Accepted Article

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an 'Accepted Article', doi: 10.1111/tpj.12848
This article is protected by copyright. All rights reserved.
SUMMARY

The ERF-VII transcription factor RELATED TO APETALA2.12 (RAP2.12) was previously identified as an activator of the \textit{ALCOHOL DEHYDROGENASE1} \textit{promoter::luciferase (ADH1-LUC)} reporter gene. Here we show that overexpression of RAP2.12 and its homologs RAP2.2 and RAP2.3 sustain ABA-mediated activation of \textit{ADH1} and activates hypoxia marker genes under both anoxic and normoxic conditions. Inducible expression of all three RAP2s conferred tolerance to anoxia, oxidative and osmotic stresses, and enhanced the sensitivity to ABA. Consistently, the \textit{rap2.12-2 rap2.3-1} double mutant showed hypersensitivity to both submergence and osmotic stress. These findings suggest that the three ERF-VII-type transcription factors play roles in tolerance to multiple stresses that sequentially occur during and after submergence in Arabidopsis. Oxygen dependent degradation of RAP2.12 was previously shown to be mediated by the N-end rule pathway. During submergence the RAP2.12, RAP2.2 and RAP2.3 are stabilised and accumulates in
the nucleus affecting the transcription of stress response genes. We conclude that the stabilised RAP2 transcription factors can prolong the ABA-mediated activation of a subset of osmotic responsive genes (e.g. ADH1). We also show that RAP2.12 protein level is affected by the RING-domain containing SEVEN IN ABSENTIA of Arabidopsis thaliana 2 (SINAT2). Silencing of SINAT1/2 genes leads to enhanced RAP2.12 abundance independently of the presence or absence of its N-terminal degron. Taken together, our results suggest that RAP2.12 and its homologs RAP2.2 and RAP2.3 act redundantly in multiple stress responses. Alternative protein degradation pathways may provide inputs to the RAP2 transcription factors for the distinct stresses.

INTRODUCTION
To survive in adverse environmental conditions, plants evolved sophisticated regulatory systems that mount adaptation to various forms of abiotic stresses (Nakashima et al., 2009, Ahuja et al., 2010, Hirayama and Shinozaki 2010, Golldack et al., 2014). Recent genetic and molecular studies led to significant advances in deciphering details of stress signalling pathways, although understanding of these regulatory networks remains a challenging task. Screening for altered expression of stress-regulated reporter genes in forward genetic screens facilitated the identification of components of abscisic acid (ABA), salt and osmotic stress signalling pathways (Chinnusamy et al., 2002, Gong et al., 2002, Zhu et al., 2005, Aboul-Soud et al., 2009). By screening an estradiol-inducible cDNA library to transactivate the ADH1 promoter::luciferase (ADH1-LUC) reporter in Arabidopsis plants, we identified RELATED TO APETALA2.12 (RAP2.12), an Ethylene Response Factor VII (ERF-VII) family protein. We showed that ADH1-LUC and endogenous ADH1 mRNA were transiently induced by ABA, which became sustained upon RAP2.12 overexpression (Papdi et al., 2008).

The ERF-VII family of Arabidopsis transcription factors (TFs) consists of five members: RAP2.12 (At1g53910), RAP2.2 (At3g14230), RAP2.3 (At3g16770), Hypoxia Responsive ERF1 (HRE1; At1g72360) and HRE2 (At2g47520). These ERF-VII TFs and
their orthologs in other plant species share a conserved APETALA2 (AP2) domain that is necessary for protein-DNA interactions, and an N-terminal degron motive MCGGAI/V (N-degron) that plays a regulatory role in protein turnover. The stability of ERF-VII proteins is modulated by the presence of molecular oxygen, implying that they function in an oxygen sensing mechanism via the N-end rule protein degradation pathway (NERP, Gibbs et al., 2011, Licausi et al., 2011). ERF-VIIs are post-translationally modified by aminopeptidases, which remove the start Met from their N-terminal ends thereby placing a Cys residue at the N-terminal position. As a consequence, in the presence of oxygen Cys is oxidised to Cys-sulfonic or Cys-sulfinic acid. Thereby, ERF-VIIs become substrates for Arg-t-RNA protein transferases (ATEs) catalysing the formation of arginylation-protein conjugates. Thiol-oxidase related cysteine oxidases (PCOs) were shown to catalyse the oxidation of N-terminal cysteine residues in the presence of oxygen (Weits et al., 2014). Subsequent addition of an Arg residue to the N-terminus by ATEs provides a signal for polyubiquitination by the Proteolysis 6 (PRT6) ubiquitin ligase, which targets ERF-VII TFs for degradation by the 26S proteasome. This molecular oxygen sensing mechanisms via NERP are widely conserved among plant species (Bailey-Serres et al., 2012).

Although plants are able to produce oxygen in their photosynthetic tissues, adverse environmental conditions, such as submergence can cause oxygen deprivation. Inefficient oxygen supply negatively affects the energy production and therefore developmental processes (Voesenek and Bailey-Serres 2013). Molecular responses to hypoxia promote a switch from aerobic to anaerobic respiration that decreases the cellular ATP demand and initiates alternative metabolic processes, such as fermentation and utilization of pyrophosphate as alternate energy source (Stitt 1998). In parallel, transcriptional regulation also contributes alleviating energy depletion. As activators of hypoxia induced genes, the ERF-VII TFs emerged as pivotal regulators of oxygen deprivation (van Dongen and Licausi 2015). In rice cultivars, variations between the SUBMERGENCE 1 (SUB1) ERF-VII orthologs underlie important quantitative traits determining flooding tolerance. Although most

This article is protected by copyright. All rights reserved.
rice cultivars carry SUB1B and SUB1C, apparently the SUB1A-1 allele represents a key determinant of submergence tolerance, SUB1C can also promote quiescence-mediated tolerance in wild rice varieties lacking SUB1A (Pucciariello and Perata 2013). Interestingly, turnover of both SUB1A and SUB1C proteins are unaffected by the oxygen-dependent NERP (Gibbs et al., 2011), suggesting that this pathway became divergent in rice.

