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Abstract 

The compressive behaviour of eight different metal matrix syntactic foams (MMSFs) 

are investigated and presented. The results showed that the engineering factors as 

chemical compositions of the matrix material, the size of the microballoons, the 

previously applied heat treatment and the temperature of the compression tests have 

significant effects on the compressive properties. The smaller microballoons with 

thinner wall ensured higher compressive strength due to their more flawless 

microstructure and better mechanical stability. According to the heat treatments, the 

T6 treatments were less effective than expected; the parameters of the treatment 

should be further optimized. The elevated temperature tests revealed ~30% drop in 

the compressive strength. However, the strength remained high enough for structural 

applications; therefore MMSFs are good choices for light structural parts working at 

elevated or room temperature. The chemical composition – microballoon type – heat 

treatment combinations give good potential for tailoring the compressive 

characteristics of MMSFs. 

 

Keywords: A. Foams; A. Metal-matrix composites (MMCs); B. Mechanical 

properties; B. Strength 

 

1 Introduction 

Nowadays metallic foams become more and more important and this is confirmed by 

the increasing number of papers published on this topic. The ‘conventional’ metallic 

foams, which consist of a metal structure, a gas phase and stabilising particles, have 
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wide spread literature thanks to their potential application possibilities as automotive 

parts, energy absorbers etc. or blast and collision damping elements in buildings or 

vehicles etc. However there are still existing problems for example in the foaming 

process [1, 2]. The metallic foams have a special class, namely the metal matrix 

syntactic foams (MMSFs). The MMSFs have numerous perspective applications as 

covers, hulls, walls, castings, or in automotive and electromechanical industry sectors 

because of their high energy absorbing and damping capability (both blasts and 

vibrations) and due to their low density. In the MMSFs the porosity is ensured by the 

incorporation of ceramic microballoons [3, 4]. The microballoons are commercially 

available and they contain mainly various oxide ceramics [5, 6]. The quality of the 

microballoons (uniform wall thickness and flawless wall) has a strong effect on the 

mechanical and other properties of the foams. 

The MMSFs can be produced by pressure infiltration or by stir casting; both ways are 

common in the literature. The main mechanical loading mode of MMSFs is 

compression; therefore the compression characteristics have been investigated in 

some aspects. Palmer et al. studied the pressure infiltration process and mechanical 

behaviour of various microballoon and metal matrix combinations. Compressive 

stress-strain data were gathered for foams prepared from combinations of Al1350, 

Al5083 and Al6061 alloys for both 45 μm and 270 μm spheres [7]. Balch et al 

fabricated aluminium matrix MMSFs by liquid metal infiltration of commercially pure 

(cp-Al) and Al7075 aluminium. The cp-Al foam exhibited peak strengths in 

compression of over 100 MPa, with a uniform densification plateau of 60% strain. 

The Al7075 matrix foams had significantly higher peak strengths (up to 230 MPa) 

than cp-Al based ones, up to 230 MPa [8, 9]. Rohatgi et al investigated the pressure 
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infiltration technique of nickel coated and uncoated microballoons. In their other work 

loose beds of microballoons (cenospheres) were pressure infiltrated with A356 alloy 

melt to fabricate MMSFs. The volume fractions of microballoons in the composites 

were in the range of 20–65%, the processing variables included melt temperature, 

gas pressure and the size of microballoons. The effect of these processing variables 

on the microstructure and compressive properties of the synthesized composites was 

characterized [10, 11]. Kiser et al performed investigations on the mechanical 

response of a family of MMSFs under both uniaxial compression and constrained die 

compression loadings. The key material parameters that varied were the matrix 

strength and the ratio of wall thickness to radius of the microballoons. They observed 

that the energy absorption capacity was extremely high in comparison with values 

that are typical of metal foams [12]. Wu et al established a new method to predict the 

compressive strength of MMSFs, showing the relation between the relative wall 

thickness of the microballoons and the compressive strength of such foams. The 

tests indicated that MMSFs can deform plastically at a relatively higher stress (45-75 

MPa); the deformation mechanisms of syntactic foams had also been discussed [13]. 

Tao et al investigated the mechanical properties of MMSFs with monomodal and 

bimodal distribution of microballoons. By combining fine and coarse microballoons, 

the density of bimodal MMSFs can be decreased by up to 25%. The bimodal foams 

have the advantages of a flat plateau regime, high plateau stress and good ductility. 

