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Abstract ─ The giant magnetoresistance (GMR) effect has been widely investigated on 

electrodeposited ferromagnetic/non-magnetic (FM/NM) multilayers generally containing a large 

number of bilayers. In most applications of the GMR effect, layered structures consisting of a 

relatively small number of consecutive FM and NM layers are used. It is of great interest, 

therefore, to investigate the initial stages of GMR multilayer film growth by electrodeposition. 

In the present work we have extended our previous studies on ED GMR multilayers to layered 

structures with a total thickness ranging from a few nanometers up to 70 nm. The evolution of 

the surface roughness and electrical transport properties of such ultrathin ED Co/Cu layered 

structures was investigated. Various layer combinations were produced including both Co and 

Cu either as starting or top layers in order (i) to see differences in the nucleation of the first 

layer and (ii) to trace out the effect of the so-called exchange reaction. Special attention was 

paid to measure the field-dependence of the magnetoresistance, MR(H) in order to derive 

information for the appearance of superparamagnetic regions in the magnetic layers. This 

proved to be helpful for monitoring the evolution of the layer microstructure at each step of the 

deposition sequence. 

 

                                                
+Ph.D. student at Eötvös University, Budapest, Hungary 
*Corresponding author. E-mail: tothb@szfki.hu 
# Active member of The Electrochemical Society 



- 2 - 

Introduction 

The giant magnetoresistance (GMR) effect in nanoscale ferromagnetic/non-magnetic 

(FM/NM) metallic multilayers has widespread applications today.1,2 

Several different methods have been used for the preparation of such multilayers, among 

which electrodeposition is a simple but still sufficiently precise technique3 to control the layer 

formation which is one of the main tasks for properly tuning the physical properties of the 

multilayers produced. 

It was shown soon after the discovery of the GMR effect that electrodeposition is also 

capable of producing multilayer films with GMR.4. The full literature of this field has been 

recently reviewed.5. Various studies have been carried out to reveal how the deposition 

conditions (e.g., pH of the electrolyte6, deposition pulse combination7-9 or the non-magnetic 

layer deposition potential8) influence the GMR. Detailed structural investigations have also been 

performed to establish a correlation between multilayer microstructure and GMR.7,9-12 

When looking at the relevant reports on electrodeposited (ED) FM/NM multilayer films 

with GMR behavior,5 it turns out that most of the studies have been made on multilayers with a 

total thickness above 100 nm or even in the micrometer range. It has long been well-known, on 

the other hand, that films deposited with such large thicknesses usually undergo a significant 

roughening, regardless of the preparation method. This roughening effect was reviewed by 

Schwarzacher13 for ED films of pure metals (such as Cu, Ag and Ni) and alloys (such as Fe-Co, 

Ni-Co and Ni-P). It was demonstrated for ED Co-Ni-Cu/Cu multilayer films14 that such layered 

structures also show a continuous roughening up to a total film thickness of 1000 nm and 

beyond. Important findings of this latter work were that (i) on a rough substrate the multilayer 

film roughness was larger than on a smooth substrate although the dependence of roughness on 

total film thickness was much weaker for the first case and (ii) the roughness was much larger 

for a Cu deposition potential at which a significant dissolution of the magnetic layer is expected 

as compared to a potential with limited dissolution. Unfortunately, no magnetoresistance (MR) 

measurements were reported on these particular multilayer films. 

Actually, the roughening at large total film thicknesses had been previously demonstrated 

for ED Co-Cu/Cu (Ref. 9) and Ni-Cu/Cu (Ref. 10) multilayers by cross-sectional transmission 

electron microscopy (TEM) which revealed a saw-tooth like top surface of the deposit. At the 

same time, large-magnification TEM could resolve a clear layered structure even at the top of 

the multilayer stack and a fairly large GMR was also detected on these multilayers.9,10 It was, 

furthermore, established in another study15 that the GMR magnitude was not significantly 
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different for thick ED Co-Cu/Cu multilayer films when deposited either on mechanically 

polished, fairly rough Ti sheet substrates or on very smooth Si/Ta/Cu substrates with 

evaporated thin Ta and Cu underlayers. This may indicate that at large multilayer film 

thicknesses the overall microstructural features of the multilayers which are relevant for GMR 

become independent of the substrate. This conjecture is supported also by the finding that 

comparable GMR magnitudes were reported for thick ED Co/Cu multilayers obtained on 

polished Ti 16 and amorphous alloy ribbon17 substrates. 

The above mentioned roughness occurring on a large lateral scale (called also undulation) 

and causing a canting of the multilayer planes with respect to the film plane10 may be beneficial 

for the GMR. Namely, in such a case the current flowing in the film plane crosses the plane of 

the individual layers, i.e., the GMR measured has also a “current-perpendicular-to-plane” (CPP) 

component. On the other hand, roughness with a small lateral length scale may be detrimental to 

the GMR due to the onset of an “orange-peel” coupling which is ferromagnetic in nature and 

leads to a reduction of the GMR as analyzed by Shima et al.18 for ED Co/Cu multilayers. The 

small-scale interface roughness inherited from a rough substrate was demonstrated19 to promote 

the appearance of superparamagnetic (SPM) regions in the magnetic layers which then give rise 

to a GMR contribution often not saturating even up to 10 kOe (Ref. 5). It was indeed reported 

that a rougher substrate leads to a larger SPM contribution to the GMR for Co/Cu multilayers 

produced by either electrodeposition15 or sputtering.19 

In most applications of the GMR effect, layered structures consisting of a relatively small 

number of consecutive FM and NM layers are generally used (so-called spin-valve structures20). 

