned data with respect the average value of each individual cells (down). Right-hand panel: the binned,
averaged light curve of the Ba − Bb close binary for the detrended Q7∗−Q9∗ SC data (upper blue circles) with a similarly processed typical solution curve
yielded by our new synthetic code (red line), and the standard deviations of the binned data with respect the average value of each individual cells (down) for
both the detrended observed data (blue), and the solution one (red). Note that the bottom curves do not represent the residuals of the upper solution curves.

Figure 8. The binned, averaged light curve of the AB outer binary for the
total Q1–Q9 LC data set (blue circles) and the synthetic eclipsing light
curve averaged on the same way with and without Doppler beaming (red
and green, respectively).

show two versions of this synthetic curve (subjected to the same
averaging process), one including the beaming effect and the other
without. We see that the curve which includes Doppler beaming
(of the order of 1 ppt) gives a better fit. Despite its preliminary
stage, the fit is quite satisfactory from the first contact of the deep
primary minimum to the next quadrature. The discrepancy in the
other portions is probably due to the inefficiency of the averaging.
An averaged residual curve is also shown in Fig. 8.

As a next step, we subtracted this synthetic light-curve solution
from the raw data. This process was carried out individually for
each quarterly data set. The raw Q7 SC data, the synthetic light
curve and the residual are plotted in the left-hand panel of Fig. 9.

A discrete Fourier analysis was carried out for the residual curves.
This was applied for different data sets. First, in order to get the
longest possible homogenous data set, we made the DFT of the full
Q1 − Q9 LC data set. We also made DFTs separately for Q1 − Q6
LC data and Q7 − Q9 SC data. We found that the different data sets
produced very similar spectra, and consequently similar significant
frequencies. Using the most prominent 10–15 frequencies, we fitted
sinusoidal curves to the residual light curves. We found the best
solutions, when we fitted two consecutive quarter data together.

Figure 9. The process of the removal of the intrinsic light-curve variations from the raw data for the Q7 SC observations. Left-hand panel: the subtraction of
a preliminary synthesized eclipsing light curve (green) from the original Q7 data (upper red curve) results a residual curve of the irregular variations (lower
red curve). Middle panel: after a DFT search of the significant frequencies in the residual curves, the intrinsic variations are represented by the corresponding
Fourier polynomial (green), and this latter curve was subtracted from the original data (upper red). The detrended Q7∗ data are plotted in the middle-lower
panel with red colour. Right-hand panel: the final light-curve solution (green) was fitted to this Q7∗ data set (upper red). The residual curve can be seen in the
bottom panel.
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Figure 10. Three different frequency regions of the DFT spectra obtained for three different data sets of Q7 − Q9 SC data. The red curves denote the spectrum
of the raw data, the green ones represent that of the synthetic light-curve solution, while the blue spectra refer to the residual light curve. The dashed lines in the
left-hand panel show the frequencies belonging to the eclipsing period, and its first harmonic. Note the different scales along the y-axis. See the text for details.

Finally, these Fourier polynomials were subtracted from the original
observational data. As a final result, we obtained such a detrended
‘observational’ data set, which was dominated by the eclipsing
nature of the triple system. This set was used for further analysis.
The step-by-step process for the Q7 SC data is shown in the panels
of Fig. 9, while three segments of the Q7 − Q9 SC DFT spectrum
are plotted in Fig. 10. The right-hand panel of Fig. 7, showing
the close binary’s averaged light curve for the detrended Q7∗−Q9∗

data, illustrates the effectiveness of this procedure. (The bottom-
right panel of the figure also contains indirect evidence for the lack
of short-term variations in the inclination i1: a change in the eclipse
depth would imply an increase of the point-to-point scatter during
the eclipses, which is not seen to occur.)

In the next stage we made a grid-search analysis with our code on
the detrended Q7∗ LC data set. We chose this quarter because of its
relatively regular, less distorted shape. The fitted parameters were
as follows: the two mass ratios q1, 2, the (fractional) stellar radii
RA, Ba, Bb, temperatures of the close binary members TBa, Bb, one
of the three stellar luminosities in the Kepler band (the other two
were calculated), the two orbital periods P1, 2, two epochs T0−1,2,
two observable inclinations i1, 2, and the relative longitude of the
node of the two orbits on the sky ��, while other parameters were
kept as fix ones. Logarithmic limb-darkening formulae were applied
(equivalent with the ld = 2 constraint of the WD and PHOEBE codes),
with coefficients taken directly from the PHOEBE code. The kj internal
structure constants were taken from the tables of Claret & Giménez
(1992).