In next step Al matrix syntactic foams with additional Al particles embedded were 

fabricated by pressure infiltration. With the introduction of Al particles, the ductility of 

the syntactic foams was significantly increased and the compressive strength also 

increased by up to 30% [14, 15]. Zhang et al manufactured aluminium matrix 

syntactic foams with low-cost porous ceramic spheres of diameters between 0.25 
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and 4 mm by pressure infiltration casting. The mechanical response of the syntactic 

foamsMMSFs with different sphere sizes and densities under static and dynamic 

conditions was investigated. They found that the plateau strength and thus the 

amount of energy absorption of the syntactic foamMMSFs were largely determined 

by the volume fraction of Al and to a lesser extent by the mechanical properties of the 

ceramic spheres in the foam [16]. In the works of Mondal et al microballoons in the 

range of 30–50 vol% were used as space holders for making syntactic aluminium 

foam using stir-casting technique. The synthesized MMSF was characterized in 

terms of microstructures, hardness and compressive deformation behaviour. The 

compressive deformation behaviour was similar to those of conventional low density 

aluminium foam. However, theThey found the plateau stress of these MMSFs is 

considerably higher than those of conventional aluminium foams. The dry sliding 

wear behaviour of MMSFs has been also studied using a pin-on-disc apparatus [17, 

18]. Rabiei and O’Neill produced MMSFs reinforced by hollow steel spheres using 

gravity casting techniques. The foam was comprised of steel hollow spheres packed 

into a random dense arrangement, with the interstitial space between spheres 

infiltrated with a casting aluminium alloy. The aluminium composite foam developed 

in the study displayed superior compressive strength and energy absorption capacity 

[19]. Ramachandra and Radhakrishna synthesized aluminium based MMSFs 

containing up to 15 wt% of microballoons by stir casting method. The properties like 

density, hardness, microhardness, ductility and ultimate tensile strength were 

investigated. The MMSFs produced was also subjected to corrosion, dry sliding wear 

and slurry erosive wear test. The addition of microballoons reduced the density of 

composites while increased some of their mechanical properties. The results of wear 

studies have shown that the resistance to wear increased with increase in 
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percentage of microballoons  [20, 21]. Daoud used different, not aluminium based 

matrix materials to produce MMSFs. For example MMSFs with ZnAl22 matrix was 

produced by stir casting method. The foam composites containing microballoons 

showed superior compressive properties and energy absorption compares to those of 

the conventional foams [22]. In the work of Couteau and Dunand aluminium syntactic 

foams with densities of 1.2-1.5 g/cm3 were deformed at 500°C under constant 

uniaxial compressive stresses ranging from 5 to 14 MPa. The foam’s creep behaviour 

was characterized by a short primary stage and a long secondary stage where the 

strain rate was constant and minimum, followed by a tertiary stage at high stresses 

[23]. 

The modelling of the MMSFs has been also studied. Bardella and Genna proposed a 

complex numerical method to predict the elastic properties of the MMSFs. Explicit 

formulae for the homogenized values of the elastic moduli of the MMSFs were 

derived  [24, 25]. A similar model was used by Marur to compute the effective elastic 

moduli of syntactic foams. having perfect adhesion between the inclusion and the 

matrix. The computed effective elastic moduli are between the bounds, but usually 

overestimate the experimental data. Due to this the assumption of perfect adhesion 

between the inclusion and the matrix is relaxed to allow possible localized slip and 

separation at the particle interface. The analytical results obtained considering 

imperfect interface between microballoons and matrix well agree with the measured 

elastic modulus reported in the literature [26, 27]. Sanders and Gibson presented 

models for the mechanical properties of foams suggest that closed-cell foams should 

have significantly higher modulus and strength than open-cell foams, especially at 

low relative densities. The elastic moduli and initial yield strength of MMSFs were 
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analysed too. The results indicated that their theoretical values of moduli and 

strength are intermediate to those for open- and closed-cell foams [28]. 

Most of the MMSFs are produced by pressure infiltration; therefore the infiltration 

parameters (like required threshold pressure) have been also studied. Trumble 

presented an analysis of spontaneous infiltration of model non-cylindrical pores. The 

approach is based on the simple notion that the liquid will penetrate non-cylindrical 

pores until the contact angle with the pore surface is established coincident with a flat 

liquid surface  [29]. Bárczy and Kaptay developed a new infiltration model for “closely 

packed equal sphere - CPES” structure. In their study the threshold pressure, the 

threshold contact angle and the equilibrium height of penetration has been 

determined. All these parameters are significantly different from those, obtained from 

the traditional capillary penetration model, but similar to Carman model. The 

experiments demonstrated the reliability of the theoretical results [30]. Asthana et al 

also overviewed some fundamental materials phenomena relevant to infiltration 

processing of metal-matrix composites. They stated that the lack of comprehensive 

theoretical framework induce further research efforts to be done  [31]. 

