Burai, Pál and Házy, Attila and Juhász, Tibor (2013) A composite functional equation from algebraic aspect. Aequationes Mathematicae, 86 (1-2). pp. 57-64. ISSN 0001-9054 (print version), 1420-8903 (electronic version)
This is the latest version of this item.
Text
BHJ_Aeq_13.pdf Download (157kB) |
Abstract
In this paper we discuss the composite functional equation f(x+2f(y))=f(x)+y+f(y) on an Abelian group. This equation originates from Problem 10854 of the American Mathematical Monthly. We give an algebraic description of the solutions on uniquely 3-divisible Abelian groups, and then we construct all solutions f of this equation on finite Abelian groups without elements of order 3 and on divisible Abelian groups without elements of order 3 including the additive group of real numbers.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis |
Depositing User: | Dr. Attila/A Házy |
Date Deposited: | 03 Oct 2015 16:06 |
Last Modified: | 03 Oct 2015 16:08 |
URI: | http://real.mtak.hu/id/eprint/29492 |
Available Versions of this Item
- A composite functional equation from algebraic aspect. (deposited 03 Oct 2015 16:06) [Currently Displayed]
Actions (login required)
Edit Item |