In order to estimate the accuracy and reliability of the obtained
parameters, we repeated our procedure for the other quarters. This
enabled us to estimate the influence of the residual distorted, spotted
features of the pre-processed light curves on the solutions. All the
fixed and fitted parameters, as well as their estimated errors, and
some derived quantities are listed in Table 4.

Our final solution for Q7 data is plotted in the panels of Fig. 11
for some characteristic parts of the curve.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have determined a new set of physical parameters for all three
components in the system. Our results have roughly an order of
magnitude lower random errors than were achievable after the dis-
covery by Derekas et al. (2011). Furthermore, we were able to
exploit the unique geometry to infer new parameters that were pre-
viously beyond reach.

For the previously determined parameters, we find excel-
lent agreement with the new values. For example, the pri-

Table 4. Stellar and orbital parameters derived from the combined ETV and
synthetic light-curve analysis. (The numbers in parentheses are the estimated
errors in the last digits.)

Orbital parameters

Subsystem

Ba–Bb A–B

P (d) 0.905 6768(2) 45.4711(2)
TMINI (BJD) 245 5051.236 23(5) 245 5499.9962(4)
a (R�) 4.777(39) 90.31(72)
e 0.0 0.0
ω − −
i (deg) 86.7(14) 87.5(2)
�� (deg) 0.0(5)
im (deg) 0.8(14)

q 0.95(3) 0.595(5)
Lsec/LTOT 0.3468 0.0078

Stellar parameters
Ba Bb A

Fitted and/or derived parameters

Relative quantities

rpole 0.1798 0.1664 0.1376
rside 0.1808 0.1672 0.1379
rpoint 0.1826 0.1687 0.1382
rback 0.1822 0.1684 0.1382

Absolute quantities
m (M�) 0.915(34) 0.870(43) 3.0(1)
R (R�) 0.865(10) 0.800(20) 12.46(15)
Teff (K) 5100(100) 4675(100) 5100(100)
Lbol (L�) 0.447(37) 0.270(27) 92.812(7615)
log g (dex) 4.53 4.58 2.73

Fixed quantities
k2 0.020 0.020 0.033
β 0.32 0.32 0.32
A 0.5 0.5 0.5
xbol 0.714 76 0.714 76 0.711 59
ybol 0.130 26 0.130 26 0.125 61
xK 0.708 35 0.708 35 0.700 74
yK 0.163 54 0.163 54 0.166 09

mary’s radius, combining the Hipparcos parallax with Center
for High Angular Resolution Astronomy Array/Precision As-
tronomical Visible Observations (CHARA/PAVO) interferometry,
was measured by Derekas et al. (2011) to be RA = 12.4 ±
1.3 R�. Now we have determined RA = 12.46 ± 0.15 R� by
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Figure 11. Three zoom-ins into the Q7 and Q8 light curves with solutions, and residuals. Upper panels: the points show the original Q7 and Q8 data, while the
dashed lines represent the sum of the solution for the detrended Q7∗ and Q8∗ data, and the Fourier-modelled intrinsic variations. Bottom panels: the residual
curves. The left-hand and middle panels show small parts of the Q7 data just after a large primary minimum and in the following quadrature phase, respectively,
while the right-hand panel represents the surroundings of a large secondary minimum from the more distorted quarter Q8.

combining the stellar masses from the ETV study with the
simultaneous light-curve analysis. Similarly, the ETV analysis plus
the SB1 radial velocity measurements yielded a primary mass of
mA = 3.0 ± 0.1 M�, which agrees with the estimated mass from
evolutionary tracks in Derekas et al. (2011). All in all, the derived
physical parameters draw a consistent picture of the system, proving
that despite the difficulties in the light-curve modelling, our method
yields robust results.

A preliminary comparison with models from the Bag of Stellar
Tracks and Isochrones (BaSTI, Pietrinferni et al. 2004) and Dart-
mouth (Dotter et al. 2008) data bases shows that the fundamental
properties for all three components are consistent with solar metal-
licity isochrones with ages ∼300−500 Myr, although the dwarf
radii appear to be significantly larger than expected. More detailed
comparison using the near-model-independent properties presented
here will allow powerful tests of stellar evolutionary theory, such
as tidal effects on the mass–radius relation for low-mass stars in
close-in binary systems (see, e.g., Kraus et al. 2011).