The aim of this paper is to extend the knowledge about MMSFs by analysing and 

characterizing new matrix materials, the effect of the microballoon size, the effects of 

heat treatment and elevated test temperature. 

 

2 Investigated materials and production methods 

Overall eight types of MMSFs were produced by pressure infiltration from the 

combination of four matrix materials (Al99.5, AlSi12, AlMgSi1 and AlCu5) and two 
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ceramic microballoons (SL150 and SL300). The chemical compositions of the 

matrices are listed in Table 1, in which the approximated ultimate tensile strengths of 

the materials in annealed (O) and heat treated (T6) conditions are also presented 

only for rough strength comparison. The SL150 and SL300 microballoons were 

manufactured and provided by Envirospheres Pty. Ltd. [6]. The main differences 

between the two types are in the average diameter, density and wall thickness. Their 

main parameters are summarized in Table 2. The MMSFs were produced by 

pressure infiltration in a special infiltration chamber (Fig. 1). In the first step the 

microballoons were poured into a 360 mm height carbon steel mould to the half and 

they were densified by gentle tapping and knocking to get randomly closed pack 

structure (RCPS). The cross-section of the mould was 40×60 mm and its inner 

surface was coated by a thin graphite layer in order to easier specimen removal. The 

maximal volume fraction can be reached with quasi-equal diameter spheres is 64 

vol%, as it is published in [32]. After this a layer of alumina mat separator was placed 

on the top of the microballoons and a block of matrix material was put on the mat. 

The mould was situated into the infiltration chamber, the chamber was closed and the 

whole system was evacuated by a vacuum pump (rough vacuum). The proper 

heating was ensured by three heating zones and the temperatures of the matrix 

block and the microballoons were continuously monitored by two thermocouples. 

After the melting of the matrix the molten material formed a liquid cork in the mould 

above the separator layer. Tthe vacuum pump was switched off and argon gas was 

let into the chamber with a previously set pressure. Due to this a pressure difference 

was built up between the inner space of the mould (vacuum under the liquid cork) 

and the chamber (argon pressure). This pressure difference forced the molten metal 

to infiltrate into the space between the microballoons. After complete solidification the 
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mould was removed from the chamber and water cooled to room temperature. Then 

the complete MMSF block (~40×60×180 mm) could be removed from the mould. For 

further details about the production process please refer to [4].The blocks were 

designated by their constituents: for example Al99.5-SL150 stands for an MMSF 

block with Al99.5 matrix and with ~64 vol% SL150 microballoons. The main physical 

properties, such as density and porosity are presented in Table 3. The theoretical 

densitiesy were calculated by the rule of mixtures (eq. 1). 

  mmbmbmbt VV   1  (1) 

Where Vmb is the volume fraction of the microballoons (64 vol% in every case), ρmb is 

the density of the microballoons (from Table 2) and ρm is the density of the matrix 

material (from Table 1). The measured densities (ρmeas) were determined by 

Archimedes’ method.  andThe microballoon-porosity (the porosity in the MMSF 

blocks ensured by the hollow microballoons, Pmb) were can be calculated from the 

average geometrical parameters of the microballoonsas the original porosity of one 

average microballoon (P1mb) multiplied by the volume fraction of the microballoons 

(Vmb). The original porosity of one microballoon (P1mb) is its inner volume divided by 

its whole volume. Thus 
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Where Vmb is the volume fraction of the microballoons (64 vol% in our case), ri and ro 

are the average inner and outer radii of the microballoon respectively (from Table 2). 

The matrix porosities porosity (Pm, the volume of the pores in the matrix material, (for 
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example between the microballoons, due to insufficient infiltration) can be calculated 

for the whole volume as: 

t

meast
mP



 
  (3) 

divided by the volume of the whole specimen) were calculated as the difference 

between theoretical and measured density divided by the theoretical density. The 

negative matrix porosity refers to infiltrated microballoons (the microballoon-porosity 

should be decreased). The values of matrix porosity are always remained below 

7.2%, so the infiltration can be qualified as a suitable one. The total porosity (Pt) is 

the sum of the microballoon porosity and the matrix porosity. 