It is of great interest, therefore, to investigate the initial stages of GMR multilayer film growth 

by electrodeposition. 

However, there have been relatively few studies on the initial growth of ED GMR 

multilayers films close to the substrate. A cross-sectional TEM investigation on thick ED 

Co-Cu/Cu multilayers deposited on a Ti sheet substrate showed21 that the first few bilayers are 

very disordered and a well-defined layered structure develops later only. This can be due to the 

fact that in this case the substrate surface is actually TiO2, which does not provide a proper 

lattice matching for the nucleation and growth of multilayers with interest for GMR. Therefore, 

it is essential to use smooth substrates providing good lattice matching with the electrodeposited 

multilayer stack which can be ensured by using mostly an appropriate semiconductor wafer such 

as Si or GaAs, with or without a buffer layer. Attempts have been made along this line to 

prepare spin-valve like structures by electrodeposition22-27 and fairly good spin-valve type 
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GMR characteristics were obtained. 

In an effort to grow similar thin layered structures with attractive GMR characteristics by 

electrodeposition and to better understand the initial stages of nucleation and growth of ED 

multilayers, our previous studies on thick GMR multilayers7-12,15-17,21 have been extended to 

ultrathin ED Co/Cu layered structures. These ultrathin samples were deposited onto very 

smooth Si/Cr/Cu substrates with evaporated thin Cr and Cu underlayers providing a proper 

lattice matching with the growing layer structure. The evolution of the surface roughness and 

electrical transport properties (resistivity and magnetoresistance) of these samples was 

investigated. Various layer combinations were produced including both Co and Cu as starting or 

top layers in order (i) to see differences in the nucleation of the first layer and (ii) to trace out 

the effect of the so-called exchange reaction.28-30 The latter implies dissolution of the Co atoms 

and their replacement by Cu atoms,8,29 the whole process taking place with zero net current 

(Co + Cu2+  Co2+ + Cu). Special attention was paid to measure the field-dependence of the 

magnetoresistance, MR(H), since it was shown previously31 that from an analysis of the MR(H) 

curves useful information can be derived for the SPM regions in the magnetic layers. This 

proved to be helpful for monitoring the evolution of the layer microstructure at each step of the 

deposition sequence.  

 

Experimental 

Sample preparation. — For the deposition of the Co/Cu multilayers, a sulfate/sulfamate type 

aqueous electrolyte was used. Its composition was 0.74 mol/ℓ CoSO4, 0.010 mol/ℓ CuSO4, 

0.10 mol/ℓ Na2SO4, 0.25 mol/ℓ H3BO3 and 0.25 mol/ℓ HSO3NH2. The pH was set to 3.25 by 

adding NaOH to the solution. The choice of this pH value was based on some preliminary 

experiments to get appropriate deposition conditions. 

The Co/Cu multilayers were deposited on a [100]-oriented, 0.26 mm thick Si wafer 

covered with a 5 nm Cr and a 20 nm Cu layer by evaporation. The purpose of the chromium 

layer was to assure adhesion and the Cu layer was used to provide the electrical conductivity of 

the cathode surface. 

The deposition was performed by pulse plating in a tubular cell of 8 mm x 20 mm cross 

section with an upward looking cathode at the bottom of the cell.32 For the deposition of the 

magnetic layer, galvanostatic (G) control mode was used at -35.1 mA/cm2 current density. At 

these high current densities, less than 1 at.% Cu gets incorporated in the magnetic layer, which 

does not deteriorate the magnetic and transport properties of the layer. For the Cu layer, 
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potentiostatic (P) control mode was used at a potential of -0.585 V vs. the saturated calomel 

electrode (SCE). According to a previous optimization, at this Cu deposition potential neither 

dissolution of the Co layer, nor Co codeposition into the Cu layer can occur.33 This also ensures 

that when controlling the layer thicknesses by adjusting the deposition time in the G mode and 

by setting up the charge passed through the cell in the P mode, the resulting layer thicknesses 

will be close to the predetermined values. For bulk Ni-Co layers, previous profilometric 

measurements34 established that the current efficiency is high enough, namely 96 %, to assume 

that the actual layer thicknesses are fairly close to the preset values. Furthermore, XRD and 

TEM studies11,12 indicated that under such controlled multilayer deposition conditions, the 

actual layer thicknesses are, indeed, only slightly above the nominal values. 

The deposition pulse sequence was manipulated in various manners. For series 1, 

Co(2.0 nm) and Cu(5.0 nm) layers were alternately deposited onto each other by increasing the 

total number of individual layers by one for each subsequent sample until the formation of a 

stack of 5 Co/Cu bilayers after which the increment was one Co/Cu pair up to 10 Co/Cu 

bilayers. The choice of the individual layer thicknesses was based on our previous 

experience16,35 obtained on ED GMR Co/Cu multilayers prepared with optimized Cu 

deposition potential. This deposition sequence resulted in samples with either a Co or a Cu 

terminal layer on the top of the multilayer sample. The aim of this series was to investigate the 

variation of surface roughening and magnetoresistance layer by layer. A sketch of the substrate 

and deposit structure for series 1 is shown in Fig. 1a. 