One important question in relation to the giant primary is its
evolutionary stage, being located in a part of the H-R diagram where
H-shell burning stars ascending the first red giant branch overlap
closely with He-core burning giants (in other words, there is an age
uncertainty that cannot be resolved from the evolutionary tracks
alone). Dynamical considerations can help here, too, via comparing
the orbital configurations with theoretical tidal circularization time-
scales. According to equation 7 in Verbunt & Phinney (1995), which
was based on the works of Zahn (1977, 1989), a binary with the
same parameters as HD 181068 A and B (=Ba+Bb) is expected
to be circularized under a period limit of Pcirc ∼ 15 d for H-shell
burning primary. With the observed P2 ∼ 45 d and the perfectly

circular orbit, theory implies indirectly that the primary must be
older, so that in the He-core burning phase. The question, however,
is more complicated because of the binary nature of the secondary.
This causes additional complications by the tidal oscillations that
are expected to affect the convective envelope of the primary. It
is not known if the tidal damping is effective enough to shorten
significantly the circularization time.

Considering the other orbital parameters, our solution for the
orbital inclination of the close binary (i1 = 86.◦7 ± 1.◦4) has a rel-
atively large uncertainty. This is not surprising because, being a
partially eclipsing pair, the observable inclination is very sensitive
to any additional third light, i.e. in the present case, for the light of
the giant primary, and particularly for the continuous variation of
this extra amount of light. The inclination of the wide system was
found to be i2 = 87.◦5 ± 0.◦2. From these two values alone, in the
absence of any other information, we would be able to say nothing
about the mutual inclination of the system. However, the simulta-
neous light-curve fit of this triple eclipsing system provides a direct
and powerful method for determining this quantity. As mentioned
above, this comes from both the fine structure and the timings of
the ingress and egress phases of the deep eclipses. This is illus-
trated in Fig. 12, where we plotted the first two deep eclipses of
the Q7 SC light curve. The only difference between the different
coloured curves is the �� parameter, and consequently the mutual
inclination. While the out-of-deep-eclipse parts and the totality-of-
eclipse periods of the light curves are identical, the ingress/egress
fine structures, and the moments of the contacts differ significantly,
and this makes the �� adjustable parameter (and so the mu-
tual inclination) a well-determined quantity. Furthermore, even the
im = 1◦ curve is definitely separable from its retrograde counterpart

Figure 12. Synthetic light curve for an outer secondary (left) and a primary (right) minimum, calculated with different mutual inclinations. See the text for
details.
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im = 179◦. (Note, however, that this separation is only possible
when the masses or the radii are different in the close binary.) A
combination of the obtained �� parameter with the two observable
inclinations results in a mutual inclination of im = 0.◦8 ± 1.◦4, which
suggests an exact coplanarity. This is in accordance with the lack
of the eclipse-depth variation of the shallow eclipses.

Finally, we briefly comment on the other features of the light
curves. First, we consider the irregular or semiregular brightness
changes, which likely originate from chromospheric activity. Evi-
dence of the presence of spotted regions on the giant’s surface was
shown in the previous section (see e.g. Fig. 5). Further characteris-
tics can be deduced from the comparative investigation of the DFT
spectra of the raw observed light curve, the synthetic and the resid-
ual ones (Fig. 10). What can be seen well even at the first glance is
that in the low-frequency domain (left-hand panel), the spectrum of
the observed data remarkably departs from that of the synthetic data.
While in the synthetic eclipsing, ellipsoidal data the dominant fre-
quency corresponds to the half eclipsing period of the wide system,
the highest peak of the original data is located about the eclipsing
period itself. Furthermore, this latter peak is clearly a double one,
whose two peaks are already well separated in the spectrum of the
residual light curve (i.e. after the removal of the eclipsing and el-
lipsoidal features). In our interpretation these two peaks might have
a rotational origin. The good correspondence of this pair of peaks
with the orbital period proves the synchronized rotation of the pri-
mary, while its splitting might give evidence of differential rotation
(see e.g. Oláh, Jurcsik & Strassmeier 2003). Note that the spectro-
scopically obtained vrotsin i = 14 km s−1 (Derekas et al. 2011) for
RA = 12.5 R� and sin i2 = 87.◦4 result in Prot = 45.d474, which is
also in very strong correspondence with this result.

