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Abstract

A mathematical analysis is presented for a class of interior penalty (IP) discontinuous Galerkin approximations of

elliptic boundary value problems. In the framework of the present theory one can derive some overpenalized IP

bilinear forms avoiding the notion of fluxes and artificial penalty terms. The main idea is to start from bilinear forms

for the local average of discontinuous approximations which are rewritten using the theory of distributions. It is

pointed out that a class of overpenalized IP bilinear forms can be obtained using a perturbation of these. Also, error

estimations can be derived between the local averages of the discontinuous approximations and the analytic solution

in the H1-seminorm. Using the local averages, the analysis is performed in a conforming framework without any

assumption on extra smoothness for the solution of the original boundary value problem.
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1. Introduction

Discontinuous Galerkin (dG) methods have been introduced and used from the end of the seventies, first for linear

transport problems. Later similar methods were constructed for elliptic boundary value problems [1] and nowadays it

is available for the numerical solution of almost all kind of problems based on PDE’s.

These methods have proved their usefulness in several simulations of real-life phenomena [2], [3], [4]. The most

favorable property of the corresponding numerical methods is that the local mesh refinement can be easily performed

giving rise to efficient adaptive strategies.

An important milestone in the systematic analysis of dG methods for elliptic boundary value problems was the
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paper [5]. This pioneering work served as a basis of the consecutive works concerning a priori and a posteriori error

estimates [6], hp-adaptive methods [7], time dependent problems [8]. For an up-to-date summary of the theoretical

achievements for dG methods we refer to the recent monograph [9] and for implementation issues to the monographs

[10] and [11].

At the same time, the above analysis should be improved in some aspects. First, which can be considered as

a didactic issue, the choice of the corresponding bilinear forms would deserve more motivation. After recasting the

elliptic problem in a mixed form, numerical fluxes and penalty terms are defined which lead to different bilinear forms.

No a priori suggestion or motivation is mentioned to propose an appropriate choice of the fluxes. Additionally, penalty

terms contain user-defined constants, which should be tuned to ensure the ellipticity of the corresponding bilinear form.

At the same time, too large constant would grow the condition number of the stiffness matrix in the computations.

On the optimal choice for elliptic problems we refer to [12] and for Maxwell equations to [13]. A possible remedy of

these problems is to use overpenalization [14], [15], which results inheritly elliptic bilinear forms. Also, as pointed out

in [15] and [16], one can use appropriate preconditioners to deal with large condition numbers.

The second issue to be addressed is the assumption on extra-regularity of the analytic solution in the original

analysis. This problem was solved in the meantime: in [17] the author developed an analysis based on a Strang type

lemma [18], which could successfully deal with the non-conformity of the dG type approximation.

The most important issue is the norm for the convergence. The choice of the bilinear form implies a mesh-dependent

norm, which is a real mathematical artifact. The convergence is proved with respect to this norm or in a weaker, e.g.,

in the L2-norm. At the same time, in the corresponding real-life problems the natural norm is usually the H1-norm

(or seminorm). Note that there are some achievements which point out the usefulness of the interior penalty (IP)

methods. For these methods, one can obtain convergence in the so-called BV norm which does not depend on the

actual mesh [19], [20] and can be related to broken Sobolev norms.

Based on the above issues, the aim of the present work is to contribute to the error analysis of some existing dG

methods for elliptic boundary value problems by proposing an alternative of the commonly used theoretical basis in

[5]. In particular, we derive overpenalized interior penalty bilinear forms avoiding the notion of numerical fluxes or

recasting them into a mixed form. The new idea is to use the local average of the discontinuous approximation from

the beginning. The only heuristic detail in our analysis is the choice of the local average. The main benefit of the

analysis is that it can be done in an H1-conforming framework such that one can prove the quasi optimal convergence

of the local average with respect to the natural H1-seminorm for Dirichlet problems. This work is a generalization of

the paper [21] concerning the one-dimensional case. For numerical experiments demonstrating the performance and

usefulness of overpenalized dG methods we refer to [14], [15] and [16].
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The idea to use postprocessing (or smoothing or filtering) for dG approximations has already appeared in the

literature [22]. In the last years, many related results have been achieved: involved algorithms were developed for

linear hyperbolic problems in [23] and their accuracy-increasing property was verified also for advection-diffusion

problems with respect to negative Sobolev norms [24]. The accurate computation of the corresponding convolutions

is challenging, see the recent developments in [25] and [26].

The setup of the article is as follows. We first introduce the tools for our analysis. Then the main results are

presented along with the main consequences: first, the derivation of the overpenalized IP methods as an alternative of

the conventional one in [5] and second, the practice of the proposed method is discussed examining its computational

costs. Finally, the detailed proofs are given without the most technical details, which are placed in the Appendix.

2. Mathematical preliminaries

We investigate the finite element solution of the elliptic boundary value problem










−∆u(x) = g(x) x ∈ Ω ⊂ Rd

u(x) = 0 x ∈ ∂Ω,

(1)

where Ω is a polyhedral Lipschitz-domain and g ∈ L2(Ω) is given.

Discontinuous finte element spaces. The finite element approximation is computed on a simplicial mesh Th. The

symbol F denotes the set of interelement faces. Using the notation ρ(K) for the radius of the maximal inscribed ball

into K, we introduce the mesh parameter h ≤ 1 with

h = min {ρ(K)/2 : K ∈ Th} .

We also use the notations hK , hf and hΩj
for the diameter of the corresponding subdomain or face. The error analysis

can be applied in consecutive refinement steps (also in an hp-adaptive procedure) if the corresponding family {Th}h∈H

of meshes is non-degenerated, i.e. there exists a parameter N∗ such that for all K ∈ {Th}h∈H we have

diam K ≤ N∗ρ(K). (2)

Also, hanging nodes are allowed provided that their number is bounded in the refinement steps. At the same time,

the constants in the estimates may depend on the maximal polynomial degree and the number of hanging nodes on

the faces. To reduce the complexity of the forthcoming analysis, we do not track this dependence. For the numerical

solution we use the finite element space

Ph,k = {u ∈ L2(Ω) : u|K ∈ Pkj
(Ωj) for all Ωj ∈ Th},
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where k = (k1, k2, . . . ) and Pkj
(Ωj) denotes the linear space of polynomials of total degree kj on the subdomain Ωj .

This notation will also be used for interelement faces and for balls instead of Ωj .

Jumps and averages. We introduce the notation νj for the outward normal of Ωj with any symbol j. We also make

use of the conventional notation {{·}} : Ph,k → L2(F) and [[·]] : Ph,k → L2(F) for the average and jump operators which

are given on each interelement face fΩ = Ω̄+ ∩ Ω̄− with

{{v}}fΩ
(x) =

1

2
(v(x+) + v(x−)) and [[v]]fΩ

(x) = ν+v(x+) + ν−v(x−),

where v(x±) = limΩ±⊃xn→x v(xn). On each boundary face f ⊂ ∂Ω we simply define

{{v}}f (x) = v(x) and [[v]]f (x) = ν(x)v(x).

Norms, scalar products and bilinear forms. The L2(Ω
∗)-norm on a generic domain Ω∗ will be denoted with ‖ · ‖Ω∗

and the corresponding scalar product with (·, ·)Ω∗ . In case of Ω∗ = Ω or if the support of the terms is given, we omit

the subscript. Similar notation is applied for the scalar product and the corresponding L2 norm on F and on a single

interelement face f .

With these, the most popular dG approximation of u in (1) is the so-called symmetric interior penalty dG method

which is given with the bilinear form aIP : Ph,k × Ph,k → R as follows:

aIP(u, v) = (∇hu,∇hv) −
∑

f∈F
({{∇hu}} , [[v]])f + ({{∇hv}} , [[u]])f +

∑

f∈F
σh([[u]] , [[v]])f , (3)

where ∇h denotes the piecewise gradient on the subdomains in Th and σh ∈ R denotes a penalty parameter, which is

proportional with (diam f)−1 in the conventional setting and with (diam f)−r in case of overpenalized methods, see

[14] and [15]. The notation ∇f [[u]] will be used for the gradient of the jump functions defined on the interelement face

f : i.e. for each τ 1 unit (tangential) vector τ 1 contained in f and for any x ∈ f

τ 1 · ∇f [[u]] (x) := lim
δ→0

[[u]] (x + δτ 1) − [[u]] (x)

δ
.

The notation λd(·) will be used to the d-dimensional Lebesque measure.

Averaging, conforming finite element space. For the local average we use the piecewise constant function ηh : Rn → R

depending also on the parameter s > 1 with

ηh(x) =











1
Bhs,d

|x| ≤ hs

0 |x| > hs,
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where B(x, r) denotes the closed ball with radius r centered at x and Bhs,d = λd(B(0, hs)). The analysis makes use

only two properties of ηh: this is symmetric with respect to the origin and
∫

Rd ηh = 1 such that ηh ∗ u is the local

average of the function u : Rd → R. Also, a straightforward computation gives that supp ηh ∗ ηh = B(0, 2hs) and
∫

B(0,2hs)
ηh ∗ ηh = 1. These facts will be used without further reference.

The analysis of the conforming approach will be carried out in the space

Ph,k,s = {ηh ∗ u0|Ωh
: u0 is the zero extension of u ∈ Ph,k},

where Ωh = {x ∈ Rd : d(x,Ω) < hs}. Obviously, Ph,k,s ⊂ H1
0 (Ωh). We use the notation Ωj,h in a similar sense and

Ω̃j = int {Ω̄k ∈ Th : Ω̄j ∩ Ω̄k 6= ∅} for the patch of Ωj , where int (S) denotes the interior of a set S.