In order to investigate how the exchange reaction between the covering Co layer and the 

electrolyte affects the resulting GMR in series 1, four additional samples (series T) were made 

with the following structure: Co(2.0 nm)/T/Cu(5.0 nm)/Co(2.0 nm)/T/Cu(5.0 nm). In this pulse 

sequence, I = 0 mA was set for 0, 5, 10 and 20 seconds during the “T” pulse (what is equivalent 

to the open circuit conditions). 

Another set of multilayers (series 2) was also prepared for which the deposition process 

consisted of the repetitions of a trilayer sequence Cu(2.5 nm)/Co(2.0 nm)/Cu(2.5 nm). This 

way, the Co layers were protected from the exchange reaction at each stage of the multilayer 

formation. The individual layer thicknesses were controlled in a manner that, apart from the 

insertion of the very first Cu layer in series 2, identical multilayer stacks were obtained in the 

two series. This is because we can think of the multilayers in series 2 (sequence [Cu/Co/Cu]N) as 

Cu(2.5 nm)/Co(2.0 nm)/[Cu(5 nm)/Co(2.0 nm)]N-1/Cu(2.5 nm) where n is the number of the 

deposited trilayers (see sketch in Fig. 1b). The additional Cu layer deposited directly on the 
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Si/Cr/Cu substrate had two important consequences. Firstly, it provided a fresh, non-oxidized 

Cu surface also for the deposition of the very first Co layer. Secondly, the deposition of the 

starting Cu layer in series 2 depleted the electrolyte for the Cu2+ ions immediately at the cathode 

surface by the time the Co deposition pulse started. Therefore, a different amount of Cu 

codeposited with Co in the first magnetic layer can be expected for the two series what may 

have an influence on the observed magnetoresistance. 

Measurement of surface roughness and microstructure. —The root-mean-square surface 

roughness (Rq) of the multilayers was investigated with atomic force microscopy (AFM). The 

surface roughness of the Si/Cr/Cu substrate with the evaporated underlayers was also 

determined and was found to show height fluctuations not larger than 3 nm. 

For one of the thickest multilayer stack (70 nm), we have carried out an X-ray diffraction 

study which revealed a very dominant (111) texture. This is in agreement with our previous 

experience according to which electrodeposited Co/Cu multilayers prepared under similar 

conditions develop a (111) texture.9,11,12,36 

Measurement and evaluation of electrical transport properties. —The zero-field resistivity (ρ0) 

was determined at room-temperature with a four-point-in-line probe calibrated with Cu-foils of 

known thickness and having the same lateral dimensions as the alloy sample. 

The magnetoresistance was measured with another four-point-in-line probe as a function of 

the external magnetic field (H) up to 8 kOe. The MR ratio was defined with the formula 

 MR(H) =
0

)(
R

HR =
0

0)(
R

RHR 
 (1) 

where R0 is the resistance of the sample in zero external magnetic field and R(H) is the 

resistance in an external magnetic field H. The magnetoresistance was determined in the 

field-in-plane/current-in-plane geometry in both the longitudinal (LMR, magnetic field parallel 

to the current) and the transverse (TMR, field perpendicular to the current) configurations. The 

measured MR(H) curves were decomposed into GMRFM and GMRSPM contributions according 

to a procedure described previously.31 

The MR data were measured on the multilayers while being on their substrates, which 

necessitates a correction for the shunt effect of the underlayers. This can be done by using the 

measured values of the zero-field resistivity ρ0 of both the substrate alone and the 

substrate/multilayer stack. 
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Results and Discussion 

The major objective of the present work was to investigate the formation of ultrathin ED 

Co/Cu multilayers. For this purpose, the structure evolution with total deposit thickness was 

compared for series 1 and series 2 on the basis of the results of surface roughness and electrical 

transport (resistivity and magnetoresistance) measurements. The main differences of the two 

series occurred in the starting layer (Co in series 1 and Cu in series 2) on the evaporated 

underlayer and in the top layer of the stack (Co or Cu alternately in series 1 and always Cu in 

series 2). For both series, the MR(H) curves are analyzed first for the initial layer stacks, 

followed by a discussion of the evolution of GMR with total multilayer thickness and, finally, 

the surface roughness data are presented and discussed. 

 

MR(H) curves of the initial layer stacks in series 1. —Figure 2 shows the MR(H) curves for the 

first four layer stacks in series 1: (a) the first Co layer electrodeposited on the Si/Cr/Cu 

substrate; (b) the first Co/Cu bilayer; (c) the trilayer Co/Cu/Co and (d) the first two bilayers 

Co/Cu/Co/Cu. 

