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Abstract 

Exact quantum mechanical calculations examining a recently implemented pseudopotential 

show that the results reported by Larsen et al. are based on a model that contains inaccuracies. 

We illustrate that, in contrast to the model used, the true electron-water interaction is 

repulsive in the region relevant to the reported extended electron distribution, consistent with 

the cavity model. 
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The paper by Larsen, Glover and Schwartz (LGS) claims that an alternative physical 

picture of the hydrated electron model emerges from a series of mixed quantum-classical 

molecular dynamics simulations based on their new model (1). At the heart of the claim is the 

development of a new electron-water molecule pseudopotential by these authors that 

describes the interaction between the classically treated water molecules and the quantum 

mechanical excess electron. The authors correctly state that “A key element in any simulation 

of the hydrated electron is the electron-water interaction specified by the pseudopotential.”. In 

this comment we inspect the pseudopotential of LGS and show that inaccuracy in its 

description of the core region of the potential seriously undermines the credibility of the 

subsequent simulation results.  

The following analysis applies protocols based on quantum mechanical model 

calculations similar in spirit to previous studies (2,3). We solve the Schroedinger equation for 

the excess electron in the field of the Hartree-Fock potential of a single water molecule (4) 

and a conveniently chosen repulsive potential (5). The repulsive potential confines the 

electron in the vicinity of the water molecule (here within an approximate sphere of ~5 Å 

radius) and makes it possible to test the pseudopotential in the chemically most relevant 

region. The results of the exact calculations are compared to those using the reported 

pseudopotential (1,4), and also to a reference system of a free electron placed in the same 

repulsive potential. Since the energy and the electron density of the excess electron are 

sensitive to changes in the underlying potential, the comparison helps to pinpoint problems in 

the LGS pseudopotential.  

The ground state energy for the reference system, a free electron confined by the 

repulsive potential is 4.6585×10-2 hartree (5,6). The exact solution of the excess electron 

Schroedinger equation, in the field of the water wave function and the confining potential, 

results in 5.0257×10-2 hartree. The more positive eigenenergy in the presence of the water 



molecule immediately indicates that the average potential felt by the electron is repulsive in 

the vicinity of the water molecule. Although the difference in the energies is only ~0.1 eV, the 

impact of the underlying repulsion becomes significant in condensed phase simulations, as 

illustrated below. Replacing the exact electron-water potential by a rigorously derived 

pseudopotential in the Hamiltonian, one should obtain the same eigenenergy. The LGS 

potential, however, gives 4.5725×10-2 hartree (4). The lower energy relative to the reference 

system unequivocally confirms that instead of reproducing the average repulsion of the exact 

electron-water potential, the LGS potential is slightly attractive in the vicinity of the water 

molecule. The LGS model also badly fails to reproduce the electron density of the exact 

pseudo wave function (7) (Figure 1A). The significantly increased electron density on the 

oxygen side of the molecule by the LGS model relative to the exact density indicates that the 

LGS potential artificially introduces attraction here, while the depleted electron density on the 

hydrogen side suggests an opposite deviation, decreased attraction. The net result is the 

artificially attractive LGS potential. As directly related symptoms, suspicious regions appear 

in the reported pseudopotential that are not consistent with basic physical intuition. These 

include a relatively deep (~0.5 eV) attractive well in the molecular plane on the generally 

repulsive oxygen side of the molecule at ~3 Å from the oxygen and a repulsion in the 

generally attractive dipole direction on the hydrogen side at ~-4 Å (see the inset of Figure 

1B). At these distances one would expect simple electrostatics to dominate. These features are 

not shown in Figure 1 of Ref (1).    

To demonstrate the serious consequences of an incorrect description of the core region 

in the LGS model, we performed quantum molecular dynamics simulations of a quantum 

mechanically treated electron in a classical water bath of 499 molecules, identical in setup to 

that described in Reference (1). In the simulation we employed a modified LGS parameter set, 

that is chosen by optimizing one parameter on the repulsive oxygen center in the original LGS 



model to now reproduce the computed exact model eigenenergy (8). We note that this 

modification is minor (Figure 1B), similar in magnitude to the uncertainty of the numerical 

fitting of the LGS potential on the exact smoothed potential (1,9). The correction is 

nevertheless manifest in dramatically different properties of the hydrated electron compared 

to those of LGS (1). Most notably, the radial distribution functions testify the formation of a 

solvent cavity (Figure 1C) with a well-defined excluded volume around the electron (~0.5 Å 

radius for the hydrogen, ~1.5 Å radius for the oxygen), in sharp contrast to the LGS model. In 

parallel, the radius of the electron collapses to 2.3 Å from the LGS value of 2.6 Å indicating a 

more compact electron distribution. The vertical detachment energy (VDE) of the hydrated 

electron also undergoes a considerable change. The LGS potential predicts a VDE that is 

significantly higher (�5 eV (1)) than experimental values of 3.3 eV (10a) and 3.6 eV (10b) or 

the ~4 eV simulation result using a pseudopotential consistent with a cavity based model (11). 

The simulation with the modified potential brings the VDE closer to the consensus range by 

0.85 eV.  

The present comment demonstrates that the electron-water pseudopotential of Larsen 

et al., although based on a rigorously derived potential surface, contains inaccuracies (12). 

The simulated properties of the hydrated electron are shown to be very sensitive to this 

problem. A simple introduction of a modified repulsion (by matching the exact energy of the 

quantum model) has been demonstrated to recover the traditional cavity picture, consistent 

with other pseudopotentials (3,13). The physical properties of the hydrated electron by Larsen 

et al., simulated on the incorrect potential, and the new structural characterization in 

particular, appear to be artifactual. Finally, we note that this cavity model of the hydrated 

electron is in accord with extensive, model free ab initio molecular dynamics simulations 

(14,15). 



Figure Caption 

Figure 1. (A) The electron density of the exact pseudo wave function (red) and the LGS 

electron density (black) along the dipole direction in the molecular plane through the oxygen 

atom. The center of mass of the water molecule is at the origin, the hydrogen atoms are at 

negative coordinates. (B) The repulsion modified pseudopotential (red) in the same molecular 

direction as above.  For comparison the original LGS potential is also shown (black). The 

arrows in the inset show suspicious parts of the LGS potential. For clarity, the potentials do 

not contain the additive attractive polarization contributions. (C) Electron-hydrogen (red) and 

electron-oxygen (blue) radial distribution functions using the modified pseudopotential 

including polarization (solid curves). For comparison, the radial distribution functions 

obtained with the LGS potential (dashed) are also shown. 

 



Figure 1. Turi and Madarász 
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