Reference subdomain pairs. To extend the standard scaling arguments we first define a reference set K of neighboring

simplex pairs (K+,K−) having the interelement face f = K̄+ ∩ K̄− such that the following conditions hold:

• f ⊂ 0 × Rd−1 and one vertex of f is 0 ∈ Rd

• the maximum edge-length of f is one

• K+ and K− satisfy the condition on non-degeneracy, see (2).

Then for any neighboring subdomains Ω+,Ω− ∈ Th there is a pair (K+,K−) ∈ K and an affine linear map AΩ :

K+ ∪ K− → Ω+ ∪ Ω− with AΩ(K+) = Ω+ and AΩ(K−) = Ω−, moreover

AΩ(x) = AΩ,0(hΩx), (4)

where hΩ denotes the maximum edge length of fΩ and AΩ,0 is an isometry; see also Fig. 1.

Accordingly, for any v ∈ Ph,k(Ω+ ∪Ω−) we have v0 := v ◦AΩ ∈ Ph,k(K+ ∪K−), moreover, using (4) the following

equalities are valid:

[[v0]] (x) = [[v]] (AΩ(x)) and ηh0
∗ v0(x) = η

h0h
1
s
∗ v(AΩx), (5)

whenever the operation ηh0
∗ makes sense.

We also use the notation hΩ · K± = {hΩx : x ∈ K±} and similarly hΩ · f and introduce the interior domain

Ωj0 = {x ∈ Ωj : B(x, hs) ⊂ Ωj} and the interior face f0 ⊂ f similarly. The definition of h ensures that these are

non-empty.
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AΩ,0

Ω−

Ω+0

b

b

hs

hΩ · K−

hΩ · K+

(0, 0)

(0, hΩ)

b

b

fΩ0

Figure 1: The transformation of the reference subdomain pair, the interior domain Ω+0 and the interior face fΩ0 in the 2-dimensional case.

BV spaces and distributions. The space BV(Ω) of real valued functions on Ω with bounded variations is defined with

BV(Ω) =















u : Ω → R : sup
φ∈[C1

c (Ω)]d

‖φ‖∞=1

∫

Ω

u div φ := |u|BV < ∞















and is equipped with the seminorm | · |BV, where ‖ · ‖∞ denotes the maximum norm on C1
c (Ω). This seminorm can

also be given as

| · |BV =

∫

Ω

d|∂u|,

where |∂u| is the Radon measure generated by the distributional derivative of u. The dual pairing between a distribution

S and a test function φ is denoted using angle brackets: 〈S, φ〉.
In the estimates, the notation g1 . g2 means the existence of a constant C - which does not depend on the mesh

parameter but possibly on the local polynomial degree - such that g1 ≤ C · g2. We also use the notation g1 ∼ g2

provided that both g1 . g2 and g2 . g1 are satisfied.

3. Results and discussion

The basic idea of the present analysis is to look for a smoothed dG approximation immediately in the bilinear

form. In this case, in the background we can compute with discontinuous basis functions in Ph,k while still having the
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freedom to choose them independently on the neighboring subdomains. On the other hand, as we compute conforming

approximations, we can use the entire armory of the classical finite element analysis.

The smoothed (or averaged) dG approximation consists of finding ηh ∗ uh ∈ Ph,k,s such that for all ηh ∗ vh ∈ Ph,k,s

we have

aη(uh, vh) := a+
η (ηh ∗ uh, ηh ∗ vh) := (∇(ηh ∗ uh),∇(ηh ∗ vh)) = (g0, ηh ∗ vh), (6)

where the bilinear forms aη : Ph,k × Ph,k → R and a+
η : Ph,k,s × Ph,k,s → R are defined by (6) and g0 denotes the zero

extension of g to Ωh. Whenever the spaces Ph,k,s 6⊂ H1
0 (Ω) we call the method H1-conforming since each space is in

H1
0 (Ωh).

To prove the first main result we introduce the modified IP bilinear form aIP,s : Ph,k × Ph,k → R with

aIP,s(u, v) = (∇hu,∇hv) −
∑

f∈F
({{∇hu}} , [[v]])f + ({{∇hv}} , [[u]])f +

∑

f∈F
σs,h([[u]] , [[v]])f , (7)

where

σs,h([[u]] , [[v]])f =











16
3π2 h−s([[u]] , [[v]])f for d = 2

3
5h−s([[u]] , [[v]])f for d = 3

(8)

and the corresponding finite element approximation uIP,s for which

aIP,s(uIP,s, v) = (g, v) ∀v ∈ Ph,k. (9)

Theorem 1. Assume that 3s > d + 2. Then the IP bilinear form in (7) is a perturbation of aη in the sense that

|aη(u, v) − aIP,s(u, v)| . hs−1(1 + h3s−d−2)‖∇(ηh ∗ u)‖‖∇(ηh ∗ v)‖.

Since the bilinear form aη is a slight modification of aIP,s, we expect that the local average of the approximations of

uh and uIP,s are also close to each other. In precise terms, we have the following.

Theorem 2. Assume that 3s > d + 2. Then for the finite element approximations uh and uIP,s we have

‖∇(ηh ∗ uIP,s − ηh ∗ uh)‖ . hs−1‖∇(ηh ∗ uh)‖ + max
j

hd
Ωj
‖ηh ∗ g − g0‖.

The main result of this work is the error estimation for the averaged IP approximation in the H1(Ω)-seminorm.

Theorem 3. The averaged interior penalty approximation is quasi optimal with respect to the real energy seminorm

in the following sense:

‖∇(u − ηh ∗ uIP,s)‖ . inf
vh∈Ph,k

‖u − ηh ∗ vh‖1 + O(hs− 1
2 ) + max

j
hd

Ωj
‖ηh ∗ g − g0‖.
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The new derivation of IP bilinear forms. Based on the results of the paper, we propose the following introduction of

IP methods for the numerical solution of (1).

• Introduce the H1-conforming finite element discretization (6).

• Since the aIP,s bilinear form is a perturbation of aη and given more explicitly, one should compute uIP,s in the

practice.

Note that this approach contains one heuristic detail, namely the choice of the smoothing operator in (6). At the same

time, we can completely avoid the problem of choosing some numerical flux or penalty parameter and the corresponding

bilinear form is obviously elliptic.

The new computational proccedure and its costs. Using Theorem 3, we propose the following approximation of (1).

(i) Compute the solution uIP,s of the problem in (9).

(ii) Compute the local average ηh ∗ uIP,s.

Note that in (9) an overpenalized IP method is applied. In the classical approach [15], the penalty term is defined by

η
∑

f∈F

s

|diam f |2s+1

∫

f

Πs−1
f [[u]] Πs−1

f [[v]] ,

where s is a positive integer and Πs−1
f denotes the L2-orthogonal projection to Ps−1(f). In our approach,

• it is not necessary to compute orthogonal projections

• we can use any parameter s with 3s > d + 2, which results in less ill-conditioned linear systems

• the constant η is given in (8).

The only extra cost compared with a conventional method is the computation of the local average. The most straight-

forward way to compute it is to apply Gauss quadrature on a ball. Another possibility is to take a convolution

operator with the characteristic function of a ball. To approximate it one can make of use of the convn.m subroutine

of MATLAB. Note that the efficient computation of more involved smoothing procedures have been already developed,

see [25] and [26].
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4. Analysis and proofs

We make use of the following inequalities, which can be proved using simple scaling arguments and the assumption

that the family {Th}h∈H of meshes is non-degenerated.

Proposition 1. For all faces and domains in the family {Th}h∈H of meshes we have the following inequalities:

max
B(0,hs)

|u| ∼ h− sd
2 ‖u‖B(0,hs) ∀u ∈ Pk(B(0, hs)), (10)

max
f

[[u]] . h1−d

∫

f

| [[u]] | ∀ [[u]] ∈ Pk(f), (11)

max
K

|∇2u| . h
− d

2−2

K ‖u‖K ≤ h− d
2−2‖u‖K ∀u ∈ Pk(K), (12)

max
f

∇2
f [[u]] . h−d−1

f

∫

f

| [[u]] | . h−d−1

∫

f

| [[u]] | ∀ [[u]] ∈ Pk(f), (13)

‖∇u‖B(0,hs) . h
(s−1)d

2 ‖∇u‖B(0,h) . h−1h
(s−1)d

2 ‖u‖B(0,h) ∀u ∈ Pk(B(0, h)). ¤ (14)

We also need an estimate between the discontinuous function ∇hu and its local average ηh ∗ ∇hu with a convergence

rate depending on h. For this a Taylor expansion is developed about all x ∈ Ωj0 giving for an arbitrary y ∈ Ωj that

u(y) = u(x) + ∇u(x) · (y − x) +
1

2
∇2u(ξy)(y − x) · (y − x) (15)

for some ξy in the section (x,y). Integrating both sides over B(x, hs) yields

Bhs,d · (ηh ∗ u(x)) = Bhs,d · u(x) +

∫

B(x,hs)

1

2
∇2u(ξy)(y − x) · (y − x)

and therefore

ηh ∗ u(x) − u(x) =
1

2 · Bhs,d

∫

B(0,hs)

∇2u(ξy)|y|2 dy. (16)

Proposition 2. For all u ∈ Ph,k and subdomain Ωj we have

‖∇hu − ηh ∗ ∇hu‖Ωj
. h

s−1
2 ‖∇hu‖Ω̃j

.
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Proof: We first use the triangle inequality

‖∇hu − ηh ∗ ∇hu‖Ωj
≤ ‖∇hu − ηh ∗ ∇hu‖Ωj0

+ ‖∇hu − ηh ∗ ∇hu‖Ωj\Ωj0

≤ ‖∇hu − ηh ∗ ∇hu‖Ωj0
+ ‖∇hu‖Ωj\Ωj0

+ ‖ηh ∗ ∇hu‖Ωj\Ωj0
,

(17)

where the contributions are estimated separately. We obviously have the estimate λd(Ωj \ Ωj0) . hshd−1
Ωj

such that a

simple scaling argument gives

‖∇hu‖Ωj\Ωj0
. h

s−1
2 ‖∇hu‖Ωj

. (18)

This also implies, using (14) in the second line with s = 1 that

‖ηh ∗ ∇hu‖2
Ωj\Ωj0

≤ λd(Ωj \ Ωj0)max
Ω̃j

|∇hu|2

≤ hd−1
Ωj

hs max
Ω̃j

|∇hu|2 ≤ hd−1
Ωj

hsh−d
Ωj

‖∇hu‖2
Ω̃j

= hs−1‖∇hu‖2
Ω̃j

.
(19)

Finally, combining the inequalities in (16) and (12) we arrive at the estimate

|∇hu − ηh ∗ ∇hu|Ωj0
| ≤ 1

2 · λd(B(x, hs))
max
y∈Ωj

|∇3u(y)|
∫

B(0,hs)

|y|2 dy

. h−sd max
y∈Ωj

|∇3u(y)|hs(d+2) . h2sh− d
2−2‖∇u‖Ωj

.