The first Co layer on the Si/Cr/Cu substrate (Fig. 2a) shows very weak anisotropic 

magnetoresistance (AMR) behavior (LMR > 0, TMR < 0) as expected for a single magnetic 

layer. The splitting of the LMR(H) and TMR(H) curves is due to spin-dependent scattering 

events in the bulk of the magnetic layers.34,37,38 The magnitude of the AMR is defined as the 

difference LMR – TMR at the highest magnetic field used. The very small value of the AMR 

magnitude (ca. 0.005 %) of the Si/Cr/Cu//Co sample (a single uncovered Co layer on the top) is 

due to the removal of most of the magnetic layer due to the exchange reaction.29 Another 

possible factor leading to a reduction of the amount of magnetic material in this first magnetic 

layer is that during its deposition the Cu2+ content of the bath at the cathode/electrolyte interface 

is still close to the bulk value. This means that Cu is deposited at much larger current density 

than the diffusion-limited current density. Thus, the amount of Cu codeposited with Co in the 

very first magnetic layer can be fairly large. We should also take into account that although 

under the deposition conditions of the magnetic layer the native oxide scale of the evaporated 

Cu layer is reduced to a large extent to metallic Cu, this reduction is certainly not complete over 

the whole cathode area and there may be local areas where the nucleation of the first Co layer 

may be strongly hindered. As a result, the first magnetic layer is definitely discontinuous; it may 

contain regions of high Cu content (or even pure Cu regions). By taking into account all these 

factors and the magnetoresistance results, the cross-sectional view of the Si/Cr/Cu//Co sample 
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can be visualized as shown in Fig. 3a. 

Putting a covering Cu layer on this first Co layer changes significantly the situation as 

revealed by the MR(H) curves in Fig. 2b. By the exclusion of the exchange reaction, all the Co 

atoms deposited with a thickness of 2 nm are retained and the AMR magnitude increases to 

about 0.015 %, i.e., by about a factor of 3. Furthermore, in spite of the fact that we have to deal 

with a single magnetic layer only in this Si/Cr/Cu//Co/Cu stack, the observed magnetoresistance 

contains, surprisingly, a GMR contribution as well (both LMR and TMR are negative for all 

fields) which is comparable in magnitude to the AMR. The cross-sectional sketch of this sample 

in Fig. 3b may help in understanding the occurrence of the observed GMR effect. Due to the 

laterally non-continuous nucleation of Co on the evaporated Cu and the presence of a fairly high 

Cu content in the first magnetic layer which presumably forms segregations, the Co layer having 

a nominal total thickness of 2 nm is not completely homogeneous but may consist of separated 

Co islands. In case the magnetizations of the adjacent islands are not aligned parallel, polarized 

electrons travelling between two such adjacent islands may contribute to a GMR effect. These 

pathways may have a non-negligible probability since (i) there is now a conducting spacer 

material (Cu) both below and above the magnetic layer and, perhaps even more importantly, (ii) 

the discontinuities of the first magnetic layer are filled up by the covering Cu layer which 

provides a good conducting path for electrons between adjacent but separated ferromagnetic Co 

regions within the magnetic layer plane itself (see sketch in Fig. 3b). Due to the data scatter of 

the MR(H) curves in Fig. 2b, we cannot ascertain either the presence or absence of an SPM 

contribution to the magnetoresistance curve. 

The MR(H) curves of the layer stack Si/Cr/Cu//Co/Cu/Co (Fig. 2c) indicate a further 

increase of both the AMR and GMR magnitudes by nearly a factor of two due to the presence 

of a second, albeit strongly dissolved Co layer on the top of the sequence. A Langevin fit could 

be carried out here for the transverse component and the decomposition showed that the 

GMRFM term is about -0.030 % whereas the GMRSPM term is about -0.022 %, i.e., the two 

contributions are of comparable magnitude. This indicates that the total GMR comes from 

several different contributions. The first is the electron scattering between Co regions in the first 

Co layer (either FM or SPM). Another contribution comes from the scattering between large 

ferromagnetic Co regions in the first layer and ferromagnetic Co islands in the second Co layer 

(GMRFM term). In addition, there are frequent electronic transitions also between FM regions 

of one layer and SPM regions of the other layer (GMRSPM term) as sketched in Fig. 3c.  
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The MR(H) curves for the next multilayer stack Si/Cr/Cu//Co/Cu/Co/Cu are shown in 

Fig. 2d. The layer sequence applied ensures the suppression of the exchange reaction for both 

Co layers and this enables the formation of well-defined ferromagnetic layers which are properly 

separated from each other by the first Cu layer (see the schematic view of the cross-section of 

this layer stack in Fig. 3d). This is confirmed by the observed MR(H) curve which indicates a 

clear GMR behavior due to electron spin scattering events for electrons travelling between the 

two magnetic layers through the non-magnetic spacer layer. The GMR is dominated by a 

ferromagnetic contribution GMRFM (ca. -0.47(2) %) characterized by a low saturation field 

(below 1 kOe). This indicates that the magnetic layers consist mainly of ferromagnetic regions 

and the fraction of SPM regions in the magnetic layers is not large (the SPM contribution 

GMRSPM which derives from electrons travelling between a FM and an SPM entity is very small, 

ca. -0.05(1) %). The SPM regions can form in the first magnetic layer due to its higher Cu 

content via phase separation11,12 or in both magnetic layers through a mechanism induced by 

small-lateral scale surface roughness as suggested by Ishiji and Hashizume.19 It should also be 

noted that the GMR effect of the stack is by an order of magnitude larger than obtained for the 

previous stack Si/Cr/Cu//Co/Cu/Co (Fig. 2c).  