 

3 ExperimentsMeasurements 

The main loading mode of foam materials is the compression; therefore compression 

tests were performed on cylindrical specimens. The diameter and the height of the 

specimens were 14 and 21 mm respectively (H/D=1.5). The compression tests were 

performed on a MTS 810 type universal testing machine in a four pillar tool at room 

temperature. The surfaces of the tool were grinded and polished. The specimens and 

the tool were lubricated with anti-seize material. The test speed was 0.15 mm/s, 

which ensured quasi-static compression. Six specimens were compressed until 50% 

engineering strain from each MMSF type to get representative results. 

Annealed specimens were compressed in the case of all matrix and microballoon 

combination (8×6=48 specimens). In the case of heat-treatable matrix materials 

(AlMgSi1 and AlCu5) T6 heat treatment was done (according to ASM, see Table 4 
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[33]) and heat treated specimens were also compressed (+4×6=+24 specimen). The 

annealed and heat treated results were compared to get information about the effect 

of heat treatment. In the case of not heat-treatable matrices (Al99.5 and AlSi12) the 

compression tests were performed both at room and elevated temperature (220°C, 

above the 0.5 homologous temperature, again +4×6=+24 specimens). The aim of 

these tests was to figure out, how the MMSFs would perform as structural elements 

at higher temperature. 

In summary 96 compression tests were performed and evaluated in accordance with 

the ruling standard about the compression tests of cellular materials [34]. This gives 

sufficient data for statistical evaluation of the results and trends. 

The phase composition of MMSFs was determined by X-ray diffraction 

measurements (XRD). For this purpose a Phillips X-Pert type diffractometer with 35 

mA cathode heating current and copper anode (CuKα, λ=0.154186 nm) with 40 kV 

voltage was used. The rotating speed of goniometer was 0.04 degree/s. 

For the investigation of the interface zone between microballoons and the matrix 

material line energy dispersive X-ray spectroscopy (line-EDS) was performed by a 

Phillips XL-30 type scanning electron microscope equipped with an EDAX Genesis 

EDS analyser. The excitation voltage was 20 kV, one hundred points were measured 

along the lines, each point was excited for 20 s with 35 µs detector acquisition rate. 

 

4 Results and discussion 

The load bearing capacity of MMSFs depends on many parameters, such as the 

chemical composition of the matrix, the type of the microballoons, the test 
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temperature or the previous heat treatments. In order to characterize these effects 

we have done numerous compression tests as described in the previous section. 

During the tests the engineering stress – engineering deformation curves were 

plotted like in Fig. 2. As an example Fig. 2 shows the graph for an AlMgSi1-SL150 

MMSF specimen tested at room temperature and in annealed condition. Gupta et al 

[35] and Bunn and Mottram [36] have investigated polymer matrix syntactic foams 

with similar stress – strain diagrams. According to the results of Gupta et al the 

general stress – strain curves were divided into three parts [35]. Based on their idea 

the diagram of MMSFs can be divided into three main parts containing overall five 

sections. In the first section (from point A to B) the specimens were deformed 

elastically only. In this section the microballoons remained unharmed as it can be 

observed in Fig. 2a and 2b; there are no cracks at all. The overall deformation is 

related to the elastic deformation of the composite. The slope of the first part is 

defined as structural stiffness (S (MPa), see [34] about the standardized compression 

test of cellular materials). The stiffness is one of the characterizing properties of the 

MMSFs. In the vicinity of point A the deviation from the fitted dashed line can be 

caused by the internal sliding of the material or by the springs and the natural 

movement of the sliding parts of the tool. Due to this it should be distracted from the 

measured strain. In the second section from point B to C the plastic deformation of 

the matrix began. The load transfer between the matrix and the microballoons 

increased to its maximum, but the microspheres remained still unharmed. At the end 

of this section at point C the stress reached the compressive strength (σc (MPa)) at 

the fracture strain (εc (%)). These parameters are also important characterizing 

properties, because they show the load bearing capacity of the MMSFs directly. At 

point C the first crack appeared in the specimen. This first rupture was very thin and 
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very sharp and only one row of the microballoons was cracked as it is shown in Fig. 

2c. The plane of the crack closed ~45° with the horizontal direction, because in the 

case of uniaxial loading the maximum shear load appears in this direction. The stress 

suddenly dropped to point D due to the reduced load bearing capacity caused by the 

fracture of the microballoons and the movement of the recently formed specimen 

halves. From point D to E the fracture band expanded and the crack became thicker. 

The neighbouring microballoons broke and the load bearing capacity decreased 

further, but more slowly due to the friction between the specimen halves (Fig. 2d). 

