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A composite functional equation from algebraic aspect
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Abstract. In this paper we discuss the composite functional equation

f(x + 2f(y)) = f(x) + y + f(y)

on an Abelian group. This equation originates from Problem 10854 of the American Math-
ematical Monthly. We give an algebraic description of the solutions on uniquely 3-divisible
Abelian groups, and then we construct all solutions f of this equation on finite Abelian
groups without elements of order 3 and on divisible Abelian groups without elements of
order 3 including the additive group of real numbers.
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1. Introduction

Solving composite functional equations is a popular topic nowadays (see e.g.
[1–3,5,9,12–14,17]) in spite of the fact that they are harder to solve than a
non-composite one in general. In most cases some additional assumptions on
the unknown function are required to determine solutions or some “improving
regularity” type theorems are needed (se e.g. [7,11,15,16]).

Our main goal is to solve a composite type functional equation on Abelian
groups. The original problem was posed in 2001 in the American Mathematical
Monthly [4].

10854. Proposed by Wu Wei Chao, Guang Zhou Normal University, Guang
Zhou City, China. Find every function f : R → R that is continuous at 0 and
satisfies
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f(x + 2f(y)) = f(x) + y + f(y) (1)

for all real numbers x and y.
The solution was published in 2004 by Henderson [8]. He showed first that

every solution is additive, and so f(x) = cx, where c = 1 or c = − 1
2 .

In 2006, Boros and Daróczy [2] generalized the problem, and they described
the nowhere continuous solutions of (1). Actually, they considered R as a vector
space over Q, and proved that f is a solution of (1) if and only if f is additive,
and there exist a Hamel basis H of R and a mapping � : H → {−1

2 , 1} such
that f(h) = �(h)h for every h ∈ H. In this paper we investigate Eq. (1) for the
case when the unknown function f is defined on an arbitrary Abelian group.

Problem 1. Let G be an Abelian group under addition. Find every function
f : G → G satisfying

f(x + 2f(y)) = f(x) + y + f(y) (2)

for all x, y ∈ G.

We will show that every solution of (2) is an automorphism of the group G,
and describe the solutions for the case when G is uniquely 3-divisible; that is,
when for any a ∈ G there is exactly one x ∈ G with 3x = a. Since the additive
group of R, or more generally, the underlying group of any vector space over Q

is uniquely 3-divisible, the results mentioned above of Henderson, and Boros
and Daróczy are rediscovered. Furthermore, a finite Abelian group with no
elements of order 3 is also uniquely 3-divisible, and it has a basis (in group
theoretical sense), so we may expect an analogous result to that of Boros and
Daróczy for this case. At this stage we should clarify what we mean by a basis
of a group. The nonzero elements x1, . . . , xk of an Abelian group G are said to
be independent, if for any integers n1, . . . , nk the equality n1x1+· · ·+nkxk = 0
implies n1x1 = · · · = nkxk = 0; that is, ni = 0 if the order o(xi) of xi is infinite,
and ni ≡ 0 (mod o(xi)) if o(xi) is finite. A set of elements H = {xα}α∈Γ of
G, where Γ is an index set of arbitrary power, is called independent, if any
finite subset of H is independent. Evidently, a subset H = {xα}α∈Γ of G is
independent if and only if the subgroup generated by H is the direct sum of
the cyclic groups 〈xα〉. If H is an independent generating system of G, then we
say that H is a basis of G. At first glance, there may be an analogy between
this concept and the basis in a vector space, but there are some significant
differences. For example, the set {2} is a maximal independent set (there is
no independent set containing it properly) of Z, but it is not a basis of Z, so
a maximal independent set is not always a basis. This is why the method of
the proof used by Boros and Daróczy does not work for finite Abelian groups,
and we need another approach.
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2. Results

Throughout this paper G means an Abelian group written additively. For a
subset H of G, 〈H〉 denotes the subgroup of G generated by H.

Theorem 1. The function f : G → G is a solution of the functional equation
(2) if and only if f is an automorphism of the group G such that

2f(f(y)) = y + f(y) (3)

holds for all y ∈ G.

Proof. We claim first that f(0) = 0. Substituting x = y = 0 into (2) we have
that

f(2f(0)) = 2f(0). (4)

Furthermore, under x = 2f(0) and y = 0, (2) yields f(4f(0)) = 3f(0), and
setting y = 2f(0) and x = 0, we have that f(4f(0)) = 5f(0). These together
show that 3f(0) = 5f(0); that is, 2f(0) = 0 and the claim follows from (4).

We show now that f is an odd function. For x = 0 from (2) we get that
f(2f(y)) = y + f(y) for all y ∈ G. Hence

f(2f(x) + 2f(y)) = f(2f(x)) + y + f(y)
= x + f(x) + y + f(y). (5)

Let b = f(x) + f(−x) for some fixed x ∈ G. From the equation above it
follows that f(2b) = b, whence f(2f(2b)) = f(2b). But as we have already
seen, f(2f(2b)) = 2b + f(2b). Thus, 2b = 0. Using that f(2b) = b, we get that
b = 0, which means that f is an odd function.