 

Influence of exchange reaction on magnetoresistance. —In order to underpin the crucial role of 

the exchange reaction the presence of which was utilized in the explanation of some of the 

MR(H) in the previous section, we shall now present results for series T specially designed for 

this purpose. The starting point of the series 

Co(2.0 nm)/T/Cu(5.0 nm)/Co(2.0 nm)/T/Cu(5.0 nm) was the layer stack prepared with T = 0 s 

which sample was identical with the multilayer Co/Cu/Co/Cu of series 1 (see Fig. 2d). In this 

layer stack, both magnetic layers are immediately covered by an ED Cu layer in order to prevent 

the occurrence of an exchange reaction on the Co layers. 

As soon as the T pause time has a non-zero value for the series 

Co(2.0 nm)/T/Cu(5.0 nm)/Co(2.0 nm)/T/Cu(5.0 nm), a spontaneous exchange reaction starts 

between the Co atoms in the lastly deposited magnetic layer and the Cu2+ ions in the solution. 

As the T pause time increases more and more Co atoms are dissolved into the electrolyte and 

substituted with Cu due to the exchange reaction. This finally leads to a reduction of the 

magnetic layer thickness and, at the extreme, to a fragmentation of the magnetic layer which, 

therefore, becomes discontinuous. As a result of the exchange process, extended regions of the 

magnetic layer may be sufficiently large to exhibit FM behavior whereas smaller and 
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magnetically separated Co islands may show SPM behavior. 

These effects can clearly be seen in Fig. 4 as the T pause time increases from 0 to 20 s. Not 

only the absolute value of the GMR decreases abruptly already at 5 s pause time but also the 

relative ratio of the SPM component in the total magnetoresistance increases gradually with 

increasing pause time. Whereas the first sample in Fig. 4a shows a clear GMR effect with mainly 

FM contribution, for the last one (Fig. 4d) the very weak GMR is due to the dominant FM-SPM 

contribution. The last sample also exhibits a very small AMR effect, indicating that the exchange 

reaction has reduced the lateral size of most continuous Co segments to an extent that in these 

small magnetic entities two consecutive spin-dependent scattering events can hardly occur 

anymore. 

 

Evolution of the magnetoresistance with total multilayer thickness for series 1. —The rest of 

the multilayers in series 1 which were obtained by the addition of more and more Co/Cu bilayers 

exhibited MR(H) curves very similar to that seen in Fig. 2d, with a further increase of the GMR 

magnitude as the number of bilayers increased. 

Figure 5 shows the measured GMRFM components of the multilayers of series 1 (open 

symbols) and also the data obtained after correcting for the shunting effect of the substrate by 

using the measured resistivity (4.6 μΩ cm) of the Si/Cr/Cu substrate (closed symbols).  

The overall evolution of the corrected GMRFM component with total layer thickness 

appears as a monotonous increase up to about 40 nm and then it remains nearly constant. 

However, this initial increase is not at all monotonous if we consider incremental steps of adding 

another layer to the previous stack. In the thickness range below 40 nm where the thickness 

increment was either a single Co or a single Cu layer, the influence of the addition of a 

subsequent layer was dependent on whether it was Co or Cu. It can be observed that the 

addition of a Cu layer increased the GMR whereas the addition of a Co layer hardly influenced 

it. The explanation lies again in the exchange reaction. When a Co layer is put on the top, it is 

mostly removed by the exchange reaction by the time its surface is made free of the electrolyte 

and, therefore, it hardly offers new regions for a magnetic/non-magnetic/magnetic sequence 

which is a pre-requisite for the occurrence of a GMR effect. On the other hand, when the top 

layer is Cu, it effectively protects the underlying last Co layer from the effect of the exchange 

reaction. Therefore, the last Co layer, together with the previous Co layer and the Cu layer in 

between, can form a good magnetic/non-magnetic/magnetic sequence effectively contributing to 

the GMR. The increase of the GMR effect continues until the new subsequent layers effectively 
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improve the multilayer structure in the sense that more and more areas provide contributions to 

the GMR via forming proper magnetic/non-magnetic/magnetic layer sequences. With reference 

to Fig. 5, this seems to be the case up to a total thickness of about 40 nm.  

The GMRSPM  term showed a similar evolution with multilayer thickness as the GMRFM 

contribution. However, as can be inferred from the shape of MR(H) curve for the multilayer 

stack Si/Cr/Cu//Co/Cu/Co/Cu (Fig. 2d), its magnitude is much smaller than the GMRFM term 

(the relative fraction of GMRSPM contribution to the total observed magnetoresistance remained 

below about 0.1 for the whole series 1). 

 

Evolution of surface roughness for series 1. —The root-mean-square surface roughness for 

multilayer series 1 varied apparently randomly in a wide range with the addition of new layers to 

the stack (Fig. 6). The first Co layer subjected to the exchange reaction exhibited a large 

increase of the surface roughness with respect to the substrate roughness. This may be partly 

attributed to the hindered and, therefore, uneven nucleation of Co on the surface of the 

evaporated Cu underlayer from which the native oxide was not removed. Another possible 

reason of the surface roughness increment was the pronounced dissolution of the Co atoms and 

their random replacement by Cu atoms. The deposition of the next Cu layer leads to a 

smoothening. Since the second and subsequent Co layers are already deposited on a completely 

oxide-free surface, the nucleation of Co is much more homogeneous over the cathode area. 