Considering the high-frequency end of the DFT spectra (right-
hand panel of Fig. 10), three distinct peaks can be identified at
f1 = 2.208 29, f2 = 2.164 31 and f3 = 2.120 32 d−1, from which
three, the first is exactly the half of the eclipsing period of the close
binary, while the other two are f2 = f1 − f0 and f3 = f1 − 2f0,
where f0 = 0.043 98 d−1 corresponds to the half of the eclipsing
period of the wide system. Such a way, the tidal origin of this small-
amplitude oscillation on the surface of the giant primary is out of
question. These oscillatory features will be investigated in details
in a forthcoming paper.
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Claret A., Giménez A., 1992, A&AS, 96, 255
Derekas A. et al., 2011, Sci, 332, 216
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APPENDIX A : D ETERMINATION OF SYST EM
PA R A M E T E R S FRO M T H E M U T UA L E C L I P S E S

In this appendix, we show examples of how several system param-
eters can be determined from the geometry of the large, mutual
eclipses. Strictly speaking, the most important condition for the
validity of the following calculations is not the mutuality of the
shallow and the deep eclipses themselves, but rather the fact that
due to the hierarchical configuration of the triple system, the deep
eclipses contain some mixtures of individual eclipses of the two
members of the close pair with respect to the more distant giant
component, which produce small changes in the deep eclipse con-
figurations from eclipse to eclipse, and even between the ingress
and egress phases of the same event. Our algorithm is a natural
extension of the well-known methodology of determination of the
relative radii of the stars (with respect to their separation, and as a
function of their orbital inclination) purely from the eclipse geom-
etry, commonly used from the very beginning of eclipsing binary
studies.

The usual method in binaries with spherical components is well
known: the sky-oriented distance of the stellar disc centres is
R1 + R2 at the first and last contacts (i.e. at the start of ingress
and at the egress phases), and if the eclipses are total (either transit
or occultation), the same distance is R1 − R2 at the second and third
contacts (i.e. at the end of the ingress and at the start of the egress
phases). Then, expressing the projected distances with the orbital
elements and time, and measuring the eclipse durations (both the
one from the first to the last contacts and the totality length from
the second to the third contacts), the individual fractional radii of
the stars can be determined.

For our triple-star configuration, the egress and ingress phases of
the deep eclipses show a complex pattern. The two dwarf members
of the close binary may enter in front of or behind the giant’s disc
individually, or even simultaneously (see Fig. A1). Additionally,

during an entry the stars’ velocities, directions and distances (both
physical and projected) relative to the giant component change con-
tinuously, producing variable length and shape in the egress and
ingress patterns. Anyhow, no matter how complex an egress or
ingress pattern is in itself, every eclipse event contains one and only
one first, second, third and fourth contacts. And furthermore, as-
suming that a given contact is not strongly altered by a just ongoing
shallow eclipse event, we can simply and unambiguously decide
which member of the close binary takes part in the given contact
event. For example, in the case of prograde revolution, the very first
contact of a primary transit is produced by the eclipser of the last
shallow eclipse event, i.e. if the last event was a small secondary
minimum, then the very first contact of the large primary transit is
produced by the primary of the close pair.

Let us consider the projected distances at the disc centres in the
moments of the contacts. In the present situation, the projected dis-
tance between the eclipser and the eclipsed stars will no longer be
the projected radius vector of a Keplerian relative orbit, but will
come from the superposition of two Keplerian orbits: the absolute
orbit of the close binary members around their CM and the relative
orbit of this CM around the giant component. The most convenient
and practical description of the present scenario uses Jacobian vec-
tors. The first Jacobian vector (ρ1) is directed from mBa to mBb, i.e.
it is the radius vector of the close binary’s relative orbit, while the
second one (ρ2) originates from the CM of the close pair and ends
in mA, i.e. it is the radius vector in the wide pair (see Fig. A2).
With these notations, the position vectors connecting the three stars
mutually are

dBaBb = ρ1, (A1)

dBaA = ρ2 + q1

1 + q1
ρ1, (A2)

dBbA = ρ2 − 1

1 + q1
ρ1, (A3)

Figure A1. The ‘walzer’ of the close pair in front of (left) and behind (right) the giant primary, projected on the sky. The upper panels are identical with Figs
5(i) and (a), respectively. The dashed horizontal lines denote the RA ± RBa,b distances from the CM of the giant, i.e. the outer and inner contact places. The
vertical lines connect the moments of the different contacts with the corresponding light-curve points.
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where, as before, q1 denotes the mass ratio of the close pair. In
the usual astrometric frame of reference, the right-handed x and y
coordinate axes lie in the plane of the sky, while the z-axis points
outwards from the observer. In the astrometric convention, x points
to the celestial north pole. In the case of photometry, however,
both the eclipsing light curve and the radial velocity are invariant
with respect to any rotation in the plane of the sky, and so, in the
absence of any additional information on the spatial orientation
of the intersection of the orbital plane and the sky (i.e. �), we are
free to use any orientation for the x-axis. In the context of modelling
eclipsing binaries, the coordinate equations take their simplest form
if one of the axes in the plane of the sky coincides with the nodal
line. In this case, the other axis gives the direction of the projected
orbital angular momentum vector. In the present case, however, we
cannot use this latter formal simplicity, because of the differing
orbital planes of the close and the wide orbits.