Overexpression and knockout mutations of Arabidopsis ERF-VII TFs influence plant survival rates under low oxygen conditions. Overexpression of HRE1 but not HRE2 was reported to confer tolerance to anoxia, while the double hre1hre2 mutant was more sensitive to anaerobic treatment compared to wild type and single hre mutants (Licausi et al., 2010). Analogously, RAP2.2 and RAP2.12 overexpressing plants show higher survival rates after hypoxia (Hinz et al., 2010, Licausi et al., 2011), whereas inactivation of RAP2.2 confers enhanced sensitivity to oxygen limitation (Hinz et al., 2010). The role of RAP2.3 in low oxygen responses is so far unexplored.

Besides hypoxia, the ERF-VII TFs were implicated in a range of other stress responses. Elevated expression of rice SUB1A was found to increase osmotic and oxidative stress tolerances (Fukao et al., 2011), whereas overexpression of the barley ERF-VII HvRaf in Arabidopsis conferred salt tolerant root growth and enhanced resistance to a pathogenic fungus (Jung et al., 2007). In addition, Arabidopsis HRE2 was shown to contribute to salt and osmotic stress tolerance (Park et al., 2011), whereas overexpression and inactivation of RAP2.2 yielded enhanced resistance and sensitivity to necrotrophic Botrytis species, respectively (Zhao et al., 2012). NERP-related destabilization of ERF-VII TFs has also been linked to the perception of nitric oxide (NO) and ABA signalling by their ability to activate ABSCISIC ACID INSENSITIVE5 (ABI5, Gibbs et al., 2014).

Consequent to flood, plants experience first oxidative damage followed by dehydration (Fukao et al., 2011, Shingaki-Wells et al., 2014). In this study we report that, in addition to their roles in response to low oxygen, RAP2.2, RAP2.3 and RAP2.12 also play a
role in modulating oxidative and osmotic stress tolerance during submergence acclimation. Furthermore, we show that the NERP is not the sole modus for destruction of ERF-VIIs by demonstrating that abundance of the N-terminal epitope tagged RAP2.12 is degraded by the proteasome. We also show that RAP2.12 protein level is affected by the putative E3 ubiquitin ligases SINAT1 and 2.

RESULTS
ERF-VII family mRNAs show differential responses to low oxygen and ABA
We have shown that estradiol-induced expression of RAP2.12 leads to prolonged transcriptional activation of ALCOHOL DEHYDOGENASE 1 (ADH1) by ABA (Papdi et al., 2008). This prompted us to further explore the connection between RAP2.12 and ABA signalling. First, we compared the low oxygen response of ERF-VII family TFs with that of ABA regulation by quantitative RT-PCR (qPCR) measurement of transcript levels in wild type (Col-0) Arabidopsis seedlings. Anoxia treatment led to characteristic induction of both HRE1 and HRE2 genes, in contrast to a gradual decrease of RAP2.12 and RAP2.2 mRNA levels (Figure 1a) confirming the previous results of Licausi et al. (2010) obtained with hypoxia (1% oxygen) exposed plants. Contrary to anoxia, RAP2.12, RAP2.3, and to a lesser extent RAP2.2 were induced, whereas HRE1 and HRE2 were downregulated by ABA (30 µM) treatment (Figure 1b). The ERF-VII target, ADH1 showed a steady increase of mRNA by anoxia while it was transiently induced by ABA (Figure 1a,b). Based on their different transcriptional responses to hypoxia and ABA, the ERF-VII TF genes could thus be classified into two subgroups. RAP2.12, RAP2.2 and RAP2.3 were activated by ABA but repressed or unaffected by low oxygen, whereas HRE1 and HRE2 were induced by anoxia and clearly repressed by ABA. This split into two groups of ERF-VII genes also hold for the expression levels in different organs based on data in the Genevestigator (Hruz et al., 2008); the RAP2.12, RAP2.2 and RAP2.3 show high, while HRE1 and HRE2 low basal expressions (Figure S1). The ERF-VIIs are also distinct in their abiotic stress regulation (Figure S2). RAP2.12, RAP2.2 and RAP2.3 were increased by osmotic stress, while RAP2.2 was also
upregulated by cold, heat and salinity. HRE1 and HRE2 were decreased upon cold and heat, while HRE2 was induced by salt and osmotic stresses.

RAP2.12, RAP2.2 and RAP2.3 activate ADH1 expression under normoxic condition and sustained its ABA induction

Next, we compared transcriptional activation of ADH1-LUC by estradiol inducible overexpression of the RAP2.12, RAP2.2 or RAP2.3 genes in Arabidopsis (AE-RAP2 lines). Induced overexpression of any of these RAP2s resulted in trans-activation of ADH1-LUC showing a steady increase over a 24-hour period but not in controls including ADH-LUC without RAP2 overexpression or mock treatments (Figure 2a,b, Figure S3). ABA treatment (30 µM) led to transient activation of ADH1-LUC peaking at about three hours in the control ADH-LUC and the three AE-RAP2 lines (Figure 2b). The estradiol-induced overexpression of RAP2 genes modified the ABA response of ADH1-LUC; the initial rapid increase was unchanged but it remained elevated throughout the time course (Figure 2b). These results showed that all three RAP2 factors, when overexpressed, can transactivate ADH1-LUC and their overexpression sustains the transient ABA response.

RAP2.12, RAP2.2 and RAP2.3 overexpression upregulate hypoxia genes at normal conditions while it potentiates the anaerobic stress response

Not only ADH1, but other hypoxia-induced genes such as PYRUVATE DECARBOXYLASE1 (PDC1), SUCROSE SYNTHASE1 (SUS1) and SUS4 were all markedly increased in normoxic conditions in the estradiol treated AE-RAP2 plants, but not in the control ADH-LUC line. Anoxia induced the expression of these four hypoxia genes but this was greatly enhanced by the estradiol-dependent overexpression of the RAP2 genes (Figure 3). These data indicate that inducible overexpression of RAP2 genes can surpass the requirement for hypoxia to activate genes under normoxic condition, while constitutive overexpression of RAP2.2 and RAP2.12 were found insufficient for this (Hinz *et al.*, 2010, Licausi *et al.*, 2011).
Trans-activation of ADH1 by RAP2.12 is independent of ABA

To examine whether ABA is required for RAP2-mediated trans-activation of ADH1, we introduced by crossing the ADH1-LUC and estradiol-inducible AE-RAP2.12 constructs into the aba2-3 mutant impaired in ABA biosynthesis. Treatment of AE-RAP2.12 and aba2-3 x AE-RAP2.12 seedlings for 3 hours with either anoxia, estradiol or the combination of both resulted in comparable trans-activation of the ADH1-LUC reporter in both lines (Figure 4a). Thus, the trans-activation of ADH1-LUC by anoxia does not involve ABA biosynthesis. Osmotic stress responses are known to be mediated by ABA signalling (Seki et al., 2007).