Therefore, using (10) we obtain

‖∇hu − ηh ∗ ∇hu‖Ωj0
≤ h2s−2‖∇hu‖Ωj

. (20)

The estimates (18), (19) and (20) with (17) imply then the inequality in the proposition. ¤

Remark: For functions v ∈ C2(Rd) one can easily estimate the difference in Proposition 2. Moreover, it turns out

that the convergence rate of the difference
∫

Rd |ηh ∗ v|2 − |v|2 characterizes the Sobolev space H1(Rn), see [27].

The chief problem in the estimations with convolution terms is that the scaling arguments can not be applied in a

straightforward way. Whenever we use polynomial spaces the function space {ηh ∗ v : v ∈ Ph,k, 0 < h < h0} is infinite

dimensional, which makes the following proofs non-trivial.

Proposition 3. There exists h0 > 0 such that for all h with h1− 1
s < h0 and v ∈ Ph,k(Ω+ ∪ Ω−) we have

∫

fΩ

| [[v]] | .

∫

Ω+∪Ω−

|∇(ηh ∗ v)| (21)

and for s ≥ 3
2

∫

fΩ

| [[v]] | . h
d
2 h

s−1
2

Ω

√

∫

Ω+∪Ω−

|∇(ηh ∗ v)|2. (22)

The corresponding proof is postponed to the Appendix.
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4.1. The bilinear form

To give the bilinear form (6) in a more explicit form, we first need some identities for distributional derivatives.

We first decompose the gradient of a function u ∈ Ph,k(Ω) as follows.

Lemma 1. For all u ∈ Ph,k(Ω) we have

∇u = ∇hu + [[u]]D = ∇hu +
∑

f∈F
[[u]]f (23)

in the sense of distributions, i.e. [[u]]D ∈ [Dd(Ω)]∗ is a distribution with

〈[[u]]D ,φ〉 = −
∑

f∈F

∫

f

[[u]]f · φ := −
∫

F
[[u]] · φ = −([[u]] ,φ)F ,

where [[u]]f = [[u]]D |f and we also have supp [[u]]D = F .

Proof: Obviously, for all φ ∈ [D(Ω)]d we have

〈∇u,φ〉 = −〈u,div φ〉 = −
∑

Ωj∈Th

∫

Ωj

u div φ =
∑

Ωj∈Th

∫

Ωj

∇u · φ −
∑

Ωj∈Th

∫

∂Ωj

u|Ωj
νj · φ

=
∑

Ωj∈Th

∫

Ωj

∇u · φ −
∑

f∈F

∫

f

[[u]]f · φ|f ,

which proves the statement. ¤

Remarks: The decomposition in Lemma 1 is indeed a Lebesgue decomposition [28], [29] of the Radon measure

corresponding to the distributional derivative ∇u. The role of the jump terms in this context is analyzed in [30],

Section 10.

The symbol [[·]]D can be understood both as a distribution supported on the interelement faces and the singular

measure in the corresponding Lebesgue decomposition. The connection between [[u]]D and the classical function [[u]] is

highlighted in Lemma 1.

The negative sign is a weakness of the conventional notation. This is already transparent in the one-dimensional case:

whenever the Heaviside step function H : R → R is increasing, by definition we have [[H]] (0) = −1.

For the consecutive derivations we need also an identity regarding the convolution of distributions.

Lemma 2. For all u ∈ Ph,k the convolution ηh ∗ [[u]]D is regular, which will be identified with the corresponding locally

integrable function. With this, for all bounded function w : Ω → Rd we have

〈ηh ∗ [[u]]D ,w〉 = ([[u]] , ηh ∗ w)F .
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Similar statement holds for [[u]]f with the following identity:

〈ηh ∗ [[u]]f ,w〉 = ([[u]] , ηh ∗ w)f .

Proof: Since both ηh and [[u]]D are compactly supported, we get by definition (see [31], Definition 2.1) and by Lemma

1 that for each φ ∈ [C∞
0 (Ω)]d the following equality is valid:

〈ηh ∗ [[u]]D ,φ〉 = 〈[[u]]D ,y → ηh(x → φ(x + y))〉 = 〈[[u]]D ,y →
∫

Rd

ηh(x)φ(x + y) dx〉

= −
∫

F
[[u]] (y)

∫

Rd

ηh(x)φ(x + y) dx dy = −
∫

F
[[u]] (y)

∫

Rd

ηh(z − y)φ(z) dz dy

= −
∫

F
[[u]] (y)

∫

Rd

ηh(y − z)φ(z) dz dy = −
∫

F
[[u]] (y) ηh ∗ φ(y) dy = −([[u]] , ηh ∗ φ)F .

(24)

On the other hand, according to [31], page 337, Exercise 10, ηh ∗ [[u]]D is locally integrable such that the statement of

the lemma is valid for all bounded functions w as it was stated. The statement can also be applied for ηh ∗ [[u]]f and

the derivation in (24) can be modified in an obvious way changing [[u]]D to [[u]]f and the symbol F to f . ¤

As an obvious consequence of Lemma 1 and Lemma 2 we get the following.

Corollary 1. The left hand side aη(u, v) of (6) can be rewritten as

(ηh ∗ ∇hu, ηh ∗ ∇hv) + 〈ηh ∗ ∇hu, ηh ∗ [[v]]D〉 + 〈ηh ∗ ∇hv, ηh ∗ [[u]]D〉 + 〈ηh ∗ [[u]]D , ηh ∗ [[v]]D〉

= (ηh ∗ ∇hu, ηh ∗ ∇hv) + (ηh ∗ ∇hu, ηh ∗ [[v]]) + (ηh ∗ ∇hv, ηh ∗ [[u]]) + (ηh ∗ [[u]]D , ηh ∗ [[v]]D)

= (ηh ∗ ∇hu, ηh ∗ ∇hv) − (ηh ∗ ηh ∗ ∇hu, [[v]])F − (ηh ∗ ηh ∗ ∇hv, [[u]])F

+





∑

f∈F
ηh ∗ [[u]]f ,

∑

f∈F
ηh ∗ [[v]]f



 .

(25)

Remarks: The second line is given directly using the decomposition in (23), in the third line we have identified η ∗ [[u]]

and η ∗ [[v]] with the corresponding locally integrable functions, which is related to the lifted forms of the dG methods

as each scalar product corresponds to a volume integral. On the other hand, the second and third terms in the fourth

line are integrals which can be computed on faces according to (24).

The locally integrable function ηh ∗ [[u]]f will be given explicitly in Lemma 5.

5. Comparison with the IP bilinear form

We compare our bilinear form (25) with the IP bilinear form (3) componentwise.
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Comparison of the first terms.

Lemma 3. For all u, v ∈ Ph,k(Ω) we have

|(∇hu,∇hv) − (ηh ∗ ∇hu, ηh ∗ ∇hv)| ≤ hs−1‖ηh ∗ ∇hu‖‖ηh ∗ ∇hv‖.

Proof: We obviously have

|(∇hu,∇hv) − (ηh ∗ ∇hu, ηh ∗ ∇hv)|

≤ |(∇hu − ηh ∗ ∇hu,∇hv) + (ηh ∗ ∇hu,∇hv − ηh ∗ ∇hv)|

≤ ‖∇hu − ηh ∗ ∇hu‖‖∇hv‖ + ‖ηh ∗ ∇hu‖‖∇hv − ηh ∗ ∇hv‖.

(26)

Also, application of the estimate in Proposition 2 and a simple scaling argument implies for each subdomain Ωj that

‖∇hu|Ωj0
‖ ≤ ‖∇hu − ηh ∗ ∇hu‖Ωj0

+ ‖ηh ∗ ∇hu‖Ωj0

≤ h
s−1
2 ‖∇hu‖Ωj

+ ‖ηh ∗ ∇hu‖Ωj0
. h

s−1
2 ‖∇hu‖Ωj0

+ ‖ηh ∗ ∇hu‖Ωj0

and therefore,

‖∇hu‖Ωj0
. ‖ηh ∗ ∇hu‖Ωj0

,

which can be used to obtain the following inequality:

‖∇hu‖Ωj
. ‖∇hu‖Ωj0

. ‖ηh ∗ ∇hu‖Ωj0
≤ ‖ηh ∗ ∇u‖Ωj

. (27)

Therefore, using again Proposition 2 we also have

‖∇hu − ηh ∗ ∇hu‖Ωj
. h

s−1
2 ‖ηh ∗ ∇u‖Ωj

. (28)

Taking the square of (27) and (28) for each index j and summing them we have

‖∇hu‖ . ‖ηh ∗ ∇u‖ and ‖∇hu − ηh ∗ ∇hu‖ . h
s−1
2 ‖ηh ∗ ∇u‖

which can be used in (26) to obtain

|(∇hu,∇hv) − (ηh ∗ ∇hu, ηh ∗ ∇hv)|

. h
s−1
2 ‖ηh ∗ ∇u‖‖ηh ∗ ∇v‖ + h

s−1
2 ‖ηh ∗ ∇v‖‖ηh ∗ ∇u‖

as stated in the lemma. ¤
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Comparison of the second and third terms. To compare the second and third terms in (25) and (3) we use the notation

in Fig. 1 and the corresponding explanation.