It is well known from the textbooks of celestial mechanics and/or
astrometry that in such a frame of reference the Cartesian coordi-
nates of a Keplerian orbit can be written as

x = r[cos(v + ω) cos � − sin(v + ω) sin � cos i], (A4)

y = r[cos(v + ω) sin � + sin(v + ω) cos � cos i], (A5)

z = r sin(v + ω) sin i. (A6)

What is important for us is the projected distances on to the plane
of the sky, instead of the spatial ones. In vectorial forms e.g.

d
xy
BaA =

√[
ρ2 + q1

1 + q1
ρ1 −

(
ρ2 · z + q1

1 + q1
ρ1 · z

)
z
]2

, (A7)

or, with orbital elements,

d
xy
BaBb = ρ1

√
1 − sin2 i1 sin2 u1, (A8)

d
xy
BaA = ρ2

[
1 − sin2 i2 sin2 u2

+ 2
q1

1 + q1

ρ1

ρ2
(λ − sin i1 sin u1 sin i2 sin u2)

+
(

q1

1 + q1

ρ1

ρ2

)2

(1 − sin2 i1 sin2 u1)

]1/2

, (A9)

d
xy
BbA = ρ2

[
1 − sin2 i2 sin2 u2

− 2
1

1 + q1

ρ1

ρ2
(λ − sin i1 sin u1 sin i2 sin u2)

+
(

1

1 + q1

ρ1

ρ2

)2

(1 − sin2 i1 sin2 u1)

]1/2

, (A10)

where ui = vi + ωi gives the true longitude of the given object
measured from the node and furthermore,

λ = cos w1 cos w2 + sin w1 sin w2 cos im (A11)

is the direction cosine between vectors ρ1 and ρ2, in which the ex-
pression wi = ui − umi denotes the true longitude measured from the
intersection of the two orbital planes, while umi is a nodal longitude-
like quantity, namely the angular distance of the intersection of the
given orbital plane from the sky (cf. Fig. A2). It can also be seen in
this figure that the three inclinations form angles of that spherical

Figure A2. An illustration of the angles and other quantities used in the
text.

triangle, the sides of which are the three node-like arcs ��, um1

and um2. Consequently, the two observable inclinations (i1, i2) and
the difference of the nodes of the close and wide orbits (�� =
�2 − �1) unambiguously determine the remaining quantities (i.e.
im and um-s) with the copious identifications of the spherical trian-
gles, from which some of the most useful ones in the present context
are as follows:

cos im = cos i1 cos i2 + sin i1 sin i2 cos ��, (A12)

sin im cos um2 = − cos i1 sin i2 + sin i1 cos i2 cos ��, (A13)

sin im sin um2 = sin i1 sin ��, (A14)

cos i1 = cos i2 cos im − sin i2 sin im cos um2, (A15)

cos um1 = cos um2 cos �� + sin um2 sin �� cos i2. (A16)

At this point we note that in the case of coplanarity, equations
(A9) and (A10) become more simple, not only due to sin i1 = sin i2,
but also because then the direction cosine λ is simply

λ = cos(u2 − u1). (A17)

In what follows, we assume that both the inner and the outer orbits
are circular, as it happens to be in HD 181068. In this case ρ1, 2 ≡
a1, 2, which means a substantial simplification in our treatment. At
this point we are in a position to give the functional dependences of
the stellar sizes from the orbital elements. Namely, for any contact
of the deep eclipses

RA ± RBa,Bb = a2fBa,Bb(i1, i2, ��, q1, a1/a2; u1, u2), (A18)

where the plus and minus signs hold for outer and inner contacts,
respectively. Moreover, for the partial shallow eclipses for the outer
contacts we can also write

RBa + RBb = a1fBab(i1; u1). (A19)

In these equations the independent (time-like) variables are hidden
in the ui, while the other parameters are constants. The ui longitudes
are very closely related to the eclipsing phases. It is well known
(see e.g. Giménez & Garcia-Pelayo 1983) that for circular orbits in
the moment of a mid-minimum u = 90◦ or 270◦. Considering the
shallow minima, in the present situation, as ρ1 points towards the

 at E
L

T
E

 on Septem
ber 28, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


1670 T. Borkovits et al.

secondary of the close pair, i.e. u1 refers to the relative orbit of the
secondary, or Bb component, therefore u1 = 90◦ for the secondary
minimum and u1 = 270◦ for the primary one. So the connection of u1

with the eclipsing phase of the close pair is very simple, u1 = 360◦ ×
φ1 − 90◦, or converting it to time directly, u1(t) = 2π

P1
(t − T0) − π

2 ,
where T0 is a mid-primary minimum time.