This deformation phenomenon consumed significant strain and mechanical energy 

due to the fracture of the ceramic microballoons and due to the plastic deformation of 

the matrix. The absorbed mechanical energy is the fourth main characterizing 

parameter of the MMSFs, as it indicates the damping and protecting capability of the 

MMSFs against a blast, collision or simple vibration. The absorbed energy is equal to 

the area under the recorded stress-strain curve and can be integrated numerically. 

From point E the complete densification of the specimens took place. At the end of 

this process the cavities of the broken microballoons were filled up by the matrix 

material due to its plastic deformation (Fig. 2e). This part – also called plateau region 

– absorbs lot of energy, because it is relatively long and has high stress value. The 

shape of the diagrams after point E can be ascending or constant (usually ascending 

because the densifying material needs higher force to be deformed). It may contain 

larger drops or local maximums due to secondary cracks. The process ended at 50% 

engineering strain when the test stopped (point F in Fig. 2). One of the compressed 

specimens was grinded to its half diameter and shown in Fig. 3a. The fracture band 

appeared under ~45° as it is expected from the maximum shear stress theory, 

mentioned above. One can observe the shear band was rather wide and very well 
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defined. However the remaining part of the specimen was unharmed and this part 

would be able to absorb further energy if the compression was continued. In Fig. 3b a 

magnified picture about the sharp margin between the densified and unharmed 

region is shown. In summary the structural stiffness, compressive strength, fracture 

strain and the area under the whole curve – which gives the total absorbed energy 

(W (J/m3)) during the test – is used to characterize the compressive behaviour of the 

MMSFs. Therefore the effect of the chemical composition of the matrix material, the 

effect of the applied microballoons and the influence of the heat treatment and test 

temperature on the characterizing properties mentioned above were investigated, 

pursued and detailed in the next paragraphs. The averages of the measured 

properties and their scatterings are listed in Table 5, in the following sections the 

trends of the effects are shown by average graphs for better understanding and for 

cleaner presentation. 

 

4.1 The effect of the chemical composition of the matrix and the influence of 

the type of microballoons 

During the compression tests in annealed condition and at room temperature the 

MMSFs with Al99.5 matrix showed the smallest strength. The lack of alloying caused 

low strength, high fracture strain, low structural stiffness and in overall: more plastic 

behaviour (see Fig. 4). The AlCu5 matrix SFs proved to be the strongest and showed 

the highest compressive strength compared to the Al99.5 matrix SFs (+37 % and +47 

% in the case of SL150 and SL300 microballoons, respectively) due to the existing 

solid-solution strengthening mechanism. Beside the highest strength the AlCu5 

matrix SFs have the highest structural stiffness and the lowest fracture strain; 
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therefore they behaved the most rigid way. This can be also traced on their graphs 

containing numerous smaller drops in the plateau region, suggesting that many 

smaller cracks appeared during the compression. The next strongest were AlMgSi12 

and AlSi12 with almost the same strength. In the case of AlMgSi1 alloy the hardening 

effect was similar to the Cu alloying (solid-solution strengthening) and caused some 

increment in the strength (+11 % and +16 % compared to Al99.5-SL150 and Al99.5-

SL300 respectively), but not as much as the more effective Cu. The AlMgSi1 based 

MMSFs showed almost as rigid behaviour as the AlCu5 matrix SFs and because of 

their lower compressive and plateau strength they absorbed significantly lower 

mechanical energy (about -13% in the case of both microballoon types). In the case 

of Si alloying the increment was caused by the relatively high amount of Si alloying, 

however the result became almost the same as in the case of AlMgSi1 matrix (+7 % 

and +14 % compared to Al99.5-SL150 and Al99.5-SL300 respectively). This proved 

that pure Si alloying is not as much effective than Mg and Si alloying together. This 

main difference between the two strengthening mechanisms was also confirmed by 

the fracture strain. In the case of AlMgSi1 matrix the fracture strain was small due to 

the stronger strengthening mechanism, while in the case of AlSi12 larger fracture 

strain was recorded, despite the higher amount of alloying elements. In summary the 

compressive strength followed the trend that is shown by the UTS of the matrix 

materials (see Table 1). The matrix has decisive effect on the compressive properties 

of the MMSFs, but not as significant as in the case of pure metals: the changes were 

much more moderate (compare the differences in Tables 1 and 5). The fracture strain 

was inversely proportional; it was decreased if the compressive strength increased. 