To analyze the average of the approximations we use the following statement on integral means.

Proposition 4. For each u ∈ Ph,k(Ω− ∪Ω+) and x ∈ fΩ with B(x, 2hs) ⊂ Ω− ∪Ω+ there exist x̄− ∈ B−(x, 2hs) and

x̄+ ∈ B+(x, 2hs) such that

u(x̄−) = 2

∫

B−(0,2hs)

u(x − z) · ηh ∗ ηh(z) dz

and similarly,

u(x̄+) = 2

∫

B+(0,2hs)

u(x − z) · ηh ∗ ηh(z) dz,

where B−(0, 2hs) and B+(0, 2hs) denote the half-ball with non-positive and non-negative first coordinates, respectively.

The proof is postponed to the Appendix.

We also note here that the set {x ∈ fΩ : B(x, 2hs) ⊂ Ω− ∪ Ω+} is non-empty by the definition of h and the relation

hs < h. This fact will be used in the following two statements.

Proposition 5. For all u ∈ Ph,k(Ω− ∪ Ω+) we have the following inequality:

max
x∈fΩ

B(x,2hs)⊂Ω+∪Ω−

|ηh ∗ ηh ∗ ∇hu(x) − {{∇hu}} (x)| . hs− d
2−1‖∇hu‖B(Ω+∪Ω−). (29)

Proof: Using the result of Proposition 4 we rewrite the difference on the left hand side of (29) as follows:

ηh ∗ ηh ∗ ∇hu(x) − {{∇hu}} (x)

=
1

2

(

2

∫

B−(0,2hs)

∇hu(x − z) · ηh ∗ ηh(z) dz + 2

∫

B+(0,2hs)

∇hu(x − z) · ηh ∗ ηh(z) dz

−∇hu(x−) −∇hu(x+)
)

=
1

2
(∇hu(x̄−) −∇hu(x−) + ∇hu(x̄+) −∇hu(x+)) .

(30)

We use then the estimate

|∇hu(x̄−) −∇hu(x−)| ≤ 2hs · sup
z∈(x−,(0−,y))

‖∇2
hu(z)‖

in (30) to see that

max
x∈fΩ

B(x,2hs)⊂Ω+∪Ω̄−

|ηh ∗ ηh ∗ ∇hu(x) − {{∇hu}} (x)|

≤ 1

2
· 2hs ·

(

max
z∈fΩ∔B(0,2hs)

‖∇2
hu(z)‖ + max

z∈fΩ∔B(0,2hs)
‖∇2

hu(z)‖
)

= 2hs max
z∈fΩ∔B(0,2hs)

‖∇2
hu(z)‖.

14



The last term here can be estimated using scaling arguments as

2hs max
z∈fΩ∔B(0,2hs)

‖∇2
hu(z)‖ . hs

√

h−sh1−d
Ω ‖∇2

hu‖fΩ∔B(0,2hs)

. h
1+s−d

2 ‖∇2
hu‖fΩ∔B(0,2hs) . h

1+s−d
2 h

s−1
2 ‖∇2

hu‖Ω+∪Ω− . hs− d
2−1‖∇hu‖Ω+∪Ω− ,

which proves the statement of the proposition. ¤

We can now relate the third and second terms in the proposed bilinear form (25) and the IP bilinear form.

Lemma 4. For arbitrary u, v ∈ Ph,k we have the following inequality:

|(ηh ∗ ηh ∗ ∇hu, [[v]])F − ({{∇hu}} , [[v]])F | . hs−1‖∇(ηh ∗ u)‖‖∇(ηh ∗ v)‖.

Proof: Using the result of Proposition 5 and Proposition 3 we obtain the following estimation on the interelement face

fΩ between Ω+ and Ω−:

|(ηh ∗ ηh ∗ ∇hu, [[v]])fΩ
− ({{∇hu}} , [[v]])fΩ

| = |(ηh ∗ ηh ∗ ∇hu − {{∇hu}} , [[v]])fΩ
|

≤ max
x∈fΩ

|(ηh ∗ ηh ∗ ∇hu − {{∇hu}} (x)|
∫

fΩ

| [[v]] |

. max
x∈fΩ

B(x,2hs)⊂Ω+∪Ω̄−

|(ηh ∗ ηh ∗ ∇hu − {{∇hu}} (x)|
∫

fΩ

| [[v]] |

≤ hs− d
2−1

(

h

hΩ

)
d
2

‖∇hu‖Ω+∪Ω−

∫

f

| [[v]] | ≤ hs− d
2−1

(

h

hΩ

)
d
2

‖∇hu‖Ω+∪Ω−

∫

Ω+∪Ω−

|∇(ηh ∗ v)|

. hs− d
2−1

(

h

hΩ

)
d
2

‖∇h(ηh ∗ u)‖Ω+∪Ω−h
d
2

Ω‖∇(ηh ∗ v)‖Ω+∪Ω−

. hs−1‖∇h(ηh ∗ u)‖Ω+∪Ω−‖∇(ηh ∗ v)‖Ω+∪Ω− .

Summing up these inequalities for each interelement face fΩ and using the discrete Cauchy–Schwarz inequality result

in the estimate

|
∑

fΩ∈F
(ηh ∗ ηh ∗ ∇hu, [[v]])fΩ

−
∑

fΩ∈F
({{∇hu}} , [[v]])fΩ

| ≤
∑

fΩ∈F
|(ηh ∗ ηh ∗ ∇hu, [[v]])fΩ

− ({{∇hu}} , [[v]])fΩ
|

≤
∑

fΩ∈F
hs−1‖∇h(ηh ∗ u)‖Ω+∪Ω−‖∇h(ηh ∗ v)‖Ω+∪Ω−

. hs−1

√

∑

fΩ∈F
‖∇(ηh ∗ u)‖2

Ω+∪Ω−

√

∑

fΩ∈F
‖∇(ηh ∗ v)‖2

Ω+∪Ω−
. hs−1‖∇(ηh ∗ u)‖‖∇(ηh ∗ v)‖

as stated in the lemma. ¤
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hs

r

r

x
b

fx,r

f ⊗ r

f

f0+̇rν

Figure 2: Interelement face f with the support of ηh ∗ [[u]]f (shaded) and the sets fx,r, f ⊗ r and f0+̇rν+.

Comparison of the fourth terms. To relate the last term in (25) with the penalty term in the IP bilinear form, we

rewrite the locally integrable function ηh ∗ [[v]]D = ηh ∗ ∑

f∈F [[v]]f (see Lemma 1 and Lemma 2) in a more explicit

form.

Lemma 5. For each v ∈ Ph,k and f ∈ F the locally integrable function corresponding to ηh ∗ [[v]]f can be given as

ηh ∗ [[v]]D =
∑

f∈F
ηh ∗ [[v]]f (x) =

∑

f∈F

∫

f

ηh(x − y) [[v]]f (y) dy. (31)

This result can also serve as a good argument for why we applied the same notation for the convolution corresponding

to the jump of v and the jump function. Since the proof is a bit technical it is postponed to the Appendix.

To analyze the right hand side of (31), we introduce the following sets which are depicted in Figure 2.

f ⊗ r = {x ∈ 〈f〉 ∔ rν1 ∪ 〈f〉 ∔ rν2 : d(x, f) ≤ hs}

and

f0 ⊗ r = (f0 ∔ rν1) ∪ (f0 ∔ rν2),

where 〈f〉 denotes the affine subspace generated by f = Ω+ ∩ Ω−.

Observe that ηh∗[[u]]f (x) can be nonzero if x ∈ f⊗r for some r < hs and then we use the notation fx,r = B(x, hs)∩
f , which is a ball in 〈f〉 centered at the projection of x on f with the radius

√
h2s − r2 such that λ(fx,r) = B√

h2s−r2,d−1.

With these, we can rewrite (31) as

ηh ∗ [[u]]f (x) =
1

Bhs,d

∫

fx,r

[[u]] .

In this way, using Lemma 5 the integral in the last term of (25) on a face f can be rewritten as

(ηh ∗ [[u]]f , ηh ∗ [[v]]f ) =
1

[Bhs,d]2

∫ hs

−hs

∫

f⊗r

∫

fx,r

[[u]] (s) ds

∫

fx,r

[[v]] (s) ds dx dr. (32)
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We intend to relate this term with the following:

1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx dr. (33)

To work with smooth functions, both in (32) and (33) we have to restrict the integrals on f0⊗r and to f0, respectively.