Next we examined how the ADH1-LUC reporter responds to osmotic stress in the AE-RAP2.12 and aba2-3 x AE-RAP2.12 seedlings by treatment with 300 mM mannitol. In wild type background, the transient induction of ADH1-LUC peaking at around 3 hours upon osmotic stress closely paralleled what we observed with ABA. In the aba2-3 background mannitol treatment alone cannot induce ADH1-LUC. Thus osmotic stress induces ADH1-LUC through ABA. As was the case for ABA induction of ADH1-LUC, the RAP2.12 overexpression also modified the transient osmotic response to become sustained and even further increased in wild type, but not in the aba2-3 background (Figure 4b). We conclude that RAP2.12 transactivates the ADH1-LUC reporter independently of ABA.

ERF-VII RAP2s modulate ABA sensitivity and tolerance to anoxic, oxidative and osmotic stress

RAP2.3 is largely unexplored, but other members of the ERF-VII group appear to have similar roles in low oxygen tolerance (Hinz et al., 2010, Licausi et al., 2010, Licausi et al., 2011), but other abiotic stress functions remained unclear. We studied the physiological responses to osmotic and oxidative stresses as well as to low oxygen in the AE-RAP2.12, AE-RAP2.2 and AE-RAP2.3 lines compared to ADH-LUC parental control. Whereas after 8 hours of anoxia treatment there was only a minor difference among the control and AE-RAP2 seedlings; all showed around 20% reduction in survival rate. However, after 14 hours of anoxia the difference became apparent; only about 10% of control plants remained viable.
compared to 17 to 22% survival rate of AE-RAP2 lines (Figure 5a,b). To assess tolerance to osmotic and oxidative stresses, leaf area of seedlings was measured at different time points after transferring seedlings on media containing estradiol and either 300 mM mannitol or 2 mM hydrogen peroxide (H$_2$O$_2$). Rosette growth of ADH-LUC control and AE-RAP2 plants were indistinguishable on medium containing estradiol without any stress. Compared to estradiol-treated plants, the leaf area of the parental ADH-LUC control was reduced by 80% in contrast to 55 to 60% of AE-RAP2 plants following exposure to estradiol and H$_2$O$_2$ for 15 days (Figure 5c,d). Compared to the control, the leaf area of AE-RAP2 lines remained about twice as large following mannitol treatment for 12 days, indicating that estradiol-induction of RAP2.2, RAP2.3 and RAP2.12 conferred similar enhancement of oxidative and osmotic stress tolerance of leaf growth (Figure 5e,f). To determine whether enhanced stress tolerance reflected a change in ABA sensitivity of AE-RAP2 lines, their root elongation was tested after transferring 4-day-old seedlings for 7 days on estradiol-containing media with or without 10 µM ABA. Compared to seedlings growing in ABA-free medium, the average root length of control was reduced by 50%, whereas the AE-RAP2 seedlings showed a reduction of 38 to 40% indicating a slight increase of ABA sensitivity (Figure 5g,h).

To investigate the molecular basis of stress tolerance conferred by RAP2 TFs, we analysed gene expression changes of selected osmotic stress and ABA inducible genes (Hirayama and Shinozaki 2010) upon RAP2.12 overexpression. After 9 hours ABA treatment the expression of RESPONSE TO DROUGHT 29A (RD29A), RESPONSE TO DROUGHT 22 (RD22) and DELTA1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1) genes were 23-40% higher in the RAP2.12 overexpressing plants than in the control line (Figure 5i). Expression of other selected genes was unaffected by RAP2.12 overexpression (Figure S4).
Mutants of rap2.2, rap2.3 and rap2.12 show distinct sensitivities to various abiotic stresses

To identify whether RAP2.2, RAP2.3 and/or RAP2.12 are required for abiotic stress functions, we characterised mutant lines carrying T-DNA insertions in their coding regions (Figure 6a, Figure S5). We compared stress tolerance traits of the rap2.2-4, rap2.3-1, rap2.12-2 single and rap2.12-2 rap2.3-1 double mutant lines to wild type. Submergence in the dark causes hypoxia with energy deprivation generating stress, which affects plant growth and survival (Bailey-Serres and Voosenek 2008). Whereas about 80% of wild type plants survived 44-hour submergence in the dark, 50% of rap2.2-4, rap2.3-1 and rap2.12-2 mutants and only 36% of rap2.12-2 rap2.3-1 double mutant plants remained viable (Figure 6b). Although the rap2 single mutants were hypersensitive to submergence, the growth rate of single rap2 mutants was comparable to wild type on 300 mM mannitol-containing medium, while the rap2.12-2 rap2.3-1 double mutant displayed about 50% reduction of rosette sizes compared to wild type, indicating enhanced osmotic stress sensitivity (Figure 6c,d; Figure S6). By contrast, 2 mM H$_2$O$_2$ made no difference in growth of single and double rap2 mutants and wild type (Figure 6c).

To determine whether the enhanced osmotic sensitivity of rap2 mutants correlated with changes in the activities of RAP2-responsive marker genes, 10-day-old wild type and rap2 mutant seedlings were transferred to media supplemented with 300 mM mannitol. ADH1 and SUS1 transcript levels were tested after 0, 3 and 9 hours of osmotic stress (Figure 6e, Dejardin et al., 1999, Papdi et al., 2008). Whereas the wild type and single rap2 mutants showed comparable ADH1 expression, it was 40% lower in the rap2.12-2 rap2.3-1 double mutant after 9 hours of mannitol treatment. At the same time, SUS1 transcript levels were decreased by 20 to 35% in the single rap2 mutants and by 80% in the rap2.12-2 rap2.3-1 double mutant compared to wild type (Figure 6e). However, expression level of RD29A, RD22 and P5CS1, which was enhanced by ABA treatment in RAP2.12...
overexpressing lines, was unaffected by 9 hours mannitol treatment in the rap2.12-2 rap2.3-1 mutant (Figure S7).