For fixed x, y ∈ G let

c(x, y) = f(x + y) − f(x) − f(y).

Then by (2),

f(2c(x, y)) = f(−2(f(x) + f(y)) + 2f(x + y))
= f(−2(f(x) + f(y))) + x + y + f(x + y).

Using the oddness of the function f and (5),

f(−2(f(x) + f(y))) = −f(2f(x) + 2f(y))
= −x − f(x) − y − f(y),

and so f(2c(x, y)) = c(x, y). Similarly as before,

f(2f(2c(x, y))) = f(2c(x, y)),

and with x = 0 in (2),

f(2f(2c(x, y))) = 2c(x, y) + f(2c(x, y)).
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Hence 2c(x, y) = 0. In view of f(2c(x, y)) = c(x, y), we proved that c(x, y) = 0;
that is, f is an endomorphism.

Applying the additivity of f for (2), we have that

2f(f(y)) = y + f(y)

for all y ∈ G. Hence, assuming that f(y) = 0, it follows that y = 0, thus f is
injective. �

In what follows, we will use freely the easy fact that a group automorphism
preserves the order of the group elements.

Theorem 2. All elements of 2-power order of G are invariant under functions
f : G → G satisfying (2).

Proof. If y ∈ G has order 2, then the left-hand side of (3) is zero, thus 0 =
y + f(y), that is f(y) = y. Assume by induction for some n > 1 that each
element x ∈ G of order 2n−1 satisfies the equality f(x) = x. Let y ∈ G be
of order 2n. Then o(2f(f(y))) = 2n−1 and by (3), o(y + f(y)) = 2n−1. The
inductive hypothesis and the additivity of f force

y + f(y) = f(y + f(y)) = f(y) + f(f(y)),

whence y = f(f(y)) follows. If we substitute this into (3) the proof will be
complete. �

Let a be an element of G and n be an integer. We say that a is divisible
by n, if there exists x ∈ G such that nx = a. For example, if a is of finite
order, and n is relatively prime to o(a), then there exist integers s and t such
that 1 = ns + o(a)t. The element x = sa satisfies nx = nsa = a − o(a)ta = a,
therefore a is divisible by n. In general, the solution x of the equation nx = a
may not be unique, the set of all solutions is the coset x + G[n], where G[n]
denotes the set of all g ∈ G with ng = 0. Let p be a prime. We shall say that
G is p-divisible, if each of its elements is divisible by p. Furthermore, if G is
p-divisible, and G[p] = {0}, then G will be called uniquely p-divisible, and for
a ∈ G and integer m, the only one solution of the equation px = ma will be
denoted by the symbol m

p a. In this way, a uniquely p-divisible group can be
considered as a module over the ring Rp of rational numbers with denominator
a power of p. Finally, G is said to be (uniquely) divisible, if it is (uniquely)
divisible for every prime p.

For the integer m and automorphism f of the group G let

Gf
m = {x ∈ G : mf(x) = x}.

Evidently, Gf
m is a subgroup of G. Furthermore, if G is uniquely p-divisible,

then so is Gf
m. Indeed, for any b ∈ Gf

m there exists exactly one x0 ∈ G, such
that px0 = b. Then

p(mf(x0)) = mf(px0) = mf(b) = b.

By the uniqueness of x0 we have mf(x0) = x0, which proves that x0 ∈ Gf
m.
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Theorem 3. Let G be a uniquely 3-divisible group. Then the automorphism
f : G → G satisfies Eq. (3) for every x ∈ G if and only if G is a direct sum of
Gf

1 and Gf
−2.

Proof. Assume first that f fulfils (3). Let x0 be an arbitrary element of G, and
let u = x0 + 2f(x0) and v = x0 − f(x0). Then by (3),

f(u) = f(x0 + 2f(x0)) = f(x0) + 2f(f(x0)) = x0 + 2f(x0) = u,

and

−2f(v) = −2f(x0 − f(x0)) = −2f(x0) + 2f(f(x0)) = x0 − f(x0) = v,

thus u ∈ Gf
1 and v ∈ Gf

−2. Moreover, Gf
1 and Gf

−2 are uniquely 3-divisible, so
there exist 1

3u ∈ Gf
1 and 2

3v ∈ Gf
−2. Using that G is an Rp-module, we have

that x0 = 1
3u + 2

3v, and so G = 〈Gf
1 , Gf

−2〉. Furthermore, if x ∈ Gf
1 ∩ Gf

−2,
then 3f(x) = 0. Since G is uniquely 3-divisible and f is injective, we get that
x = 0. So, G = Gf

1 ⊕ Gf
−2, as desired.