Since λ(f) ∼ hd−1 and λ(f \ f0) ∼ hd−2hs, a scaling argument implies the following estimates:

I1(r) :=
∣

∣

∣

∣

∣

∫

f⊗r

∫

fx,r

[[u]] (s) ds

∫

fx,r

[[v]] (s) ds dx −
∫

f0

∫

B(x,
√

h2s−r2)

[[u]] (s) ds

∫

B(x,
√

h2s−r2)

[[v]] (s) ds dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

f⊗r

∫

fx,r

[[u]] (s) ds

∫

fx,r

[[v]] (s) ds dx −
∫

f0⊗r

∫

fx,r

[[u]] (s) ds

∫

fx,r

[[v]] (s) ds dx

∣

∣

∣

∣

∣

.
hd−2hs

hd−1

∫

f⊗r

∣

∣

∣

∣

∣

∫

fx,r

[[u]] (s) ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

fx,r

[[v]] (s) ds

∣

∣

∣

∣

∣

dx = hs−1

∫

f⊗r

∣

∣

∣

∣

∣

∫

fx,r

[[u]] (s) ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

fx,r

[[v]] (s) ds

∣

∣

∣

∣

∣

dx

(34)

and

I2(r) :=

∣

∣

∣

∣

∫

f0

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx −
∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx

∣

∣

∣

∣

.
hd−2hs

hd−1

∫

f

[B√
h2s−r2,d−1]

2| [[u]] [[v]] |(x) dx . hs−1(h2s − r2)d−1

∫

f

| [[u]] [[v]] |(x) dx.

(35)

Remark: The estimation of I1 is still valid if we use f00 ⊂ f with λ(f \ f00) ∼ hd−2hs.

For the forthcoming computations, we also give the magnitude of the following integrals:

∫ hs

−hs

(h2s − r2)d−1 dr = O(h2sd−s) (36)

∫

B(x,
√

h2s−r2)

|s − x|2 ds = O(
√

h2s − r2), (37)

which can be verified with a straightforward computation.

Lemma 6. For all u, v ∈ Ph,k and Ω+,Ω− ∈ Th we have the following inequality

∣

∣

∣

∣

∣

(ηh ∗ [[u]]f , ηh ∗ [[v]]f ) − 1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx dr

∣

∣

∣

∣

∣

≤ hs−1(1 + h3s−d−2)‖∇(ηh ∗ u)‖Ω+∪Ω−‖∇(ηh ∗ v)‖Ω+∪Ω− .

(38)
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Proof: Using (32) and a triangle inequality with (34) and (35) we have

∣

∣

∣

∣

∣

(ηh ∗ [[u]]f , ηh ∗ [[v]]f ) − 1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx dr

∣

∣

∣

∣

∣

≤ 1

[Bhs,d]2

∫ hs

−hs

I1(r) dr +
1

[Bhs,d]2

∫ hs

−hs

I2(r) dr

+
1

[Bhs,d]2

∫ hs

−hs

∣

∣

∣

∣

∣

∫

f0

∫

B(x,
√

h2s−r2)

[[u]] (s) ds

∫

B(x,
√

h2s−r2)

[[v]] (s) ds dx

−
∫

f0

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx

∣

∣

∣

∣

dr

≤ hs−1

[Bhs,d]2

∫ hs

−hs

∫

f⊗r

∣

∣

∣

∣

∣

∫

fx,r

[[u]] (s) ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

fx,r

[[v]] (s) ds

∣

∣

∣

∣

∣

dx dr

+
hs−1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2| [[u]] [[v]] |(x) dx dr

+
1

[Bhs,d]2

∫ hs

−hs

∣

∣

∣

∣

∣

∫

f0

∫

B(x,
√

h2s−r2)

[[u]] (s) ds

∫

B(x,
√

h2s−r2)

[[v]] (s) ds

−[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx
∣

∣

∣
dr.

(39)

The error terms here are estimated separately.

We first use (11) and (36) to obtain

hs−1

[Bhs,d]2

∫ hs

−hs

∫

f⊗r

∣

∣

∣

∣

∣

∫

fx,r

[[u]] (s) ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

fx,r

[[v]] (s) ds

∣

∣

∣

∣

∣

dx dr

. hs−2sd−1

∫ hs

−hs

λd−1(f ⊗ r)[B√
h2s−r2,d−1]

2 max
f

[[u]] max
f

[[v]] dr

. hs−2sd−1

∫ hs

−hs

hd−1
Ω (h2s − r2)d−1 · h1−d

Ω

∫

f

| [[u]] |h1−d
Ω

∫

f

| [[v]] | dr

≤ hs−2sd−d

∫ hs

−hs

(h2s − r2)d−1 dr

∫

f

| [[u]] |
∫

f

| [[v]] |

= hs−2sd−dh2sd−s

∫

f

| [[u]] |
∫

f

| [[v]] | = h−d

∫

f

| [[u]] |
∫

f

| [[v]] |.

(40)

We proceed similarly for the second term in (39):

hs−1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 |[[u]] (x) [[v]] (x)| dx dr

. hs−2sd−1h2sd−s

∫

f

| [[u]] [[v]] | . h−1h1−d
Ω

∫

f

| [[u]] |
∫

f

| [[v]] | ≤ h−d

∫

f

| [[u]] |
∫

f

| [[v]] |.
(41)
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We finally estimate the third term in (39). Using the expansion in (15) on f0 with the surface gradient ∇f [[u]] := ∇ [[u]]

and integrating both sides on the ball B(x,
√

h2s − r2) implies
∫

B(x,
√

h2s−r2)

[[u]] (s) ds = B√
h2s−r2,d−1 [[u]] (x) +

1

2

∫

B(x,
√

h2s−r2)

∇2 [[u]] (ξs)(s − x) · (s − x) ds. (42)

Taking the product of (42) for [[u]] and [[v]] and using (37) and (13) we obtain
∣

∣

∣

∣

∣

∫

f0

∫

B(x,
√

h2s−r2)

[[u]] (s) ds

∫

B(x,
√

h2s−r2)

[[v]] (s) ds dx − [B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx

∣

∣

∣

∣

∣

≤
∫

f0

∣

∣

∣

∣

∣

B√
h2s−r2,d−1 [[u]] (x)

1

2

∫

B(x,
√

h2s−r2)

∇2 [[v]] (ξs)|s − x|2 ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

B√
h2s−r2,d−1 [[v]] (x)

1

2

∫

B(x,
√

h2s−r2)

∇2 [[u]] (ξs)|s − x|2 ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

4

∫

B(x,
√

h2s−r2)

∇2 [[u]] (ξs)|s − x|2 ds

∫

B(x,
√

h2s−r2)

∇2 [[v]] (ξs)|s − x|2 ds

∣

∣

∣

∣

∣

dx

. max
f

|∇2 [[v]] |B√
h2s−r2,d−1

∫

f

| [[u]] |(x)

∫

B(x,
√

h2s−r2)

|s − x|2 ds dx

+ max
f

|∇2 [[u]] |B√
h2s−r2,d−1

∫

f

| [[v]] |(x)

∫

B(x,
√

h2s−r2)

|s − x|2 ds dx

+ max
f

|∇2 [[v]] |max
f

|∇2 [[v]] |
∫

f0

(h2s − r2)d+1 dx

. h−d−1

∫

f

| [[v]] |B√
h2s−r2,d−1

∫

f

| [[u]] |(h2s − r2)
d+1
2 + h−2d−2

∫

f

| [[v]] |
∫

f

| [[u]] |(h2s − r2)d+1

. h−d−1(h2s − r2)d

∫

f

| [[v]] |
∫

f

| [[u]] | + h−2d−2(h2s − r2)d+1

∫

f

| [[v]] |
∫

f

| [[u]] |

= (h−d−1(h2s − r2)d + h−2d−2(h2s − r2)d+1)

∫

f

| [[v]] |
∫

f

| [[u]] |.

In this way, we can estimate the last term in (39) as

1

[Bhs,d]2

∫ hs

−hs

∣

∣

∣

∣

∣

∫

f0

∫

B(x,
√

h2s−r2)

[[u]] (s) ds

∫

B(x,
√

h2s−r2)

[[v]] (s) ds − [B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx

∣

∣

∣

∣

∣

dr

.
1

[Bhs,d]2

∫ hs

−hs

(h−d−1(h2s − r2)d + h−2d−2(h2s − r2)d+1)

∫

f

| [[v]] |
∫

f

| [[u]] | dr

. h−2sd

∫

f

| [[v]] |
∫

f

| [[u]] |
∫ hs

−hs

h−d−1(h2s − r2)d + h−2d−2(h2s − r2)d+1) dr

. h−2sd

∫

f

| [[v]] |
∫

f

| [[u]] | · (h−d−1h2sd+s + h−2d−2h2sd+3s)

= (h−d−1+s + h−2d−2+3s)

∫

f

| [[v]] |
∫

f

| [[u]] |
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and therefore, using (39), (40), (41) and the estimate (22) in Proposition 3 we finally obtain

∣

∣

∣

∣

∣

(ηh ∗ [[u]]f , ηh ∗ [[v]]f ) − 1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx dr

∣

∣

∣

∣

∣

. (h−d + h−d−1+s + h−2d−2+3s)

∫

f

| [[v]] |
∫

f

| [[u]] |

. (h−d + h−d−1+s + h−2d−2+3s)hdhs−1‖∇(ηh ∗ u)‖Ω−∪Ω+
‖∇(ηh ∗ v)‖Ω−∪Ω+

. hs−1(1 + h−d+3s−2)‖∇(ηh ∗ u)‖Ω−∪Ω+
‖∇(ηh ∗ v)‖Ω−∪Ω+

as we have stated. ¤

Lemma 7. For each different faces fj and fk we have the estimate

∣

∣

∣
(ηh ∗ [[u]]fj

, ηh ∗ [[v]]fk
)
∣

∣

∣
. hs−1‖∇(ηh ∗ u)‖Ωj+∪Ωj−‖∇(ηh ∗ v)‖Ωk+∪Ωk−

. (43)

Proof: Note that the scalar product on the left hand side has to be computed on Sj,k := suppηh∗ [[u]]fj
∩suppηh∗ [[u]]fj

.