SINAT2 affects RAP2.12 protein abundance

Overexpression of Arabidopsis RAP2.12 has been reported to confer submergence tolerance, which is abolished by fusing RAP2.12 to an N-terminal haemagglutinin tag (HA:RAP2.12) that interferes with NERP-mediated proteolysis (Licausi et al., 2011). We generated an Arabidopsis line that expressed HA:RAP2.12 estradiol-inducibly; (Figure 7a, Figure S8). Surprisingly, when HA:RAP2.12 expressing plants were treated with the proteasome inhibitor MG132, an unambiguously higher abundance of HA:RAP2.12 was detected, indicating that despite its N-terminal modification HA:RAP2.12 remained a substrate for proteasomal degradation (Figure 7b). To confirm that MG132 stabilises HA:RAP2.12, we also tested its effect in a cytoplasmic extract *in vitro* that rules out transcriptional regulation. Protein extract of XVE-HA:RAP2.12 kept on ice for two hours resulted in a time-dependent degradation of HA:RAP2.12 protein, but this was considerably reduced by MG132 (Figure S9). Since, the N-terminal HA-tag on RAP2.12 is expected to interfere with the N-degron (Figure S8), we concluded that HA:RAP2.12 is likely to be targeted to proteosome-dependent proteolysis that is independent of NERP.

RAP2.2 was previously reported to interact with the putative E3 ubiquitin ligase SEVEN IN ABSENTIA of *Arabidopsis thaliana* 2 (SINAT2, Welsch et al., 2007). The conserved SINA proteins possess two characteristic domains, an N-terminal RING type zinc finger domain and a C-terminal TRAF-like substrate-binding domain (Hu and Fearon 1999, Polekhina et al., 2002). Plant SINA-related proteins were reported to have E3 ubiquitin ligase activity (Xie et al., 2002, Ning et al., 2011, Peralta et al., 2013) and are involved in the regulation of stress responses (Kim et al., 2006, Ning et al., 2011, Bao et al., 2014). Because of the high sequence similarity between RAP2.12 and the SINAT2-interacting RAP2.2 protein, we decided to test whether SINAT2 may influence RAP2.12 protein levels.
The Arabidopsis genome encodes 18 SINA-related proteins (Figure S10). Comparison of SINA-related proteins indicates that SINAT2 shares 95% of amino acid identity with SINAT1. Additionally, SINAT1 and 2 show similar transcriptional profiles in Arabidopsis suggesting that they probably perform overlapping functions (Figure S11). To investigate, whether these E3 ubiquitin ligases control RAP2.12 abundance in Arabidopsis, a specific artificial microRNA (amiRNA)-expressing construct was created to generate transgenic plants that simultaneously silence both SINAT1 and 2 (Figure S12). The XVE-amiSINAT1/2 lines were designed to express the SINAT-targeted amiRNA in an estradiol dependent manner. Three lines were selected in which the SINAT1 and 2 mRNA levels were reduced to 40-70% after estradiol treatment compared to control carrying the empty pER8 vector (Figure 7c). The abundance of endogenous RAP2.12 detected by Western blotting with an anti-RAP2.12 antibody was remarkable higher in these lines compared to the control suggesting that SINAT1/2 influences RAP2.12 protein levels (Figure 7d).

Next, we investigated whether SINAT1 and 2 co-silencing can also affect HA:RAP2.12 that cannot be targeted through NERP. Using the estradiol-inducible XVE-HA:RAP2.12 construct in plants into which we introduced a CaMV 35S promoter-driven SINAT1/2 silencing amiRNA construct resulted in around 20-40% reduction of SINAT1 and 2 (Figure 7e). The HA:RAP2.12 protein was slightly elevated in two independent HA:R12/amiSINAT1/2 lines (Figure 7f), indicating that SINAT-silencing can also influence the HA-tagged RAP2.12 independent of the NERP.

DISCUSSION

ERF-VII RAP2s modulate responses to different stress conditions

Originally, we identified RAP2.12 as a transcriptional activator of ADH1, which is induced by ABA and abiotic stresses, including hypoxia, high osmotics and salinity (Papdi et al., 2008). Subsequently, RAP2.12 and other members of the ERF-VII TF family were described as principal components of oxygen and NO perception, which are targeted for proteasomal...
degradation through the NERP (Gibbs et al., 2011, Licausi et al., 2011, Gibbs et al., 2014). Although all members of the ERF-VII family play role in low oxygen signalling, only RAP2.12, RAP2.2 and RAP2.3 are thought to function as primary actors in oxygen sensing, whereas HRE1 and HRE2 appear to be required only for maintenance of anaerobic responses (Sasidharan and Mustroph 2011, Licausi et al., 2013). Our data show that mRNA levels of RAP2s and HREs are differently regulated by ABA, which stimulates the expression of RAP2.12 and RAP2.3 but represses HRE1 and HRE2 (Figure 1b).

We reported earlier that estradiol-inducible overexpression of RAP2.12 transactivates the ADH1-LUC reporter and endogenous ADH1 gene (Papdi et al., 2008). By extending this observation, our current study indicates that activation of ADH1-LUC occurs with a comparable kinetics in response to induction of RAP2.2, RAP2.3 and RAP2.12 (Figure 2). Overexpression of RAP2.2 and RAP2.12 was reported to enhance, while their silencing by artificial miRNAs to reduce anaerobic induction of a set of hypoxia responsive genes (Hinz et al., 2010, Licausi et al., 2011). Our data show that estradiol-induction of the three ERF-VIIs activates the hypoxia-induced ADH1, PDC1, SUS1 and SUS4 marker genes also in the absence of low oxygen stress (Figure 3), most likely because the induced overexpression can surpass NERP degradation.

Overexpression of the Arabidopsis RAP2.2 and RAP2.12, and the related rice SUB1A-1 TF was reported to enhance survival under low oxygen conditions (Xu et al., 2006, Hinz et al., 2010, Licausi et al., 2011). Our data indicate that overexpression of any of RAP2.2, RAP2.3 and RAP2.12 results in enhanced tolerance also to osmotic and oxidative stresses in addition to anoxia (Figure 5). However, the threshold of stress tolerance conferred by RAPs appears to be different in the case of different stresses. In contrast to hypoxia genes, RAP2.12 overexpression did not affect the basal expression of ABA and osmotic stress induced genes; RD22, RD29A and P5CS1, but only when the plants were
concomitantly subjected to ABA treatment (Figure 5i). Molecular mechanisms by which these TFs contribute to osmotic and oxidative stress responses remains unexplored.