Therefore, the top Co layers, in spite of the exchange reaction, lead to a smoothening, at least 

up to the fifth bilayer as indicated by the lines connecting the full circles (top Cu layer) with the 

subsequent open circles (top Co layer). On the contrary, the top Cu layers rather seem to cause 

a roughening in most cases. In summary, it seems that the dissolution makes the multilayer 

smoother: the samples with the partially dissolved Co covering layer are always smoother than 

the ones with a Cu layer on the top. 

To prove this smoothening effect of the substitution of Co atoms by Cu atoms, a series of 

four samples was made. Each was made up by four bilayers of Cu(5.0 nm)/Co(2.0 nm) and, 

after finishing the deposition, the current was set to zero but the electrolyte was not removed 

from the sample for different waiting times (TW). During this period, a replacement of the Co 

atoms with Cu atoms by the exchange reaction could occur. The root-mean-square surface 

roughness of the resulting sample was measured by AFM. According to Fig. 7, with increasing 

TW the Rq values decrease exponentially. This is because both partial processes of the exchange 

reaction result in a roughness reduction. On the one hand, the dissolution of the Co atoms at 
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highest peaks has the largest probability because the binding energy of these atoms to the solid 

phase is the smallest. On the other hand, the deposition of the Cu atoms and their diffusion 

along the surface may lead to a filling-up of the cavities because the binding energy of the newly 

deposited atoms at these positions is the highest. The Rq values converge to a finite value 

(4.2 nm) which is somewhat higher than the initial substrate roughness. One should keep in 

mind that the lattice mismatch in a multilayer should unavoidably lead to a surface roughening 

because the layer with larger lattice constant can grow in island like form only at the beginning 

on the previous layer with smaller lattice constant.  

In fact, the exponential decrease of the Rq values starts only after a certain waiting time 

(which is lower than the minimum 10 s we could reach), because the electrolyte near the surface 

is depleted for Cu2+ ions and thus the exchange reaction cannot start immediately after the 

deposition of the Co layer was finished. We can assume that the roughness starts to decrease at 

a very low rate, due to the lack of Cu2+ ions, and then, as the Cu2+-content of the electrolyte 

near the sample surface reaches its bulk value, the smoothening rate increases. After a certain 

value of TW, the amount of the Co atoms at the surface decreases to a low value as a result of 

which the Rq data converge to a finite value. 

The contribution of this smoothening effect to the total surface roughness measured in the 

case of the first few samples in series 1 changes randomly because the TW data of these samples 

were not measured (albeit it was close to the minimum electrolyte removal time of 10 s that we 

could reach). 

 

MR(H) curves of the initial layer stacks in series 2. —Figure 8 shows the MR(H) curves for the 

first two layer stacks in series 2: (a) Si/Cr/Cu//[Cu2.5nm)/Co(2.0nm)/Cu(2.5nm)]x1 and (b) 

Si/Cr/Cu//[Cu2.5nm)/Co(2.0nm)/Cu(2.5nm)]x2. The ED layer stack in Fig. 8a is actually a 

Cu/Co/Cu sequence. The magnetic layer in this sequence is expected to consist mainly of FM 

regions since its Cu content is low and the top Cu layer prevented it from the exchange reaction. 

Correspondingly, a bulk AMR effect of the FM Co layer is expected to occur as shown, indeed, 

by the MR(H) curves (LMR > 0 and TMR < 0) in Fig. 8a. The magnitude of the AMR effect (the 

splitting of the LMR and TMR curves in the saturation region) is larger than was for the first 

single Co layer of series 1 (stack Si/Cr/Cu//Co, see Fig. 2a). This is because of the larger 

amount of the magnetic material for the first magnetic layer in series 2. There is also a difference 

in comparison with the layer stack Si/Cr/Cu//Co/Cu of series 1 (see Fig. 2b). The latter one also 

contains a layer stack Cu//Co/Cu but the discontinuity of the magnetic layer as discussed in 
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previous sections for this layer stack could give rise to a GMR effect. However, the Co layer in 

the Cu//Cu/Co/Cu stack is not expected to show GMR due to its continuous layer form. 

Therefore, this single Co layer behaves as a bulk magnetic material. 

According to the MR(H) curves in Fig. 8b, the second layer stack 

Si/Cr/Cu//Cu/Co/Cu/Cu/Co/Cu of series 2 already exhibits a clear GMR behavior with a 

dominant FM contribution. This is because it contains the sequence Co/Cu/Co which is, apart 

from the microstructure of the first magnetic layer, identical with the similar sequence in the 

layer stack of Si/Cr/Cu//Co/Cu/Co/Cu of series 1 (see Fig. 2d). The larger GMR magnitude of 

the multilayer in series 1 may come from the discontinuous nature of the first magnetic layer in 

this stack which can provide electron pathways for GMR also in the layer plane between 

separated FM regions and not only electron pathways between the two magnetic layers which is 

the case for the stack of series 2. 