We first focus to the two-dimensional case. We use the transformation Sj,k : Sj,k → [−hs, hs]× [−hs, hs], which maps

a point in conv {fj , fk} with distances s1 and s2 measured from fj and fk, respectively to the point (s1, s2) and

acts similarly for the three remaining points with these distances. This transformation is depicted in Figure 3. A

straightforward computation shows that the determinant corresponding to this transformation is bounded as long as

the condition of non-degeneracy is satisfied. Using the principle of the estimation in (40) we obtain the following

estimate:
∣

∣

∣(ηh ∗ [[u]]fj
, ηh ∗ [[v]]fk

)
∣

∣

∣ =
1

[Bhs,d]2

∣

∣

∣

∣

∣

∫

Sj,k

∫

fj,x,r

[[u]] (s) ds

∫

fk,x,r

[[v]] (s) ds dx

∣

∣

∣

∣

∣

.
1

[Bhs,d]2

∫ hs

−hs

∫ hs

−hs

∣

∣

∣

∣

∣

∫

fj,x,r

[[u]] (s) ds

∫

fk,x,r

[[v]] (s) ds

∣

∣

∣

∣

∣

dx

.
1

[Bhs,d]2

∫ hs

−hs

max
fj

| [[u]] |B√
h2s−s2

1

ds1

∫ hs

−hs

max
fk

| [[v]] |B√
h2s−s2

2

ds2

.
1

[Bhs,d]2
max

fj

| [[u]] |max
fk

| [[v]] |
(

∫ hs

0

(h2s − s2
1)

d−1
2 ds1

)2

.
1

[Bhs,d]2
h2−2d

∫

fj

| [[u]] |
∫

fk

| [[v]] |h2sd . h2−2d

∫

fj

| [[u]] |
∫

fk

| [[v]] |

. h2−2dhshd−1
Ω ‖∇(ηh ∗ u)‖Ωj+∪Ωj−‖∇(ηh ∗ v)‖Ωk+∪Ωk−

. h1+s−d‖∇(ηh ∗ u)‖Ωj+∪Ωj−‖∇(ηh ∗ v)‖Ωk+∪Ωk−
.
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Sj,k

fj

fk

s1

s2hs

hs

hs

hs

s2

s1

Figure 3: The support Sj,k = supp ηh ∗ [[u]]fj
∩ supp ηh ∗ [[u]]fj

(left, shaded) and its transformation Sj,k into [−hs, hs] × [−hs, hs] in a

2-dimensional setup.

In the three-dimensional case, we also have to integrate along the common edge ej,k = f̄j ∩ fk, which similarly to the

above estimate gives

∣

∣

∣
(ηh ∗ [[u]]fj

, ηh ∗ [[v]]fk
)
∣

∣

∣
=

1

[Bhs,d]2

∣

∣

∣

∣

∣

∫

Sj,k

∫

fj,x,r

[[u]] (s) ds

∫

fk,x,r

[[v]] (s) ds dx

∣

∣

∣

∣

∣

.
1

[Bhs,d]2

∫

ej,k

∫ hs

−hs

∫ hs

−hs

∣

∣

∣

∣

∣

∫

fj,x,r

[[u]] (s) ds

∫

fk,x,r

[[v]] (s) ds

∣

∣

∣

∣

∣

dx

. h2−2dhshΩhd−1
Ω ‖∇(ηh ∗ u)‖Ωj+∪Ωj−‖∇(ηh ∗ v)‖Ωk+∪Ωk−

. h2+s−d‖∇(ηh ∗ u)‖Ωj+∪Ωj−‖∇(ηh ∗ v)‖Ωk+∪Ωk−
.

Summarized, in both cases d = 2 and d = 3 we finaly arrive at

∣

∣

∣(ηh ∗ [[u]]fj
, ηh ∗ [[v]]fk

)
∣

∣

∣ . hs−1‖∇(ηh ∗ u)‖Ωj+∪Ωj−‖∇(ηh ∗ v)‖Ωk+∪Ωk−

as stated in the lemma. ¤

Corollary 2. For all u, v ∈ Ph,k we have

∣

∣

∣

∣

∣

∣





∑

f∈F
ηh ∗ [[u]]f ,

∑

f∈F
ηh ∗ [[u]]f



 −
∑

f∈F

1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx dr

∣

∣

∣

∣

∣

∣

≤ hs−1(1 + h3s−d−2)‖∇(ηh ∗ u)‖‖∇(ηh ∗ v)‖.
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Proof: Using the triangle inequality with (7) and taking the sum of the inequalities in (38) and applying the discrete

Cauchy–Schwarz inequality |∑j∈J ajbj | ≤
√

∑

j∈J a2
j

√

∑

j∈J b2
j we obtain

∣

∣

∣

∣

∣

∣





∑

f∈F
ηh ∗ [[u]]f ,

∑

f∈F
ηh ∗ [[u]]f



 −
∑

f∈F

1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx dr

∣

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

∣

∑

j 6=k

(ηh ∗ [[u]]fj
, ηh ∗ [[u]]fk

)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

f∈F
(ηh ∗ [[u]]f , ηh ∗ [[v]]f ) −

∑

f∈F

1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx dr

∣

∣

∣

∣

∣

∣

≤ hs−1
∑

f∈F
‖∇(ηh ∗ u)‖Ω+∪Ω−‖∇(ηh ∗ v)‖Ω+∪Ω−

+
∑

f∈F

∣

∣

∣

∣

∣

(ηh ∗ [[u]]f , ηh ∗ [[v]]f ) − 1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx dr

∣

∣

∣

∣

∣

≤ hs−1(2 + h3s−d−2)
∑

f∈F
‖∇(ηh ∗ u)‖Ω+∪Ω−‖∇(ηh ∗ v)‖Ω+∪Ω−

. hs−1(1 + h3s−d−2)‖∇(ηh ∗ u)‖‖∇(ηh ∗ v)‖

as stated in the corollary. ¤

Remark: The difference in the corollary is a higher-order term compared to ‖∇(ηh ∗ u)‖‖∇(ηh ∗ v)‖ provided that

4s − d − 3 > 0.

Finally, we compute the approximation of the penalty term in (33), which appears in Lemma 6.

• For d = 2 we have

1

[Bhs,2]2

∫ hs

−hs

∫

f

[B√
h2s−r2,1]

2 [[u]] [[v]] (x) dx dr

=
1

h4sπ2

∫ hs

−hs

4(h2s − r2) dr

∫

f

[[u]] [[v]] (x) dx =
16

3π2
h−s

∫

f

[[u]] [[v]] .

• For d = 3 we have

1

[Bhs,3]2

∫ hs

−hs

∫

f

[B√
h2s−r2,2]

2 [[u]] [[v]] (x) dx dr

=
9

16h6sπ2

∫ hs

−hs

π2(h2s − r2)2 dr

∫

f

[[u]] [[v]] (x) dx =
3

5
h−s

∫

f

[[u]] [[v]] .
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Proof of Theorem 1: Using Lemma 3, Lemma 4 and Corollary 2 we obtain

|aη(u, v) − aIP,s(u, v)| ≤ |(ηh ∗ ∇hu, ηh ∗ ∇hv) − (∇hu,∇hv)|

+

∣

∣

∣

∣

∣

∣

∑

f∈F
(ηh ∗ ηh ∗ ∇hu, [[v]])f + (ηh ∗ ηh ∗ ∇hv, [[u]])f − ({{∇hu}} , [[v]])f − ({{∇hv}} , [[u]]f )

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

f∈F
(ηh ∗ [[u]] , ηh ∗ [[v]])f −

∑

f∈F

1

[Bhs,d]2

∫ hs

−hs

∫

f

[B√
h2s−r2,d−1]

2 [[u]] [[v]] (x) dx dr

∣

∣

∣

∣

∣

∣

. (hs−1 + hs−1(1 + h3s−d−2))‖∇(ηh ∗ u)‖‖∇(ηh ∗ v)‖

as stated in the theorem. ¤

Proof of Theorem 2: Since uh solves (6) and uIP,s ∈ Ph,k we have

(∇(ηh ∗ uh),∇(ηh ∗ (uh − uIP,s)) = (g0, ηh ∗ (uh − uIP,s))

such that using the equality

(ηh ∗ w1, w2) = (w1, ηh ∗ w2)

for compactly supported functions w1, w2 ∈ L1(R
d) and the definition of uIP,s in (9) we obtain

(∇(ηh ∗ (uh − uIP,s)),∇(ηh ∗ (uh − uIP,s)))

= (g0, ηh ∗ (uh − uIP,s)) − (∇(ηh ∗ uIP,s),∇(ηh ∗ (uh − uIP,s)))

= (g0, ηh ∗ (uh − uIP,s)) − aIP,s(uIP,s, uh − uIP,s) − (∇(ηh ∗ uIP,s),∇(ηh ∗ (uh − uIP,s)))

+ aIP,s(uIP,s, uh − uIP,s)

= (ηh ∗ g, uh − uIP,s) − (g, uh − uIP,s) − (∇(ηh ∗ (uIP,s − uh)),∇(ηh ∗ (uh − uIP,s)))

+ aIP,s(uIP,s − uh, uh − uIP,s) − (∇(ηh ∗ uh),∇(ηh ∗ (uh − uIP))) + aIP,s(uh, uh − uIP,s).