The structural stiffness varied in accordance to the strength and strain: if the strength 

was high and the strain was low the stiffness became higher. The absorbed 
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mechanical energy varied between wide ranges due to the different shapes of the 

plateau region (between point E and F in Fig. 2.) corresponding to the different 

fracture histories. Therefore it is hard to tell any thumb rule about its trend but in 

general the higher compressive strength resulted in higher plateau strength and 

higher absorbed energy. According to the results detailed above, the application of 

alloyed matrix is justified and gives the advantage to tailor the compressive 

properties of the MMSFs. It is worth to mention here that the ceramic microballoons 

with proper coating could be used as a source of alloying elements in MMSF 

systems. The appropriate choice and concentration of alloying element in the surface 

coating of the microballoons can enhance the properties of the MMSFs economically. 

The type of the microballoons influenced the compressive strength, the fracture strain 

and the structural stiffness only. Compared to the larger SL300 type, the smaller 

SL150 type microballoons gave higher compressive strength (+3-10 %), lower 

fracture strain (-4-20 %) and usually higher structural stiffness (+5-25 %, except in 

the case of AlCu5 matrix: -5 %). As it is shown in Table 2 the SL150 microballoons 

are significantly smaller and they also have thinner wall. The smaller diameter and 

higher curvature give higher compressive strength and mechanical stability to the 

microballoons. Moreover, smaller wall thickness ensures lower probability for 

deflections (see Fig. 5a); therefore the small SL150 microballoons have higher 

strength than the larger, SL300 type microballoons with thicker walls and more 

defects (see Fig. 5b.). 
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4.2 The effect of heat treatment 

In the case of heat treatable aluminium alloys the T6 treatment ensures much higher 

strength compared to the annealed condition. This would be very useful in the case 

of MMSFs too, because stronger MMSFs can absorb higher amount of mechanical 

energy and they can be more effective as collision dampers or vehicle hulls. The 

recorded diagrams are shown in Fig. 6a and 6b. The T6 heat treatment caused ~10 

% and ~15 % higher compressive strength in the case of AlMgSi1 and AlCu5 matrix 

respectively, which is significantly less than expected. This could be caused by some 

chemical reactions between the microballoons and matrix materials, detailed in 

another papers [8, 9, 37]. For example the liquid aluminium can reduce the SiO2 

content of the microballoons, the exchange reaction is: 

 4Al(liq)+3SiO2(sol)→2Al2O3(sol)+3Si(sol),  (4) 

aAs a result the wall of the microballoon was damaged and pure Si is dissolved and 

precipitated into the matrix material (the maximal solubility of Si in Al is ~1,5 wt% at 

~577 °C [38]). This phenomenon was confirmed by the results of XRD 

measurements (Table 6). From Table 6 the presence of the above mentioned 

chemical exchange reaction is clear. The amorphous SiO2 content was reduced and 

Al2O3 was formed as α-Al2O3 os as γ-Al2O3, while Si was dissolved and precipitated 

in the matrix material. This diffusion reaction is induced by the Si concentration 

mismatch between the material of microballoons and the matrix. However, the 

reaction has not taken place in the case of AlSi12 matrix, because its high Si content. 

This small example shows that these reactions can seriously modify the chemical 

composition of the matrix, and therefore the applied T6 heat treatment parameters 

were not the best, they should be further optimized (about the interfacial reactions in 
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details refer to our previous paper [37]). The interfacial reaction also confirmed by 

line-EDS measurements. For example the results of AlMgSi1-SL150 MMSF are 

shown in Fig. 7. The BSE image on the left shows a part of a microballoon (right side 

in the image). The measuring line was perpendicular to the outer surface of the 

microballoon. Near to the microballoon’s surface (for example in the vicinity of point 

A) Si precipitations can be observed. The graph on the right in Fig. 7 shows the 

chemical element composition along the measured line. Between point B and C a 

relatively wide 2-4 µm zone can be observed, within this zone the Al and the O 

content changed smoothly (about the interfacial reactions in details refer to our 

previous paper [37]). As the strength increased the fracture strain and the structural 

stiffness also increased a little bit (less than +5 % in all cases). Due to the higher 

fracture strain, the MMSFs became more ductile, the first crack appears later and this 

can be useful in numerous applications. Beside the strengthening mechanism due to 

heat treatment the dissolved and precipitated Si particles also have effect on the 

mechanical properties, mainly on the stiffness.  

Considering microballoon size Tthe SL300 microballoons performed less again, 

exactly as it is detailed in the previous section. 