Knockout mutations of the RAP2 genes compromised low oxygen stress tolerance but did not alter growth responses to mannitol and \(\text{H}_2\text{O}_2 \). Nevertheless, combination of the \textit{rap2.3-1} and \textit{rap2.12-2} mutations conferred increased sensitivity to submergence and osmotic stress (Figure 6b-d). Consequently, \textit{ADH1} and \textit{SUS1} showed similar activation by mannitol treatment in the wild type and single \textit{rap2} mutants, but their transcript levels were markedly reduced in the \textit{rap2.12-2 rap2.3-1} double mutant upon extended osmotic stress (Figure 6e). Interestingly, the expression levels of genes implicated in osmotic protection, such as \textit{RD29A}, \textit{RD22} and \textit{P5CS1} remained comparable to wild type during osmotic stress in \textit{rap2.12-2 rap2.3-1} line (Figure S7). These observations suggest that ERF-VII factors only contribute to certain aspects of stress tolerance mechanisms related to growth but not osmoprotection. In fact, the growth-modulation is also linked to survive submergence (Voosenek and Bailey-Serres 2013). Molecular processes that regulate plant growth during abiotic stress conditions are coordinated by the gibberellin-DELLA signalling pathway (Achard \textit{et al.}, 2006, Skiryocz and Inze 2010). Recently uncovered physical interaction of GIBBERELLIN INSENSITIVE (GAI) DELLA protein with RAP2.3 and RAP2.12 (Marin-de la Rosa \textit{et al.}, 2014) thus suggests that the functions of ERF-VII might be modulated in a DELLA-dependent fashion.

ERF-VII TFs induce ADH1 independent of and synergistic with ABA

ABA transiently induced the \textit{ADH1-LUC} reporter, reaching maximal level by approx. 3 hours after the treatment. We observed that the transient induction of \textit{ADH1-LUC} was sustained by overexpressing RAP2.2, RAP2.3 or RAP2.12, suggesting that these TFs might negatively affect the responses that mediate the decline in \textit{ADH1} activity. Recently, it was reported that after hypoxia treatment RAP2.12 remained stable for at least two hours in the nucleus (Kosmacz \textit{et al.}, 2014). Based on these observations, it can be hypothesized that higher abundance of RAP2s at the end of the submergence can further sustain the ABA induction.

This article is protected by copyright. All rights reserved.
of ADH1 and other ABA-inducible target genes in the subsequent osmotic stress. Following submergence plants are subjected to oxidative stress during reoxygenation and dehydration when floods subside (Fukao et al., 2011, Shingaki-Wells et al., 2014, Tsai et al., 2014). The synergistic effect of RAP2s and ABA on stress genes thus could provide a sustained response to these different forms of stresses (Figure S13).

In analogy to enhanced ABA-sensitivity of root elongation observed in the RAP2 overexpressing Arabidopsis AE-RAP2 lines (Figure 5g,h), overexpression of rice SUB1A was found to result in pronounced inhibition of shoot growth by ABA (Fukao et al., 2011). Recently, the ABSCISIC ACID INSENSITIVE5 (ABI5) gene was found to be upregulated by RAP2.2, RAP2.3 and RAP2.12 in mesophyll-derived leaf protoplasts of the NERP mutant prt6 (Gibbs et al., 2014). ABI5 is one of the most important positive regulators of ABA signalling during germination and early seed growth (Finkelstein and Lynch 2000, Lopez-Molina et al., 2002). Enhanced ABA sensitivity of the RAP2 overexpressing lines might therefore be connected to ABI5 activation.

RAP2.12 was also reported to interact with the ACYL-COA-BINDING PROTEIN (ACBP) 1 and 2 (Licausi et al., 2011), which are thought to enhance ABA sensitivity during germination and seedling development (Du et al., 2013b, Du et al., 2013a). Our data indicate that RAP2.12 transactivates ADH1-LUC similarly in the wild type and ABA-deficient aba2-3 mutant but stimulation of ADH1-LUC by osmotic stress is compromised in the RAP2.12 overexpressing aba2-3 mutant (Figure 4b). This clearly shows that RAP2.12 functions to enhance the ABA-mediated osmotic response, but it activates ADH1 gene independently of ABA.

Stability of RAP2.12 is regulated by multiple pathways

Ubiquitination is a key post-translational mechanism that modulates proteasomal degradation of numerous signalling and TFs involved in the control of plant developmental, hormonal and stress signalling pathways (Lopez-Molina et al., 2003, Dill et al., 2004, Lau...
Members of the ERF-VII TF family are known to function as direct regulators of hypoxia responses through oxygen-dependent modulation in their stability through the NERP (Gibbs et al., 2011, Licausi et al., 2011). The stability of ERF-VII TFs through NERP is also altered in response to NO (Gibbs et al., 2014). In plants, NO signalling influences numerous basic processes, including cell cycle, growth, development, flowering, senescence and responses to environmental stresses (Mur et al., 2013). Changing the N terminal Cys residue to Ala by site specific mutagenesis led to stabilization of RAP2.12 protein (Gibbs et al., 2011), while N terminal fusion of HA tag to RAP2.12 or deleting the first 13 conserved amino acids abolished submergence tolerance (Licausi et al., 2011) suggesting that the Cys-containing N degron is essential for N-end rule mediated function of this TF. As our data demonstrated the involvement of ERF-VII TFs in several stress responses other than hypoxia, we examined whether the stability of RAP2.12, as a representative member ERF-VII family, would also be affected by proteolysis under normal oxygen exposure. In fact, we found that RAP2.12 is still targeted to proteasomal destruction when its N-terminus was modified that compromises the recognition by the NERP (Figure 7b).