The calculation of u2 requires a bit of extra care. First, we have
to keep in mind that ρ2 is oriented from component B (i.e. the
CM of the close pair) towards component A, and so in the present
formulae u2 refers to the relative orbit of the main, giant component
A around the smaller and fainter component B, i.e. the secondary of
the wide system. Consequently, in this case u2 = 90◦ formally means
not the secondary but the primary deep minima. Furthermore, the
determination of a reference mid-minimum time is not so simple.
Because the positions of the close binary members on their orbits
are different at the beginning and at the end of a deep eclipse, the
mid-minimum does not occur exactly at half-time between the first
and the last contacts (similar to the eccentric case). Nevertheless,
by the use of an averaged light curve (like the one in Fig. 8), or of a
radial velocity curve, or from the average of several approximately
determined mid-minima times we can obtain a satisfactory reference
mid-minimum moment, and then u2(t) can be calculated in the same
way as u1.

In the next step we use the fundamental difference between a
traditional simple eclipsing binary and our triple system. In a single
eclipsing binary all the eclipses are similar, i.e. all contacts occur at
the same orbital phase, longitude (u) and, furthermore, for circular
case the eclipses are geometrically symmetric in time around their
mid-point. Due to the latter, for the first and fourth (last) contacts
sin 2uI = sin 2uIV, and a similar relation can be written for the inner
contacts. As a consequence, we have only one equation for R1+R2

a

and one for R1−R2
a

, and so, some extra way is needed to resolve
the inclination dependence. In opposition, in the case of our deep
eclipses, the configuration of the first and last contacts, and the
second and third contacts as well, generally vary from eclipse to
eclipse, and they are even different within the same event. Conse-
quently, we can get separate sets of equations (A18) for different
u1 and u2, from which the unknown parameters can in principle be
determined by numerical methods.

Furthermore, once a1/a2 is known, q2 can also be calculated
easily by the use of Kepler III:

q2

1 + q2
=

(
a1

a2

)3 (
P2

P1

)2

. (A20)

The individual relative radii of the three stars can also be derived
fromequation (A18), even without the use of equation (A19). On
the other hand, these individual radii can be determined also in the
case when both the deep and the shallow minima are partial.

Several difficulties arise, however, during the practical applica-
tion of this method. For example, in our case of HD 181068, the
light-curve distortions of non-eclipsing origin cause difficulties in
the accurate determination of locations (and so times) of the con-
tacts. Furthermore, our stars are not exactly spherical, and finally,
due to the 5 : 251 mean-motion resonance, we can get only a limited
number of different eclipse configurations. On the other hand, there
are some additional results that may serve as auxiliary sources of
information. For example, equation (A19) could be used as an ad-
ditional equation for i1, or even a1/a2. Radial velocity and/or ETV
results provide further constraints or equations.

In the following we give a practical example for HD 181068. To
do this, we use our simulated light-curve solution. By this trick we

Table A1. Contact times for outer secondary eclipse events.

No Contact Star MBJD u1 u2

−0.5 I Ba 554 76.1096 313.◦754 41 260.◦896 09
II Bb 554 76.4245 78.◦924 86 263.◦389 19
III Ba 554 77.9677 332.◦335 60 275.◦606 91
IV Ba 554 78.4722 172.◦870 67 279.◦601 11

0.5 I Ba 555 21.5177 3.◦142 88 260.◦398 10
II Ba 555 22.0279 205.◦943 65 264.◦437 42

1.5 III Bb 555 68.9434 134.◦512 63 275.◦873 72

2.5 I Bb 556 12.4733 157.◦330 30 260.◦505 77
II Bb 556 12.9903 2.◦834 03 264.◦598 93
III Bb 556 14.3571 186.◦127 06 275.◦420 07

3.5 II Bb 556 58.3965 51.◦467 26 264.◦085 90
III Ba 556 59.9241 298.◦677 10 276.◦180 12
IV Bb 556 60.2422 65.◦119 54 278.◦698 56

4.5 I Ba 557 03.4516 320.◦540 80 260.◦793 16
II Bb 557 03.7629 84.◦280 28 263.◦257 77
III Ba 557 05.3125 340.◦234 99 275.◦526 16
IV Ba 557 05.8234 183.◦313 98 279.◦571 02

avoid the practical problem of correct and accurate identification of
contact times, since our purpose is simply to demonstrate the theo-
retical effectiveness of this method. Furthermore, our finding about
the orbital coplanarity makes our formulae as simple as possible;
therefore, the whole calculation can be performed analytically.