The rest of the multilayers in series 2 exhibited MR(H) curves qualitatively very similar to 

those shown in Fig. 8b for the stack consisting of two Cu/Co/Cu trilayers, just the GMR 

magnitude varied with the number of trilayers as will be discussed in the next section. 

 

Evolution of the magnetoresistance with total multilayer thickness for series 2. —In order to 

evaluate the evolution of the magnetoresistance for series 2, first we consider the zero-field 

resistivity data. In contrast to series 1, the resistivity data for multilayers of series 2 on their 

substrates showed a systematic variation with total multilayer thickness (Fig. 9) which was 

described according to the following considerations. The stack of the substrate and the 

multilayer can be treated as two resistors in a parallel configuration with resistivities ρS and ρML 

and thicknesses dS and dML where the subscripts S and ML refer to the substrate and the 

multilayer, respectively. The measured resistivity (ρ0) can be described as 

ρ0 = ρML

S

ML

S

ML

S

ML

d
d

d
d








1
           (1) 

In deriving eq. (1), it was assumed that the individual layers of the multilayers are perfectly flat 

and smooth. This expression was fitted to the experimental data in Fig. 9 in which the multilayer 

resistivity ρML is the only fitting parameter assumed to be constant throughout the series. The 

fitted curve also shown in Fig. 9 describes the data fairly well. A consistency of the fit is 

indicated by displaying the fitted constant ρML value (6.6 μΩ cm) as a horizontal line 
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corresponding well to the average of the shunt-corrected resistivity values of the multilayers 

throughout multilayer series 2. By using these latter values, we can correct the measured 

magnetoresistance data for the shunting effect of the substrate. 

The measured and corrected MRFM data are displayed in Fig. 10. After the third trilayer 

stack, a sudden increase of the GMRFM term can be seen and, then, a leveling off roughly for the 

same total multilayer thicknesses as for series 1. The saturation GMRFM value is somewhat 

larger for series 1 but the origin of this difference is not clear. 

The GMRSPM contribution for series 2 showed a monotonous, nearly linear increase with 

trilayer number (Fig. 10). Its relative fraction in the total magnetoresistance was somewhat 

higher (varied between 0.1 and 0.18) than for series 1, although it remained also here much less 

than the GMRFM term. 

 

Evolution of surface roughness for series 2. — Representative AFM pictures of the Si/Cr/Cu 

substrate and the thickest multilayer in this series  are shown in Fig. 11. For multilayer series 2 

(sequence Si/Cr/Cu//[Cu/Co/Cu]N), we obtained a much more systematic change in the Rq 

parameter (Fig. 12) because of the more controlled deposition and dissolution conditions. Even 

up to 70 nm total thickness, an approximately linear increase of the surface roughness was 

detected.  

Contrary to the alternating deposition of Co and Cu from sample to sample in series 1, in 

the second series the same trilayer structure was deposited repeatedly. This led to a 

homogeneous structural evolution of the deposited multilayers, the only difference between the 

subsequent samples being the number of trilayers. This allows us to compare multilayers in 

series 2 on the basis of their total thickness only. 

Since the first and the last component of the trilayer are both Cu, they behave as a 

continuously deposited 5 nm thick layer in the multilayer stack. This means that the roughening 

of the multilayer cannot come from the trilayer-trilayer interface because Cu is continuously 

deposited there. Therefore, an increase of the Rq parameter with thickness derives partly from 

the lattice mismatch (and thus the island-like growth) between the Co and the Cu layers as 

noticed above and partly from the normal cumulative roughening of the individual layers during 

their growth. 

Apart from the linear surface roughness growth for multilayers presented in this paper 

other authors have reported different roughening properties of alloys and multilayers. For metal 

layers (specifically Cu) a linear increase of the root-mean-square roughness was found by 
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Schwarzacher13 within the range of 0.2 and 20 μm. Renner and Liddell39 reported the 

saturation of Rq, also for Cu, between the thicknesses 1 and 12 nm. For Ni-Co/Cu multilayers in 

the 8 to 800 nm thickness range, da Silva and Schwarzacher14 found an exponential roughening. 

These results along with the roughness data given in this paper underline the necessity of further 

systematic studies of the effect of substrate and even the electrolyte on the surface properties of 

the deposited alloys and multilayers. 

For large total thicknesses, the roughness in series 2 exceeds by about a factor of two the 

value of the roughness for most of the multilayers in series 1. This may be partly an explanation 

for the lower saturation GMRFM values obtained for series 2. Also, the linear increase of the 

GMRSPM term and the roughness for series 2 (Fig. 10) are so well correlated that this gives 

strong support for the validity of the model put forward by Ishiji and Hashizume19 for the origin 

of the formation of SPM regions in FM/NM multilayers. 

 

Microstructure evolution in early stages of multilayer formation. —By comparing the MR data 

of the first sample of series 1 (showing a very small AMR) and series 2 (showing a clear AMR), 

it can be established that depositing Co on a Cu layer of the evaporated substrate with the 

probable presence of residual oxide regions makes the Co atoms form islands, either FM and 

SPM-type. If this first Co layer is covered with a Cu layer, the “bilayer” shows GMR, which is a 

sign of electron scattering between these islands. On the contrary, if the evaporated substrate Cu 

layer is first covered with an electrodeposited, fresh Cu layer, the Co atoms form an almost 

continuous, predominantly ferromagnetic layer. If this is covered with a subsequent ED Cu layer 

in order to prevent the exchange reaction, the sample shows a good AMR behavior as a sign of 

a mostly continuous layer of Co. 