RAP2.2 is an interacting partner of the RING finger domain protein SINAT2 (Welsch et al., 2007). The Arabidopsis genome encodes 469 RING domain proteins representing a great diversity and substrate specificity (Stone et al., 2005). A number of RING domain proteins were reported to be responsible for polyubiquitination and subsequent degradation of key transcriptional regulators of stress and ABA responses (Qin et al., 2008, Bu et al., 2009, Cheng et al., 2012, Liu and Stone 2013). In Arabidopsis, the SEVEN IN ABSENTIA (SINA) group of putative E3 ubiquitin ligases includes 18 proteins: SINAT1–5, SINA-like 1–11, SINA and PEX14 (Peralta, et al. 2013). These proteins carry conserved REALLY INTERESTING GENE (RING)-finger and TNF RECEPTOR ASSOCIATED FACTOR (TRAФ)-like domains, the latter is necessary for substrate binding and dimerization (Hu and Fearon 1999, Polekhina et al., 2002). In Drosophila, SINA is a key component of R7
photoreceptor cell development (Carthew and Rubin 1990), whereas the human SINA ortholog SIAH2 is an important regulator of hypoxia-induced gene expression. In humans specific hydroxylases function to destabilise the Hypoxia Inducible Factor α (HIF1α), a key regulator of hypoxia signalling. As a consequence of oxygen deprivation, SIAH2 is activated by phosphorylation, ubiquitinates the hydroxylases, which are then eliminated by the proteasome (Qi et al., 2010). We investigated whether SINAT2 affects RAP2.12 protein level. Silencing of SINAT2 together with the closely related SINAT1 gene led to an increase in the abundance of endogenous as well as N-epitope tagged RAP2.12 protein (Figure 7d,f). In accordance to eukaryotic SINA orthologs, it is thus particularly interesting that SINAT1/2 in plants might also be involved in destabilization of ERF-VII TFs involved in hypoxia responses. Our data indicate that abundance of RAP2.12 is modulated by two alternative proteolytic pathways. The NERP connects targeted proteolysis of RAP2.12 to the perception of gaseous (oxygen and NO) signals, whereas SINAT1 and 2 might target RAP2.12 for proteolysis independently of NERP under normoxic stress conditions when the NERP is inactive.

The functional importance of SINAT proteins in the regulation of ERF-VII stability is yet to be investigated. Future research should unravel how SINAT proteins are involved in stress tolerance mechanisms and whether SINATs have any cooperative interactions with the NERP regulation.

EXPERIMENTAL PROCEDURES

Plant materials and growth conditions

Arabidopsis thaliana ecotype Col-0 was the background of every line used in this study. The T-DNA insertion mutant rap2.12-2 (SAIL-1215-H10) was identified from the Syngenta collection, the rap2.2-4 line (SAIL_18_G09) was received from Ralf Welsch (Welsch et al., 2007), the rap2.3-1 line was kind gift from Dr Kawai-Yamada (Ogawa et al., 2007). The aba2-3 line (Laby et al., 2000) was obtained from the European Arabidopsis Stock Centre.
Genetic transformation of Arabidopsis Col-0 or ADH-LUC lines (Papdi et al., 2008) were carried out with Agrobacterium-mediated floral-dip method (Clough and Bent 1998). For in vitro plant cultures, seeds were surface sterilised, stratified for 2 days and sown on half-strength MS agar-solidified media containing 0.5% sucrose (1/2 MS). Plants in sterile conditions were grown in short-day illumination (8 hours light, 16 hours dark); in soil 16 hours light, 8 hours dark.

Stress tolerance assays

For anoxia tolerance assays 7-day-old vertically grown Arabidopsis plants were used. The anoxia treatments were performed in the dark for 10 or 14 hours using an anaerobic workstation Anaerobic System model 1025; Forma (Licausi et al., 2010) or continuous nitrogen gas flow through a container (Perez-Salamo et al., 2014). After treatments, the plants were returned to standard normoxic condition and survival was scored after 7 days. Six replicate plates with 20 plantlets of each genotype were scored at each time-point. For submergence tolerance assay plants were grown in soil for 28 days, then submerged for 44 hours or kept in the dark as air control. Following the submergence treatment, plants were allowed to recover for 7 days and then scored for survival. Five pots were used for every genotype, each pot contained 4 plants.

To analyse osmotic and oxidative stress tolerance, 5-day-old seedlings were transferred onto 1/2 MS agar medium containing 5 μM estradiol and either 2 mM H₂O₂ or 300 mM mannitol. Plant growth was monitored for 3 weeks by taking images every 3rd day of at least 15 plants per treatment. Growth rates were calculated by measuring rosette sizes as described (Ruibal et al., 2012). To measure root growth, 4-day-old seedlings were transferred to media supplemented by 5 μM estradiol and 10 μM ABA. Root lengths were measured after 7 days. The experiments were repeated at least three times. Statistically significant differences were calculated with One-way ANOVA multiple comparison tests using Graphpad Prism software (http://www.graphpad.com/scientific-software/prism/).
qPCR Analysis of Gene Expression

Quantitative RT-PCR (qPCR) was performed as described (Joseph et al., 2014). Total RNA was extracted from plant tissues using RNeasy Mini Kit (Qiagen) and DNase treated with Ambion’s TURBO DNA-free DNase kit. Five-hundred ng DNase-treated RNA was added to each RT reaction using the High capacity cDNA kit (Applied Biosystems). Quantitative RT-PCR reactions were prepared with Maxima SYBR Green Master Mix (Thermo Scientific) and performed with ABI PRISM 7900 HT sequence detection system (Applied Biosystems). Reference gene used: UBIQUITIN 10, (AT4G05320). For gene specific primers, see Table S1. Statistical analyses based on One-way ANOVA Dunnett’s or Tukey’s test were carried out with Graphpad Prism.

Measurement of luciferase reporter activity

Transcriptional activation of the ADH1-LUC reporter construct was analysed by bioluminescence imaging as described (Papdi et al., 2008). Arabidopsis plantlets were grown in vertical position on 1/2 MS media (1% agar) for 14 days and sprayed with 2 mM d-luciferin solution (Biosynth AG). Photon emission was detected by CCD camera system (Visilux Imager, Visitron Systems GmbH). Images were analysed using the Metaview 4.5r6 software (Universal Imaging Corporation), luminescence values were normalised to the background and relative luminescence was calculated where 1 equals the normalised value of the parental line at time 0. Sequential detection of bioluminescence was carried out in 1 hour intervals for 24 hours with 20 minutes exposure time.