(44)

We note that the application of (27) to uh − uIP,s (instead of ∇hu) and the Friedrichs’s inequality imply

‖uh − uIP‖ . ‖ηh ∗ (uh − uIP)‖ . max
j

hd
Ωj
‖∇(ηh ∗ (uh − uIP))‖

and therefore, using Theorem 1 for the last two pair of terms in (44), we obtain that

‖∇(ηh ∗ (uh − uIP,s))‖2

. ‖ηh ∗ g − g‖‖uh − uIP,s‖ + hs−1(‖∇(ηh ∗ (uIP,s − uh))‖2 + ‖∇(ηh ∗ uh)‖‖∇(ηh ∗ (uh − uIP,s))‖)

. max
j

hd
Ωj
‖ηh ∗ g − g‖‖∇(ηh ∗ (uh − uIP,s))‖ + hs−1(1 + h3s−d−2)‖∇(ηh ∗ (uIP,s − uh))‖2

+ hs−1(1 + h3s−d−2)‖∇(ηh ∗ uh)‖‖∇(ηh ∗ (uh − uIP,s))‖
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such that we finally get

(1 − hs−1)‖∇(ηh ∗ (uh − uIP,s))‖ . max
j

hd
Ωj
‖ηh ∗ g − g‖ + hs−1(1 + h3s−d−2)‖∇(ηh ∗ uh)‖,

which implies the estimate in the theorem. ¤

To state quasi optimal convergence we observe that for each h we have ηh ∗ uh ∈ Ph,k,s ⊂ H1
0 (Ωh). This means

that the method in (6) is not conforming since the approximation in general is not in H1
0 (Ω). Also, the bilinear form

a+
η is non-consistent in the sense that the zero extension u0 of u is not necessarily the solution of (6) for any h. In

this way, we need to apply the Strang lemma [18], Section 2.3.2. For this we first note that for some constants C1 and

C2 we have for all 0 6= w1, w2 ∈ H1
0 (Ωh) that

|a+
η (w1, w2)| ≤ C1‖w1‖H1

0 (Ωh)‖w2‖H1
0 (Ωh)

and

C2 ≤
a+

η (w1, w2)

‖w1‖H1
0 (Ωh)‖w2‖H1

0 (Ωh)

.

Lemma 8. The numerical solution ηh ∗ uh of (6) approximates u in quasi optimal way in the sense that

‖∇(u − ηh ∗ uh)‖Ωh
. inf

vh∈Ph,k

‖∇(u − ηh ∗ vh)‖ + hs− 1
2 ‖∇u‖.

Proof: Since in this proof it is essential whether a scalar product is defined on Ω or on Ωh, we indicate it in the

subscript. A direct application of Lemma 2.25 in [18] gives that

‖∇(u − ηh ∗ uh)‖Ωh

≤ (1 +
C1

C2
) inf

vh∈Ph,k

‖∇(u − ηh ∗ vh)‖ + sup
ηh∗vh∈Ph,k,s

(∇u0,∇(ηh ∗ vh))Ωh
− (g0, ηh ∗ vh)Ωh

‖ηh ∗ vh‖1,Ωh

,
(45)

where the lower indices denote zero extensions. Using these, the second term in (45) can be rewritten as

(∇u0,∇(ηh ∗ vh))Ωh
− (g0, ηh ∗ vh)Ωh

= (∇u,∇(ηh ∗ vh))Ω − (g, ηh ∗ vh)Ω

= (−∆u, ηh ∗ vh)Ω + 〈ν · ∇u, ηh ∗ vh〉∂Ω − (g, ηh ∗ vh)Ω = 〈ν · ∇u, ηh ∗ vh〉∂Ω.

Therefore, we can estimate (45) to obtain

‖∇(u − ηh ∗ uh)‖Ω . inf
vh∈Ph,k

‖∇(u − ηh ∗ vh)‖ + sup
ηh∗vh∈Ph,k,s

〈ν · ∇u, ηh ∗ vh〉∂Ω

‖ηh ∗ vh‖1,Ωh

. (46)
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For the rest, it is sufficient to estimate the second term here. We apply a classical trace inequality in Ω and in Ωh \Ω

which implies

sup
ηh∗vh∈Ph,k,s

〈ν · ∇u, ηh ∗ vh〉∂Ω

‖ηh ∗ vh‖1,Ωh

≤ sup
ηh∗vh∈Ph,k,s

‖ν · ∇u‖− 1
2 ,∂Ω‖ηh ∗ vh‖ 1

2 ,∂Ω

‖ηh ∗ vh‖1,Ωh

. ‖u‖1,Ω sup
ηh∗vh∈Ph,k,s

‖ηh ∗ vh‖ 1
2 ,∂Ω

‖ηh ∗ vh‖1,Ωh

. ‖u‖1,Ω sup
ηh∗vh∈Ph,k,s

‖ηh ∗ vh‖1,Ωh\Ω
‖ηh ∗ vh‖1,Ωh

. ‖u‖1,Ω sup
ηh∗vh∈Ph,k,s

‖∇(ηh ∗ vh)‖Ωh\Ω
‖∇(ηh ∗ vh)‖Ωh

.

(47)

Observe that the numerator can be rewritten, using Lemma 1, as

‖∇(ηh ∗ vh)‖Ωh\Ω = ‖ηh ∗ ∇hvh + ηh ∗ [[vh]] ‖Ωh\Ω ≤ ‖ηh ∗ ∇hvh‖Ωh\Ω + ‖ηh ∗ [[vh]] ‖Ωh\Ω.

To analyze the term ‖ηh ∗ [[vh]] ‖Ωh\Ω we use the notations corresponding to Lemma 5 and Fig. 2. Furthermore, we

define

f00 = {x ∈ f : d(x, ∂Ω) > hs}

such that

supp ηh ∗ [[vh]]f |Ωh\Ω ⊂ supp ηh ∗ [[vh]]f \ {f0 ⊗ r : r ∈ [0, hs]},

see also Fig. 4. According to (34) and the remark after (35) the first term 1
B2

hs,d

∫ hs

−hs I1(r) dr in the second line of

(39) provides an upper bound for ‖ηh ∗ [[vh]]f ‖Ωh\Ω. Therefore, the estimate in (40) implies

‖ηh ∗ [[vh]]f ‖2
Ωh\Ω ≤ h−d

[∫

f

[[vh]]

]2

. h−dhdhs−1‖∇(ηh ∗ vh)‖2
Ω+∪Ω−

.

Taking their sum for all interelement faces gives then

‖ηh ∗ [[vh]] ‖Ωh\Ω . h
s−1
2 ‖∇(ηh ∗ vh)‖Ω. (48)

Note that the condition on non-degeneracy implies that for all subdomains Ωk ⊂ Ω̃j we have

λ(Ωk) ∼ hd
Ω (49)

and

λ(Ωj,h) ∼ hshd−1
Ω . (50)

Using then (10), (49), (50) and (27) we obtain that

‖ηh ∗ ∇hvh‖2
Ωj,h

≤ λ(Ωj,h)max
Ω̃j

|∇hvh|2 . λ(Ωj,h)h−d
Ω ‖∇hvh‖2

Ω̃j
. hs−1

Ω ‖∇hvh‖2
Ω̃j

. hs−1
Ω ‖ηh ∗ ∇vh‖2

Ω̃j
,
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hs

hs

f00

f

Ω+

Ω−

Ωh \ Ω

Ωh \ Ω

Figure 4: The support of ηh ∗ [[vh]]f (shaded) and the set {f00 ⊗ r : r ∈ [0, hs]} (with crosshatch) in a 2-dimensional setup.

which can be summed for all subdomain-patches to arrive at

‖ηh ∗ ∇hvh‖2
Ωh\Ω .

∑

Ωj∈Th

‖ηh ∗ ∇hvh‖2
Ωj,h

. hs−1
∑

Ωj∈Th

‖ηh ∗ ∇vh‖2
Ω̃j

. hs−1‖ηh ∗ ∇vh‖2. (51)

We can use (48) and (51) to complete the estimation in (47) as

sup
ηh∗vh∈Ph,k,s

〈ν · ∇u, ηh ∗ vh〉∂Ω

‖ηh ∗ vh‖1,Ωh

≤ ‖u‖1,Ω sup
ηh∗vh∈Ph,k,s

hs− 1
2 ‖ηh ∗ ∇v‖2

‖∇(ηh ∗ vh)‖Ωh

. ‖u‖1,Ωhs− 1
2 ,

which together with (46) gives the estimate in the lemma. ¤

Proof of Theorem 3: A triangle inequality and the estimates in Theorem 2 and Lemma 8 imply that

‖∇(u − ηh ∗ uIP,s)‖ . ‖∇(u − ηh ∗ uh)‖ + ‖∇(ηh ∗ uIP,s − ηh ∗ uh)‖

. inf
vh∈Ph,k

‖u − ηh ∗ vh‖1 + O(hs− 1
2 ) + max

j
hd

Ωj
‖ηh ∗ g − g0‖,

as stated in the theorem. ¤
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Appendix

Following the notations in [32] we introduce the smooth function Φ : Rd → R with

Φ(x) =











Ce
1

|x|2−1 if |x| < 1

0 if |x| ≥ 1

and

∫

B(0,1)

Φ = 1

and define Φδ : Rd → R by Φδ :=
(

1
δ

)d
Φ(x

δ
). Additionally, for x ∈ Rd we use the notation Φδ,x for the function given

simply by the

Φδ,x(x + y) := Φδ(y).

We use the following proposition; for the proof we refer to [32], pages 713–716.

Proposition 6. For an arbitrary bounded Lipschitz domain U and parameter p ∈ [1,∞) the following statements are

valid.

(i) For f ∈ C(U) we have lim
δ→0

Φδ ∗ f → f uniformly.

(ii) For any f ∈ Lp,loc(U) we have lim
δ→0

Φδ ∗ f → f in Lp,loc(U).

We also need the following statements.