In Table A1 we list the available contact moments for the large
secondary eclipses occurring within the Q7 − Q9 SC data. We used
only secondary occultations to ignore the additional uncertainty
arising from the limb darkening during the primary transits. Ac-
cording to the last column (i.e. u2), one can see that its value may
vary by a few tenths of degree for both the inner and outer contacts.
Although this may look like a small variation, note, however, that a
typical shift of 0.◦5 in u2 translates to a change in the occurrence of
the corresponding event of δt ∼ 1.5 h.

According to the above table, we have three different outer and
three different inner contact moments for star Ba, while for Bb
these numbers are two and two, respectively. We say different, as
events E = −0.5 and 4.5 belong to the same eclipse family, and
consequently, the corresponding moments are so similar to each
other that we counted them only once. However, even in this case,
we can write more equations than what is necessary.

As an example, we show a concrete calculation. Using the first
and last contacts of the E = −0.5 and the first contact of E = 0.5
events, substituting the corresponding u values into equation (A9)
and subtracting their squares from each other, we get three different
equations, from which we need only two. As such,

sin2 i(α2 + β2x + γ2x
2) + δ2x = 0, (A21)

sin2 i(α3 + β3x + γ3x
2) + δ3x = 0, (A22)

where

x = aBa

a2
, (A23)

and

α2,3 = (sin2 u2)1 − (sin2 u2)2,3, (A24)

β2,3 = 2[(sin u1)1(sin u2)1 − (sin u1)i(sin u2)2,3], (A25)
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Table A2. Analytic results from eclipse geometry and the original values.

Parameter Contacts used Calculated Original

aBa
a2

(I,IV)−0.5,I0.5 0.023 0.026
i (I,IV)−0.5,I0.5 83.◦7 86.◦7/87.◦5
aBb
a2

II−0.5,III1.5,I2.5,IV3.5 0.027 0.029
i II−0.5,III1.5,I2.5,IV3.5 87.◦0 86.◦7/87.◦5

q1 0.85 0.95
a1/a2 0.049 0.053
q2 0.439 0.545

RA/a2 From Ba 0.170 0.138
RA/a2 From Bb 0.139 0.138
RBa/a2 0.009 0.010
RBb/a2 0.010 0.009

γ2,3 = (sin2 u1)1 − (sin2 u1)2,3, (A26)

δ2,3 = 2[cos(u1 − u2)2,3 − cos(u1 − u2)1]. (A27)

Eliminating the δ terms and using the fact that sin 2i �= 0, we get
a second-order equation in x, i.e. the orbital ratio. Obtaining x, the
inclination can simply be calculated from any of the two equations.
A similar treatment can be applied to the other component Bb. In
this case, as we had only two outer contact times, we used the first
two inner contact moments for the second equation. (Note that, for
Bb, the signs of β and δ coefficients should be changed!) When
the two ratios aBa/a2 and aBba2 are known, both q1 and a1/a2

can be immediately calculated, and then q2 follows too. Finally,
the fractional radii of the three stars are also easily determined.
Remaining at the present sample, we first determine RA and RBb from
the two (one outer and one inner) contact equations of component
Bb, and then RBa can be calculated from any of the outer contact
equations for Ba star, without using any inner contact moments.
(On the other hand, we can also calculate inner contact moments
for component Ba, of course.) There is, however, another possibility
of determining all these quantities without using inner contact times.
This is because we can also use the outer contact equation of the
shallow eclipses. Thus, the theoretically minimal data needed are
the moments of: one outer contact for a shallow eclipse, three outer
contacts for deep eclipses of one of the components and two outer
contacts for the other component. This means that we do not need
any inner contact times (so the method works for partial eclipses,
too), the usually better measurable outer contact times are sufficient.
In Table A2 we give our results. For comparison we also give the
corresponding parameters of the synthetic light curve.

Finally, combining these results with the LITE solution, which
returns aB sin i in physical units (see Section 2), we can also calculate
all the masses and stellar and orbital sizes in physical dimensions.
So, we can conclude that in the case of triply eclipsing hierarchical
systems (i.e. where all the three objects eclipse each other at least
partially, but not necessarily simultaneously), high-precision single-
band photometry of the eclipses is at least in principle efficient for
determining all the above-presented quantities in physical units.

(The above calculations were made for coplanar and circular
orbits. In the non-coplanar case our equations can be numerically
solved in a similar way. The eccentric case is more complicated, but
the asymmetry of the eclipses both in length and in phase gives all
the required information too, so the difficulty is only practical.)