 

4.3 The effect of elevated temperature 

In Fig. 7 8 the diagrams of Al99.5 and AlSi12 MMSFs compressed at room and at 

elevated (220°C) temperature are shown and compared. Due to the elevated 

temperature the compressive strength dropped by ~30-35 % in the case of all 

matrices and microballoon types. The formability increased significantly and due to 
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this dual effect the transformed strength between the matrix and the microballoons 

increased slower than at room temperature and the first fracture appeared only later. 

In one word: the fracture strain increased by ~5-10 % in all cases. The MMSFs 

became more ductile, but they remained strong enough and can be applied as 

structural elements: the compressive strengths were still above 120 MPa. This 

capability at elevated temperature is a serious advantage compared to the 

conventional metal and polymer foams and makes the MMSFs good choice for 

structural parts in the neighbourhood of combustion engines or other heat producing 

systems. The absorbed energies were also decreased, due to the lower compressive 

strength induced lower plateau strength. 

The effect of the microballoons’ type was the same at elevated temperature too. The 

MMSFs with SL300 type microballoons showed ~5% lower compressive strength. 

 

5 Conclusions 

From the results of the above mentioned and discussed measurements the following 

conclusions can be drawn: 

 The typical compression diagram of the MMSFs can be divided into three main 

parts containing five sections. The peak strength (compressive strength), its 

strain (fracture strain), the structural stiffness and the area below the graph 

(the absorbed mechanical energy) can be applied as characterizing values of 

the compressive behaviour. 

 The smaller, SL150 type microballoons ensured higher compressive strength, 

higher fracture strain and higher structural stiffness than the larger SL300 
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microballoons in any circumstances. Beside the higher curvature and therefore 

higher compressive strength, the thinner wall of the smaller microballoons 

contains fewer defects, than the thicker wall of the larger ones. The difference 

between the properties of MMSFs with SL150 and SL300 microballoons is 

about 5-10%. 

 The T6 heat treatment of AlMgSi1 and AlCu5 matrix syntactic foams was 

successful, but the strength increment was much smaller than expected (~5-

10% instead of 50-100%). This could be caused by chemical reactions 

between the constituents, which modified the composition of the matrix and 

therefore the applied temperature parameters during T6 treatment were not 

the best and they should be optimized. 

 The increased test temperature caused ~30% drop in the compressive 

strength, while the fracture strain increased by ~10%. The structural stiffness 

decreased, thus the MMSF was more ductile than at room temperature. The 

decrease of compressive strength is significant, but not too large; therefore the 

MMSFs can be applied as structural elements at elevated temperatures. 

In summary the compressive properties of MMSFs can be tailored by proper 

selection of the materials and by careful design for individual and unique 

applications. 
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Table captions 

Table 1. Chemical composition and comparative UTS of the applied matrix materials 

Matrix Main components (wt%) Closest ASM 
equivalent 

UTS Density 
 Al Si Mg Cu O T6 (gcm-3) 

Al99.5 99.5 - - - Al1050 75 - 2.70 
AlSi12 86 12 - - A413 115 - 2.65 
AlMgSi1 97 1 1.2 0.3 Al6061 125 310 2.70 
AlCu5 95 - - 4.5 Al2011 190 390 2.78 

 

Table 2. Morphological properties and phase constitution of the applied hollow 

ceramic spheres (provided by the manufacturer, except the chemical composition, 

measured by XRD [37]) 

Type 

Bulk 

Density 

density (at 

64 vol%) 

Average 

Al2O3 
Amorphous 

SiO2 
Mullite Quartz 

diameter thickness 

(g/cm3) (μm) (μm) wt% 

SL150 0.576 100 3.69 
30-35 45-50 19 1 

SL300 0.691 150 6.75 

 

Table 3. Density and porosity values of the prepared MMSFs 

Specimen 

Density (g/cm3) Porosity (%) 

Theoretical, 

ρt 

Measured, 

ρmeas 

Microballon, 

Pmb 

Matrix, 

Pm 

Total, 

Pt 

Al99.5-SL150 1.34 1.43 50.9 -6.3 44.7 

Al99.5-SL300 1.41 1.52 48.2 -7.2 41.0 

AlSi12-SL150 1.32 1.31 50.9 0.8 52.0 

AlSi12-SL300 1.40 1.37 48.2 2.1 50.1 

AlMgSi1-SL150 1.34 1.42 50.9 -5.6 45.3 

AlMgSi1-SL300 1.41 1.51 48.2 -5.9 42.3 

AlCu5-SL150 1.37 1.43 50.9 -4.2 46.7 

AlCu5-SL300 1.44 1.50 48.2 -6.0 42.2 
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Table 4. Parameters of the applied T6 heat treatments 