Lemma 9. If for all x ∈ K1 ∪ K2 we have the limit

lim
δ→0

〈ηh ∗ [[u]]f ,Φδ,x〉 = f̃(x) (52)

then ηh ∗ [[u]]f can be identified with f̃ . Also, for the function ηh ∗f Φδ,x : F → R given by

f ∋ y →
∫

Rd

ηh(y − z)Φδ,x(z) dz

we have the convergence

lim
δ→0

ηh ∗f Φδ,x = ηh(−x + ·) in L1(f). (53)

Proof: We first note that

〈ηh ∗ [[u]]f ,Φδ,x〉 =

∫

Rd

ηh ∗ [[u]]f (x + y)Φδ,x(x + y) dy =

∫

Rd

ηh ∗ [[u]]f (x + y)Φδ(y) dy

=

∫

Rd

ηh ∗ [[u]]f (x + y)Φδ(−y) dy = Φδ ∗ ηh ∗ [[u]]f (x).
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In this way, according to property (ii) we can rewrite the condition in (52) as

lim
δ→0

Φδ ∗ ηh ∗ [[u]]f → f̃ in L1,loc(R
d). (54)

Using the property (i) above, the fact that ηh ∗ [[u]]f is locally integrable and the limit in (54), we have that for each

function g ∈ C∞
0 (Ω) the following equality is valid:

〈ηh ∗ [[u]]f , g〉 = (ηh ∗ [[u]]f , g) = lim
δ→0

(ηh ∗ [[u]]f ,Φδ ∗ g) = lim
δ→0

(Φδ ∗ ηh ∗ [[u]]f , g) = (f̃ , g),

which proves the first statement of the lemma.

To prove the second statement we rewrite ηh ∗f Φδ,x as

ηh ∗f Φδ,x(y) =

∫

Rd

ηh(y − z)Φδ(−x + z) dz =

∫

Rd

ηh(y − x − z)Φδ(z) dz.

Accordingly, we have the pointwise convergence

ηh ∗f Φδ,x(y) → ηh(y − x).

On the other hand,
∫

Rd

ηh(y − x − z)Φδ(z) ≤ max
Rd

|ηh|

so that the function maxRd |ηh| · 1 ∈ L1(F) delivers an upper bound for each function ηh ∗f Φδ,x. The statement is

therefore an obvious consequence of the Lebesgue dominant convergence theorem. ¤

Proof of Lemma 5: We compute ηh ∗ [[u]]f based on the first statement in Lemma 9. For this, we use Lemma 1

and (53), which implies for each f ∈ F the following:

lim
δ→0

〈ηh ∗ [[u]]f ,Φδ,x〉 = lim
δ→0

〈[[u]]f , ηh ∗ Φδ,x〉 = lim
δ→0

∫

f

[[u]]f (y)ηh ∗f Φδ,x(y) dy

=

∫

f

[[u]]f (y) lim
δ→0

ηh ∗f Φδ,x(y) dy =

∫

f

[[u]]f (y)ηh(y − x) dy,

the sum of which gives the statement in the lemma. ¤

Proof of Proposition 3 We first prove (21). According to Lemma 1 and the consecutive remark, we have obviously

that
∫

f0

| [[v]] | ≤ |v|BV, (55)

where the BV seminorm is taken on K+ ∪ K−. For the next step we use a scaling argument and introduce the function

space

P̄K := Ph,k|K+∪K−Á〈1〉,

28



which is the restriction of Ph,k to K+ ∪K− factorized with the constant functions. The BV seminorm on this function

space becomes a norm, and accordingly, we use the notation ‖ · ‖BV. We next prove that for all ǫ > 0 there is h0 > 0

such that for all h < h0 and v ∈ P̄K we have

‖ηh ∗ v − v‖BV < ǫ‖v‖BV. (56)

For this we consider a normed basis {v1, v2, . . . , vD} of v ∈ P̄K with respect to the BV norm and define the Euclidean

norm ‖ · ‖E generated by this basis such that

∣

∣

∣

∣

∣

∣

D
∑

j=1

ajvj

∣

∣

∣

∣

∣

∣

2

E

=

D
∑

j=1

a2
j . (57)

This norm should be equivalent with the BV norm, i.e. there is a constant c0 with

‖v‖E ≤ c0‖v‖BV ∀ v ∈ P̄K0
. (58)

Note that this constant should be not the same for all pair of neighboring subdomains, but it is a continuous function

of the position of the vertices. In particular, if we fix the edge f0 of length one, then f0 is fixed for d = 2 and for

d = 3 the remaining vertex should be in a compact set if the condition of non-degeneracy holds true. Therefore, the

constant c0 has a finite maximum. Similarly, if we fix now an arbitrary interelement face chosen above the remaining

node of K0− and K0+ can lie in a compact set. In this way, for each pair of neighboring subdomains with at least one

interelement edge of length one there is a uniform constant c0 in (58). Also, since we have a finite basis, and ηh is a

Dirac series, there is h0 such that for all h < h0 we have

‖ηh ∗ vj − vj‖BV ≤ ǫ

c0D
‖vj‖BV =

ǫ

c0

√
D

∀ j ∈ {1, 2, . . . ,D}. (59)

We obtain also here that (59) is valid for all pair of neighboring subdomains with at least one interelement edge of

length one with a uniform parameter h0. Then using (59), (57) and (58) we have that for any 0 < h < h0 and

v =
∑D

j=1 ajvj ∈ P̄K the following inequality is valid:

‖ηh ∗ v − v‖BV = ‖
D

∑

j=1

ηh ∗ vj − vj‖BV ≤
D

∑

j=1

‖ηh ∗ ajvj − ajvj‖BV

≤ ǫ

c0

√
D

D
∑

j=1

|aj | ≤
ǫ

c0

√

√

√

√

D
∑

j=1

|aj |2 =
ǫ

c0
‖v‖E ≤ ǫ‖v‖BV,

which proves the inequality in (56). Consequently, we also have

(1 − ǫ)‖v‖BV ≤ ‖v − ηh ∗ v‖BV + ‖ηh ∗ v‖BV − ǫ‖v‖BV ≤ ‖ηh ∗ v‖BV.
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In the last step we relate (55) and (56) and use that ηh ∗ v is differentiable to obtain

∫

f0

[[v]] ≤ ‖v‖BV ≤ 1

1 − ǫ
‖ηh ∗ v‖BV =

1

1 − ǫ

∫

K+∪K−

|∇(ηh ∗ v)|. (60)

To prove the statement of the lemma for two arbitrary neighboring subdomains Ω+ and Ω− we use (60) and the

equalities in (5) which give

∫

fΩ

[[v]] = hd−1
Ω

∫

f0

[[v0]] . hd−1
Ω

∫

K+∪K−

|∇(ηh0
∗ v0)|

= h−d
Ω hd−1

Ω

∫

Ω+∪Ω−

h1
Ω|∇(η

h0h
1
s
Ω

∗ v)| =

∫

Ω+∪Ω−

|∇(η
h0h

1
s
Ω

∗ v)|.
(61)

The inequality remains true if the lower index h0h
1
s

Ω is changed to a smaller one since this is equivalent with the choice

of a smaller index h0. Obviously the condition h1− 1
s < h0 implies h0h

1
s

Ω > h and using (61) with the previous remark

gives that
∫

fΩ

[[v]] ≤
∫

Ω+∪Ω−

|∇(ηh ∗ v)|

as stated in the inequality (21).

To prove (22), we again use the geometric setup shown in Figure 1. With this we obtain

‖ηh ∗ ∇u‖hΩ·K+∪hΩ·K−

(∫

hΩ·f0±̇hs

1

)
1
2

≥ ‖ηh ∗ ∇u‖hΩ·f0±̇hs

(∫

hΩ·f0±̇hs

1

)
1
2

= ‖∇(ηh ∗ u)‖hΩ·f0±̇hs

(∫

hΩ·f0±̇hs

1

)
1
2

≥
∫

hΩ·f0±̇hs

|∇(ηh ∗ u)|

&

∫

hΩ·f0

∣

∣

∣

∣

∣

∫ hs

−hs

∇(ηh ∗ u)(x,y) dx

∣

∣

∣

∣

∣

dy =

∫

hΩ·f0

|(ηh ∗ u)(hs,y) − (ηh ∗ u)(−hs,y)| dy

≥
∫

hΩ·f0

|u(hs,y) − u(−hs,y)| − |(ηh ∗ u)(hs,y) − u(hs,y)| − |u(−hs,y) − (ηh ∗ u)(−hs,y)| dy.

(62)

To continue with the estimate we note that u is differentiable twice in B((−hs,y), hs) and according to (42) we have

|(ηh ∗ u)(hs,y) − u(hs,y) dy| ≤ 1

Bhs,d

· 1

2
max

hΩ·K−

|∇2u|
∫

B(0,hs)

|s|2 ds

. max
hΩ·K−

|∇2u|h−sdhs(d+2) = max
hΩ·K−

|∇2u|h2s.

Therefore, using (62) we have

‖ηh ∗ ∇u‖hΩ·K+∪hΩ·K−

(∫

hΩ·f0±̇hs

1

)
1
2

&

∫

hΩ·f0

|[[u]]| − h2sλ(hΩ · f0) max
hΩ·K+∪hΩ·K−

|∇2u|,
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which can be rewritten with the aid of (12) and the condition s ≥ 3
2 as

∫

h·f0

|[[u]]| . h2shd−1
Ω max

h·K+∪h·K−

|∇2u| + h
s
2 h

d
2− 1

2

Ω ‖ηh ∗ ∇u‖hΩ·K+∪hΩ·K−

. h2shd−1
Ω h

− d
2−1

Ω ‖∇u‖hΩ·K+∪hΩ·K− + h
s
2 h

d
2− 1

2

Ω ‖ηh ∗ ∇u‖hΩ·K+∪hΩ·K−

. h
d
2

Ω(h
s
2 h

− 1
2

Ω + h2sh2
Ω)‖ηh ∗ ∇u‖h·K+∪h·K− . h

s
2 h

d
2− 1

2

Ω ‖ηh ∗ ∇u‖h·K+∪h·K−

A summation with respect to the faces gives then the desired inequality. ¤
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