# Approximate Hermite-Hadamard inequality 

Attila Házy and Judit Makó ${ }^{1}$<br>Institute of Mathematics, University of Miskolc<br>3515 MISKOLC-EGYETEMVÁROS, Hungary<br>\{matha, matjudit\}@uni-miskolc.hu


#### Abstract

The main results of this paper offer sufficient conditions in order that an approximate lower Hermite-Hadamard type inequality imply an approximate Jensen convexity property. The key for the proof of the main result is a Korovkin type theorem.


## 1. Introduction

Throughout this paper $\mathbb{R}, \mathbb{R}_{+}, \mathbb{N}$ and $\mathbb{Z}$ denote the sets of real, nonnegative real, natural and integer numbers respectively. Let $X$ be a real linear space and $D \subset X$ be a convex set.

One can easily see that, for any constant $\varepsilon \geq 0$, the $\varepsilon$-convexity of $f$ (cf. [12]), i.e., the validity of

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)+\varepsilon \quad(x, y \in D, t \in[0,1])
$$

implies the following lower and upper $\varepsilon$-Hermite-Hadamard inequalities

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f(t x+(1-t) y) d t+\varepsilon \quad(x, y \in D) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} f(t x+(1-t) y) d t \leq \frac{f(x)+f(y)}{2}+\varepsilon \quad(x, y \in D) \tag{2}
\end{equation*}
$$

The above implication was discovered if $\varepsilon=0$ by Hadamard [5] in 1893. (See also [21], [14], and [25] for a historical account). For $\varepsilon=0$, the converse is also known to be true (cf. [24], [25]), i.e., if a function $f: D \rightarrow \mathbb{R}$ which is continuous over the segments of $D$ satisfies (1) or (2) with $\varepsilon=0$, then it is also convex. Concerning the reversed implication for the case $\varepsilon>0$, Nikodem, Riedel, and Sahoo in [26] have recently shown that the $\varepsilon$-Hermite-Hadamard inequalities (1) and (2) do not imply the $c \varepsilon$-convexity of $f$ (with any $c>0$ ). Thus, in order to obtain results that establish implications between the approximate Hermite-Hadamard inequalities and the approximate Jensen inequality, one has to consider these inequalities with nonconstant error terms.

[^0]In order to describe the old and new results about the connection of an approximate Jensen convexity inequality and the approximate Hermite-Hadamard inequality with variable error terms, we need to introduce the following terminology.

For a function $f: D \rightarrow \mathbb{R}$, we say that $f$ is hemi- $P$, if, for all $x, y \in D$, the mapping

$$
\begin{equation*}
t \mapsto f((1-t) x+t y) \quad(t \in[0,1]) \tag{3}
\end{equation*}
$$

has property $P$. For example $f$ is hemiintegrable, if for all $x, y \in D$ the mapping defined by (3) is integrable. Analogously, we say that a function $h:(D-D) \rightarrow \mathbb{R}$ is radially- $P$, if for all $u \in D-D$, the mapping

$$
t \mapsto h(t u) \quad(t \in[0,1])
$$

has property $P$ on $[0,1]$. Thus in this paper, we are searching connections beetwen the approximate upper Hermite-Hadamard inequality

$$
\begin{equation*}
\int_{[0,1]} f(t x+(1-t) y) d \mu(t) \leq \lambda f(x)+(1-\lambda) f(y)+\alpha_{H}(x-y) . \tag{4}
\end{equation*}
$$

the approximate Jensen inequality

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}+\alpha_{J}(x-y) \quad(x, y \in D) \tag{5}
\end{equation*}
$$

where $f: D \rightarrow \mathbb{R}, \alpha_{H}, \alpha_{J}: D^{*} \rightarrow \mathbb{R}$ are given even functions, $\lambda \in \mathbb{R}$ and $\mu$ is a Borel probability measure on $[0,1]$. In [17] the authors established the connections between an upper Hermite-Hadamard type inequality and a Jensen type inequality, which were stated in the following theorem.