In the third sample of series 1 (Co/Cu/Co), scattering occurs between smaller (SPM) and 

larger (FM) islands of Co below and above the electrodeposited Cu layer because of the 

dissolution of the top Co layer. However, if an additional protective Cu layer is deposited, 

electron scattering occurs predominantly between large FM regions of the two layers making 

the multilayer to show a definite GMR. The same behavior with almost the same MR value can 

be seen for the second sample in series 2, which also contains two Co layers with a protective 

topmost Cu layer. 

If more than two Co and Cu layers are deposited in series 1, the MR behavior remains the 

same because the electron scattering between these almost continuous Co layers dominate.  
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Summary 
 

In the present work, the evolution of the microstructure of electrodeposited Co/Cu 

multilayers was investigated. For this purpose, two different Co/Cu multilayer series were 

prepared: one with alternating Co and Cu layers on the top and another one made up of 

Cu/Co/Cu trilayers on Si wafers with evaporated Cr and Cu underlayers. The thicknesses of the 

multilayers were varied between 7 and 70 nm. 

It was shown by AFM studies that although the exchange reaction between a topmost Co 

layer and the electrolyte (series 1) deteriorates the continuity of the top Co layer and, thus, leads 

to the appearance of an SPM contribution to the magnetoresistance, it also makes the multilayer 

smoother. 

It was also found that, in the multilayer thickness range investigated, the root-mean-square 

roughness of the multilayers made up by the trilayers (series 2) develops linearly as the total 

multilayer thickness increases. Meanwhile, the GMR of the deposited multilayer saturates at six 

trilayers whereas the small SPM contribution to the MR increases in the whole investigated 

thickness range. 
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Fig. 1 Schematic cross-sectional view of the investigated layer structures in (a) series 1  and 
(b) series 2. 
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Fig. 2 MR(H) curves for the layer stacks (a) Si/Cr/Cu//Co, (b) Si/Cr/Cu//Co/Cu, (c) 
Si/Cr/Cu//Co/Cu/Co and (d) Si/Cr/Cu//Co/Cu/Co/Cu of series 1. Circles: LMR data, squares: 
TMR data. 
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Fig. 3 Sketches of the structure of the first four samples of series 1. The thicker/broader arrows 
mark the electron paths. Note that not all possible spin-dependent electron scattering paths are 
indicated in each sketch. The notation “(Cu)” indicates Cu-rich regions in the magnetic layer. 
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Fig. 4 MR(H) curves for the multilayers Co/T/Cu/Co/T/Cu with (a) T = 0, (b) T = 5 s, (c) T = 
10 s and (d) T = 20 s. Circles: LMR data, squares: TMR data. Note the larger ordinate scale for 
(a) than for (b), (c) and (d). Note that the sample in (a) is identical with that in Fig. 2d. 
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Fig. 5 Evolution of the FM contribution to the GMR with total deposit thickness for series 1 
in which the multilayer is formed by the alternate deposition of Co(2 nm) magnetic and 
Cu(5 nm) non-magnetic layers. The open symbols are the measured data and the filled symbols 
are the GMR values corrected for the shunting effect of the substrate. 
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Fig. 6 Evolution of the surface roughness parameter Rq with total deposit thickness for 
series 1. The lines connecting the full and open circles are just to indicate the sequence “top Cu 
layer” → “top Co layer”. 
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Fig. 7 Evolution of the surface roughness parameter Rq with the change of the waiting time 
(TW). 
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Fig. 8 MR(H) curves for the layer stacks (a) Si/Cr/Cu//[Cu/Co/Cu]x1 and (b) 
Si/Cr/Cu//[Cu/Co/Cu]x2 of series 2. Circles: LMR data, squares: TMR data. 
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Fig. 9 Evolution of the zero-field resistivity ρ0 with total deposit thickness for series 2. The 
line through the measured data points is the result of a fit to eq. (1). The horizontal lines 
correspond to the resistivity of Si/Cr/Cu substrate and the average resistivity of the multilayers 
obtained from the fit. 
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Fig. 10 Evolution of the FM contribution to the GMR with total deposit thickness for series 2 
in which the multilayers are built by the deposition of [Cu(2.5nm/Co(2nm)/Cu(2.5nm)] trilayer 
units. The open rectangles are the measured data and the filled rectangles are the GMR values 
corrected for the shunting effect of the substrate. The circles show the SPM-contribution 
averaged out for the longitudinal and the transverse component. 
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Fig. 11  Representative AFM images of the surface of (a) the Si/Cr/Cu substrate and (b) the 
Co/Cu multilayer with 70 nm total thickness from series 2. The images were obatined by 
smoothing the original records. The rms roughness values are calculated by the data acquisition 
and evaluation computer of the AFM equipment from the measured height values of the whole 
image. 
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Fig. 12  Evolution of the surface roughness parameter Rq with total deposit thickness for 
series 2. 