Western blot analysis

Total protein was extracted from 14-day-old plants with protein extraction buffer (Magyar et al., 1997), containing containing 25 mM Tris-HCl (pH=7.5), 10 mM MgCl₂, 15 mM EGTA, 75 mM NaCl, 1 mM DTT, 1 mM NaF, 0.5 mM Na₃VO₄, 15 mM β-glycerol phosphate, 15 mM p-nitrophenylphosphate, 0.1% Tween 20, 0.5 mM phenylmethylsulfonylfluoride (PMSF) and 100 µM MG132. Proteins were separated by SDS-polyacrylamide gel electrophoresis and
transferred to polyvinylidene difluoride (PVDF) membranes. Antibodies used in this study: monoclonal anti-HA peroxidase (Roche), 1:500; monoclonal rabbit anti-RAP2.12, 1:1000 (Licausi et al., 2011), 1:1000; anti-rabbit secondary antibody (Pierce), 1:30000.

Construction of vectors for gene expression

Entry vectors (pDONR201) containing the full length cDNAs of RAP2.2 and RAP2.3 were obtained from the TRANSPLANTA collection (Leon et al., 2014), while RAP2.12 was cloned before (Papdi et al., 2008). The three cDNAs were moved into the pER8-GW expression vector (Papdi et al., 2008) by LR clonase reaction (Invitrogen). N-terminal hemagglutinin epitope (HA) tagging of RAP2.12 was performed by inserting the full length RAP2.12 cDNA into pMenchu (Ferrando et al., 2000) using the BamHI/ EcoRI sites. HA:RAP2.12 coding sequences were cloned into the pENTRY-BS vector (Perez-Salamo et al., 2014) as a HindIII-NotI fragment and subsequently moved by LR clonase reaction into pER8-GW. To construct artificial microRNA for co-silencing the Arabidopsis SINAT1 and 2 genes, the recommended protocol was used (http://wmd3.weigelworld.org/downloads/Cloning_of_artificial_microRNAs.doc, Schwab et al., 2006). Briefly, amiRNAs were generated by PCR using RS300. The resulting PCR product was digested by XhoI and SpeI, inserted into pENTRY-BS and then cloned by LR clonase reaction into the estradiol-inducible pER8-GW and constitutive pB2GW7 (PSB; Ghent University, Belgium) expression vectors.

ACKNOWLEDGEMENTS

The authors are indebted for technical assistance of Annamária Király, and Mihály Dobó for production of transgenic plants. We acknowledge the help of Pierdomenico Perata for scientific discussions and Andreas Bachmair for critical reading of the manuscript. Research was funded by the OTKA Grant no. K-81765, NN-110962, IPA project no. HUSRB/1002/214/036 and COST action FA0605. C.P. was supported by Young Researcher Fellowship of the Hungarian Academy of Sciences.

This article is protected by copyright. All rights reserved.
SHORT LEGENDS FOR SUPPORTING INFORMATION

Supporting Figure S1. Expression levels of ERF-VII type transcription factors in public available database.

Supporting Figure S2. Stress regulation of ERF-VII type transcription factors.

Supporting Figure S3. Trans-activation of ADH1-LUC by estradiol induced RAP2.12, RAP2.2 and RAP2.3 in independent lines.

Supporting Figure S4. Selected ABA and osmotic stress induced genes that were unaffected by RAP2.12 overexpression.

Supporting Figure S5. Expression of RAP2.12 and RAP2.3 genes in single rap2.12-2, rap2.3-1 and the rap2.12-2 rap2.3-1 double mutant.

Supporting Figure S6. Comparison of wild type and rap2.2-4 insertion mutant line in osmotic stress growth assay.

Supporting Figure S7. Gene expression changes of osmotic stress induced genes in wild type and rap2.12-2 rap2.3-1 double mutant line.

Supporting Figure S8. Amino acid sequence of RAP2.12 and HA:RAP2.12 proteins.

Supporting Figure S9. HA:RAP2.12 protein is stabilised by the proteasome inhibitor MG132.

Supporting Figure S10. Phylogenetic analysis of TRAF domain-like proteins of Arabidopsis.

Supporting Figure S11. Co-expression of the Arabidopsis SINAT1 and SINAT2.

Supporting Figure S12. Co-silencing of SINAT1 and SINAT2 genes.

Supporting Figure S13. Model of RAP2.12, RAP2.2 and RAP2.3 mediated transcriptional activation of the low oxygen and ABA induced ADH1 gene.

Supporting Table 1. List of primers used in this study.
REFERENCES

Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. *Nature*, **479**, 415-418.

FIGURE LEGENDS

Figure 1. Comparative analysis of ERF-VII gene expression.

(a) Gene expression profiles of ERF-VII transcription factors in Col-0 wild type plants during anoxia. Arabidopsis seedlings were subjected to 3 and 9 hours anoxia treatments. (b) Effect of ABA treatment on ERF-VII gene regulation. One-week-old wild type plants were treated with 30 μM ABA and samples were taken 0, 3, 9 and 24-hour timepoints.

Figure 2. Bioluminescence detection of ADH1-LUC activity in RAP2.2, RAP2.3 and RAP2.12 overexpressing lines.

(a) Images of ADH-LUC, AE-RAP2.2, AE-RAP2.3 and AE-RAP2.12 plants, showing LUC activities after 9 hours of spraying with 0.04% DMSO solvent as control, 30 μM ABA and/or 5 μM estradiol (estr). (b) Kinetics of bioluminescence of the ADH1-LUC reporter for 24 hours, measured in different genetic backgrounds, treated as above.

Figure 3. RAP2.2, RAP2.3 and RAP2.12 upregulate hypoxia marker genes.

Seven-day-old plants of ADH-LUC, AE-RAP2.2, AE-RAP2.3 and AE-RAP2.12 lines were treated with 5 μM estradiol, then half of the plants were subjected to anoxia for 3 hours, the rest were kept in normoxic conditions in the dark (air control). Three hours later samples were taken and used for qPCR analysis to test expression of hypoxia marker genes: *ALCOHOL DEHYDROGENASE 1 (ADH1, AT1G77120)*, *PYRUVATE DECARBOXYLASE 1 (PDC1, AT4G33070)*, *SUCROSE SYNTHASE 4 (SUS4, AT3G43190)* and *SUCROSE SYNTHASE 1 (SUS1, AT5G20830).*

This article is protected by copyright. All rights reserved.
Figure 4. Bioluminescence detection of *ADH1-LUC* in AE-RAP2.12 and *aba2-3 x AE-RAP2.12* lines.