Conversely, if G = Gf
1 ⊕ Gf

−2, then every x ∈ G can be (uniquely) written
as x = a+ b, where a ∈ Gf

1 and b ∈ Gf
−2. Since f is an automorphism, we have

that

2f(f(x)) = 2f(f(a)) + 2f(f(b)) = 2a − f(−2f(b)) = 2a − f(b)

and

x + f(x) = a + b + f(a) + f(b) = a − 2f(b) + a + f(b) = 2a − f(b).

Therefore, 2f(f(x)) = x+f(x) for every x ∈ G, and f is a solution of (3). �

Example 1. Let

G = 〈a | 3a = 0〉 ⊕ 〈b | 3b = 0〉 ∼= Z3 ⊕ Z3.

Then the automorphism f of G sending a to a + b and b to b fulfils (2), and
Gf

1 = Gf
−2 = 〈b〉. Therefore, Theorem 3 is no longer true for groups containing

elements of order 3.

Now, we can present various possibilities by describing all solutions of the
functional equation (2) for some classes of Abelian groups.

2.1. G is a finite Abelian group with no elements of order 3

In this case the order of every element of G is relatively prime to 3, therefore
G is uniquely 3-divisible. Let f be a solution of (2) and a ∈ Gf

−2. Then, by
Theorem 2, a is of odd order. Furthermore, both f(a) and a0 = o(a)−1

2 a are
solutions of the equation −2x = a, thus f(a) = a0 +u for some u ∈ G[2]. Since
f is an automorphism, and o(a0) = o(a), we have
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o(a) = o(f(a)) = o(a0 + u) = o(a0)o(u) = o(a)o(u),

which implies that u = 0; that is f(a) = o(a)−1
2 a.

According to the fundamental theorem of finite Abelian groups, both Gf
1

and Gf
−2 can be expressed as a direct sum of a finite number of cyclic groups

of prime power order, so we can state the following description.

Corollary 1. Let G be a finite Abelian group with no elements of order 3. The
function f : G → G fulfils Eq. (2) for every x ∈ G if and only if f is an
automorphism of G, and there exist a basis {h1, . . . , hr} of G and a subset
Γ ⊂ {1, . . . , r} such that f(hi) = hi for every i ∈ Γ, and f(hi) = o(hi)−1

2 hi for
i ∈ Γ \ {1, . . . , r}, provided that if o(hi) is even, then i ∈ Γ.

As Example 1 shows, Corollary 1 is not true for finite Abelian groups with
elements of order 3.

2.2. G = Z(p∞), the Prüfer p-group with p �= 3

The Prüfer p-group is the p-primary component of the factor group Q/Z, and
it may be generated by x1, x2, x3, . . . , xn, . . . so that x1 �= 0 and

px1 = 0, px2 = x1, px3 = x2, . . . , pxn+1 = xn, . . . .

This group Z(p∞) is divisible, moreover it is uniquely q-divisible by every
prime q �= p, and each of its proper subgroup is cyclic. However, Z(p∞) cannot
be the direct sum of two cyclic groups, so for p > 3 we get that either G = Gf

1

or G = Gf
−2, which shows that Eq. (2) has two solutions:

f(x) = x and f(x) = −1
2
x (x ∈ Z(p∞)).

In the case when p = 2, the only solution is the identity map.

2.3. G is a uniquely divisible group

It is easy to see that any uniquely divisible group admits the canonical struc-
ture of a vector space over Q, so Hamel’s statement that any vector space has
a basis can be interpreted as G being a direct sum of groups each isomorphic
to the additive group of rational numbers. In this way, Theorem 2 of [2] follows
from Theorem 3.

Corollary 2. Let G be a uniquely divisible group. The function f : G → G fulfils
Eq. (2) for every x ∈ G if and only if f is additive, and there exist a Q-basis H
of G and a mapping � : H → {− 1

2 , 1} such that f(h) = �(h)h for every h ∈ H.
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2.3.1. G is the additive group of Q. Q is uniquely divisible, and it cannot
be expressed as the internal direct sum of two proper subgroups. So, either
G = Gf

1 or G = Gf
−2, and the only two solutions of Eq. (2) are:

f(x) = x and f(x) = −1
2
x (x ∈ Q).

2.3.2. G is the additive group of R. R is also a uniquely divisible group, so
Eq. (2) has infinitely many solutions, and by Corollary 5.2.1. of [10], exactly
two of them are continuous at 0, namely when the mapping � is constant.
Thus, the solution for the original problem is obtained.

In view of the structure theorem on divisible groups (see Theorem 19.1. of
[6]), a divisible group is a direct sum of Prüfer groups and the additive group
of rationals, therefore Cases 2.2 and 2.3 together give all the solutions of (2)
for divisible groups with no elements of order 3.

However, for groups containing elements of order 3 the problem remains
open.
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[11] Járai, A.: Regularity properties of functional equations in several variables. Advances

in Mathematics, vol. 8. Springer, New York (2005)
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3300 Eger
Hungary
e-mail: juhaszti@ektf.hu

Received: November 29, 2011

Revised: April 4, 2013