Matrix 
Solution treatment Cooling 

medium 
Aging 

temperature (˚C) time (h) temperature (˚C) time (h) 

AlMgSi1 520 1 water 170 14 
AlCu5 500 1 water 160 14 

 

Table 5. Properties of the investigated MMSFs 

Designation 

Compressive 

strength 

Fracture 

strain 

Structural 

stiffness 

Absorbed 

energy 

(MPa) (%) (MPa) (J/m3) 

Al99.5-SL150-O-20 169±6.5 6.83±0.099 29.6±0.56 3765±50.7 

Al99.5-SL300-O-20 154±1.7 6.57±0.219 23.9±0.06 4681±80.6 

AlSi12-SL150-O-20 181±6.7 6.60±0.318 28.4±0.21 5805±75.3 

AlSi12-SL300-O-20 176±3.1 6.45±0.054 22.1±0.48 3226±110.8 

AlMgSi1-SL150-O-20 187±5.9 3.65±0.195 67.8±2.92 5132±133.7 

AlMgSi1-SL300-O-20 179±3.3 3.05±0.104 63.9±3.95 3461±132.8 

AlCu5-SL150-O-20 232±0.3 3.20±0.078 82.3±0.21 5761±122.6 

AlCu5-SL300-O-20 227±3.9 3.00±0.222 86.3±3.33 4776±119.1 

AlMgSi1-SL150-T6-20 199±2.4 4.13±0.322 71.3±1.91 3861±113.7 

AlMgSi1-SL300-T6-20 184±6.2 3.62±0.234 64.0±0.95 3521±149.7 

AlCu5-SL150-T6-20 248±7.9 3.25±0.225 85.3±2.68 5587±129.5 

AlCu5-SL300-T6-20 244±5.9 3.15±0.189 88.3±1.76 6380±133.6 

Al99.5-SL150-O-220 127±6.8 7.30±0.212 21.8±0.84 4320±77.9 

Al99.5-SL300-O-220 123±4.4 6.60±0.297 22.4±0.36 4316±26.1 

AlSi12-SL150-O-220 136±1.6 7.03±0.161 21.5±0.40 3439±73.6 

AlSi12-SL300-O-220 130±7.8 7.12±0.520 21.3±0.77 2766±78.8 

 

Table 6. Phase constitution of MMSFs according to XRD measurements (wt%) 

Specimen Al Si Mullite α-Al2O3 γ-Al2O3 
Amorphous 

SiO2 

CuAl2 

Al99.5-SL150 67 8 11 3 11 0 - 

Al99.5-SL300 70 7 11 2 10 0 - 

AlSi12-SL150 72 7 13 0 0 8 - 

AlSi12-SL300 72 7 12 0 0 9 - 

AlMgSi1-SL150 60 7 8 0 25 0 - 

AlMgSi1-SL300 60 6 6 0 28 0 - 

AlCu5-SL150 60 6 8 8 12 0 6 

AlCu5-SL300 60 5 10 7 12 0 6 



28 

 

Figures and their captions 

 

Fig. 1. Schematic sketch of the infiltration chamber 
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Fig. 2. Typical compressive diagram of AlMgSi1-SL150 MMSF specimen and the 

broken specimen (bottom right corner) 
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Fig. 3. Grinded specimen after compressed to 50% engineering strain showing wide 

shear band (between dashed lines) (a) and magnified optical microscopy image 

about the margin between the densified and unharmed regions (b) 
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Fig. 4. The effect of the matrix material and microballoon type on the (a) compressive 

strength, (b) fracture strain and (c) structural stiffness of MMSFs in annealed 

condition 
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Fig. 5. Representative optical microscopic images about AlSi12 matrix SFs 

containing (a) SL150 type microballoons with very thin and flawless walls and (b) 

SL300 type microballoons with thicker wall and many defects (arrows) 
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Fig. 6. The effect of heat treatment on the (a) compressive strength, (b) fracture 

strain and (c) structural stiffness of MMSFs (O = annealed, T6 = T6 heat treated). 
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Fig. 7. BSE image and EDS line-scan profiles of the AlMgSi-SL150 syntactic foam Formázott: Balra zárt
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Fig. 78. The effect of test temperature on the (a) compressive strength, (b) fracture 

strain and (c) structural stiffness of MMSFs 

 