(a) *ADH1-LUC* activity in AE-RAP2.12 and *aba2-3 x AE-RAP2.12* lines, subjected to anoxia. Bioluminescence imaging was performed 3 hours after anoxia and/or 5 μM estradiol (estr) treatments. Relative values of luciferase activities are shown. Statistical differences were calculated with One-way ANOVA Tukey’s test (p<0.05). (b) Bioluminescence imaging of AE-RAP2.12 line (up) and *aba2-3 x AE-RAP2.12* (down), monitored for 24 hours. Mannitol treatment enhanced the effect of RAP2.12 overexpression on *ADH1-LUC* in wild type but not in *aba2-3* mutant background. Plants were treated with 0.04% DMSO, 400 mM mannitol and/or 5 μM estradiol.

Figure 5. Overexpression of RAP2 transcription factors confers tolerance to various abiotic stresses.

(a) Survival rates of ADH-LUC and the AE-RAP2 plants treated with 5 μM estradiol and subjected to 8 or 14 hours anoxia. Survival was scored after 7 days recovery. (b) Images of plants 1 week after the 14 hours anoxia treatment. (c) Overexpression of RAP2 TFs confers oxidative stress tolerance. Four-day-old seedlings of ADH-LUC or AE-RAP2s were transferred to 1/2 MS medium supplemented by 5 μM estradiol (estr) with or without 2 mM hydrogen peroxide (H$_2$O$_2$) and grown for 15 days. (d) Relative rosette sizes, averages of 15 plants. (e) ADH-LUC and RAP2s overexpressing plantlets grown on agar plates containing 300 mM mannitol and 5 μM estradiol for 0 or 12 days (DAT=days after transfer). (f) Rosettes sizes of 15 plantlets grown on high osmotic medium. (g) ABA sensitivity of root elongation. Four-day-old seedlings were transferred to media supplemented by 5 μM estradiol with or without 10 μM ABA. Graphs show average root lengths of 14 seedlings grown for 7 days. (h) Images of typical AE-RAP2 plants showing differences in root growth. Abbreviations used for the lines in physiological studies: AL: ADH-LUC, R2: AE-RAP2.2, R3: AE-RAP2.3, R12: AE-RAP2.12. If otherwise not stated values represent mean of 3 technical replicates, each contained at least 25 plantlets. Error bars show SE, asterisks indicate statistically significant
differences compared to ADH-LUC parental line, One-way ANOVA multiple comparison test; *p<0.05, **p<0.01, ***p<0.001. (i) qPCR analysis of selected ABA and osmotic stress induced genes in ADH-LUC and AE-RAP2.12 lines after 9 hours 5 µM estradiol with or without 30 µM ABA treatment: RD29A (AT5G52310), RD22 (AT5G25610) and P5CS1 (AT2G39800). Statistical analysis was performed using One-way ANOVA Tukey’s test (p<0.05).

Figure 6. Knock-out mutation of RAP2.2, RAP2.3 and RAP2.12 genes causes stress hypersensitivity.

(a) T-DNA insertions are localised in the exons of At3g14230 (RAP2.2), At3g16770 (RAP2.3) and At1g53910 (RAP2.12). (b) Mutant lines have enhanced sensitivity to submergence compared to wild type. Left panel shows images of plants after 1 week recovery of 44 hours submergence. Control plants were kept in the air but in dark for 44 hours. Right panel shows survival rates of plants (%) after submergence. Statistical differences were calculated with One-way ANOVA Tukey’s test (p<0.05). (c) Rosette growth of wild type, rap2.3-1 and rap2.12-2 mutants and rap2.12-2 rap2.3-1 double mutants on standard media (1/2 MS) supplemented with 300 mM mannitol or 2 mM H₂O₂. Rosette sizes of 15 plants were measured from each line. Asterisks indicate significant differences after One-way ANOVA Dunnett’s test (p<0.05). (d) Images of wild type and mutant plants after 21 days growth on media containing 300 mM mannitol. (e) Transcript levels of ADH1 (AT1G77120) and SUS1 (AT5G20830) determined by qRT-PCR analysis. Ten-day-old plants of wild type, rap2.2-4, rap2.3-1, rap2.12-2 and double rap2.12-2 rap.3-1 mutant lines were stressed by 300 mM mannitol for 0, 3, 9 hours. Statistical analysis One-way ANOVA Tukey’s test was performed independently at each time point (p<0.05).
Figure 7. Abundance of RAP2.12 is affected by SINAT proteins
(a) Western detection of HA:RAP2.12 in XVE HA:RAP2.12 line. HA:RAP2.12 was detected after 5 µM estradiol, but not after solvent (0.04% DMSO) treatment. (b) HA:RAP2.12 is stabilised by the proteasome inhibitor MG132. XVE-HA:RAP2.12 plants treated with 5 µM estradiol for 4 or 24 hours. To inhibit proteasomes, plants were treated with 100 µM MG132. (c) Transcript levels of SINAT1 and SINAT2 in three independent XVE-amiSINAT1/2 lines, in 10-day-old plants, treated with 10 µM estradiol for 48 hours. Statistical analysis was performed using One-way ANOVA Dunnett's test (*p<0.05, **p<0.01, ***p<0.001). (d) RAP2.12 protein detected in independent SINAT1/2 silenced lines using anti RAP2.12 antibody. (g) Transcript levels of SINAT1 and SINAT2 in two independent, constitutively expressing HA:R12/amiSINAT1/2 lines, carrying the XVE-HA:RAP2.12 construct. Statistical analysis was performed using One-way ANOVA Dunnett's test (**p<0.01, ***p<0.001). Note similarly reduced expression of both SINAT1 and SINAT2. (h) Detection of HA:RAP2.12 protein in XVE-HA:RAP2.12 line and two HA:R12/amiSINAT1/2 lines after 5 µM estradiol treatment. Note western signal obtained with anti-HA antibody.
This article is protected by copyright. All rights reserved.