A P P E N D I X B : L I G H T- C U RV E S Y N T H E S I S
C O D E F O R H I E R A R C H I C A L T R I P L E
SYSTEMS

The code is largely based on the well-known Wilson–Devinney pro-
gram, which is being continuously developed from its first version
(Wilson & Devinney 1971) up to now (Wilson 2008; Wilson & Van
Hamme 2009). (See also Kallrath & Milone 2009, Chapters VI and
VII.). The PHOEBE Scientific Reference (Prša 2006) was also used
as a cook book. Some of the subroutines were borrowed directly
from the FORTRAN code of the WD program (converting them from
FORTRAN to C). However, a number of significant alterations were
also applied. First, our code calculates the motion and positions of
all the three stars, and naturally, the mutual eclipses (i.e. when an
eclipse event of the close binary occurs in front of the disc of com-
ponent A, or during the egress or ingress phase of the wide eclipse
events). The mutual tidal interaction of the three stars is computed
for every moment. In order to do this in a more simple way, in-
stead of the usual two-mass point Roche model, the stellar surfaces
(and the local gravities as well) were calculated from the first-order
(linear) series expansions of the potential of a moderately distorted
spherical body. In this formalism, the stellar radius can be written
in the following form:

r = R

⎛
⎝1 +

4∑
j=2

fj + g2

⎞
⎠ , (B1)

where the amplitudes of the first-order tidal distortions caused by
star k on star i are

f
(i←k)
j =

(
1 + 2k

(i)
j

) mk

mi

(
Ri

ρik

)j+1

Pj (λ′′
ik), (B2)

while the amplitude of the rotational distortion of star i is

g
(i)
2 = − ω2

i R
3
i

3Gmi

P2(ν ′
i). (B3)

In the equations above Ri stands for the undistorted radius, k(i)
j the jth

internal structure constant of star i, ρ ik the distance of the two stars,
ωi the rotational angular velocity of the star, while the direction
cosines in the arguments of the given Legendre polynomials Pj are
the angle between the radius vector of the given surface element and
the axis of the tidal bulge (practically the radius vector connects the
CM of the two stars) in the tidal terms (λ′′), and the angle between
the same surface element and the axis of stellar rotation (ν ′). See
Kopal (1978), Chapter II for details.

Strictly speaking, for strongly distorted systems this formalism
is less accurate than the closed form of the Roche model, but in
the present situation, due to the moderate distortion of the present
stars, it is adequate. Furthermore, besides the obvious advantage
coming from linearity, it also treats the stars more realistically, as it
no longer attributes infinite central mass densities to them.

Another improvement is the inclusion of the relativistic Doppler
beaming effect. The contribution to the total beaming is calculated
for each surface cell of the three stars individually, and the radial
velocity contribution coming from the stellar rotation is also taken
into account, so theoretically the code is able to model the beaming
analogous of the Rossiter–McLaughlin effect too. (Regardless, in
the present system this is insignificant.) The beaming effect is well
illustrated in Fig. 8.

Finally, we have also included the light-time effect. It is applied
only to the wide subsystem, meaning that the positions of com-
ponent A and component B were calculated in different moments
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according to their different distances from the observer, and fur-
thermore, a second time delay was also calculated in modelling the
momentary tidal field effect on each component.

In its present version, the program has 3 × 11 star-specific global
physical parameters (masses, radii, tidal distortion [k2, . . . , 4] param-
eters, effective temperatures, chemical abundances, gravity dark-
ening, two bolometric limb-darkening coefficients and bolometric
albedos), 3 × 3 + 1 filter-specific parameters (luminosities, two
limb-darkening coefficients and fourth light), 2 × 6 + 1 orbital
parameters (the six orbital elements of the two orbits and the sys-
temic radial velocity), and finally, 3 × 6 Eulerian angles and an-
gular velocities describing stellar rotations. There are also several
flags which turn on and off various constraints between different
variables. Some of them are identical with those used in the WD

program, but there are additional ones, due to the specific model.
For example, instead of masses (which are undefined in the case
of a simple two-body eclipsing light curve), one mass (usually mA)
and two mass ratios (q1 and q2) can also be used as input parame-
ters. Similarly, instead of absolute radii, the use of fractional radii

is more practical for light-curve solution, although if the mass of
the tertiary (mA) and the outer mass ratio (q2) are known and fixed
from the ETV solution, and of course, the orbital periods are also
fixed, and the use of absolute or fractional radii is fully equivalent.

S U P P O RT I N G IN F O R M AT I O N

Additional Supporting Information may be found in the online
version of this article:

Table 1. Times of minima for the close pair (http://mnras.
oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/sts146/-/ DC1).

Please note: Oxford University Press are not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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