Theorem 1. Let $\alpha_{H}:(D-D) \rightarrow \mathbb{R}$ be even and radially upper semicontinuous, $\rho:[0,1] \rightarrow \mathbb{R}_{+}$be integrable with $\int_{0}^{1} \rho=1$ and there exist $c \geq 0$ and $p>0$ such that

$$
\rho(t) \leq c(-\ln |1-2 t|)^{p-1} \quad(t \in] 0, \frac{1}{2}[\cup] \frac{1}{2}, 1[),
$$

and $\lambda \in[0,1]$. Then every $f: D \rightarrow \mathbb{R}$ lower hemicontinuous function satisfying the approximate upper Hermite-Hadamard inequality

$$
\int_{0}^{1} f(t x+(1-t) y) \rho(t) d t \leq \lambda f(x)+(1-\lambda) f(y)+\alpha_{H}(x-y) \quad(x, y \in D)
$$

fulfills the approximate Jensen inequality (15), provided that $\alpha_{J}:(D-D) \rightarrow \mathbb{R}$ is a radially lower semicontinuous solution of the functional inequality

$$
\alpha_{J}(u) \geq \int_{0}^{1} \alpha_{J}(|1-2 t| u) \rho(t) d t+\alpha_{H}(u) \quad(u \in(D-D))
$$

and $\alpha_{J}(0) \geq \alpha_{H}(0)$.
In [11], the authors established a connection between a lower Hermite-Hadamard type inequality and a Jensen type inequality by proving the following result.

Theorem 2. Let $\alpha_{H}: D^{*} \rightarrow \mathbb{R}_{+}$be a nonnegative even function. Assume that $f$ : $D \rightarrow \mathbb{R}$ is an upper hemicontinuous function satisfying the approximate lower HermiteHadamard inequality

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f(t x+(1-t) y) d t+\alpha_{H}(x-y) \quad(x, y \in D) \tag{6}
\end{equation*}
$$

Then $f$ satisfies the approximate Jensen inequality (15) where $\alpha_{J}: 2(D-D) \rightarrow \mathbb{R}_{+}$is a nonnegative radially lower semicontinuous, radially increasing solution of the functional inequality

$$
\begin{equation*}
\alpha_{J}(u) \geq \int_{0}^{1} \alpha_{J}(2 t u) d t+\alpha_{H}(u) \quad(u \in D-D) \tag{7}
\end{equation*}
$$

In [18] using a Korokvkin type theorem the authors prove the following theorem.
Theorem 3. Let $\mu$ be a Borel probability measure on $[0,1]$ with a non-singleton support. Let $\varepsilon: D^{2} \rightarrow \mathbb{R}$ such that $\varepsilon(x, x)=0$ for all $x \in D$ and $\varepsilon^{*}: D^{2} \times[0,1] \rightarrow \mathbb{R}$ be a function such that, for all $x, y \in D, \varepsilon^{*}(x, y, 0)=\varepsilon^{*}(x, y, 1)=0$ and

$$
\varepsilon^{*}(x, y, s) \geq \begin{cases}\int_{[0,1]} \varepsilon^{*}\left(x, y, \frac{s t}{\mu_{1}}\right) d \mu(t)+\varepsilon\left(x, \frac{\mu_{1}-s}{\mu_{1}} x+\frac{s}{\mu_{1}} y\right) & s \in\left[0, \mu_{1}\right], \\ \int_{[0,1]} \varepsilon^{*}\left(x, y, \frac{t+s-s t-\mu_{1}}{1-\mu_{1}}\right) d \mu(t)+\varepsilon\left(\frac{1-s}{1-\mu_{1}} x+\frac{s-\mu_{1}}{1-\mu_{1}} y, y\right) & s \in\left[\mu_{1}, 1\right] .\end{cases}
$$

Then every $f: D \rightarrow \mathbb{R}$ upper hemi-continuous solution of the following lower HermiteHadamard type functional inequality

$$
f\left(\mu_{1} x+\left(1-\mu_{1}\right) y\right) \leq \int_{[0,1]} f(t x+(1-t) y) d \mu(t)+\varepsilon(x, y) \quad(x, y \in D)
$$

also fulfills

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)+\varepsilon^{*}(x, y, t) \quad(x, y \in D, t \in[0,1]) .
$$

In this paper we examine the implication from an upper Hermite-Hadamard type inequality to a Jensen type inequality. In Theorem 5 below, we generalize Theorem 1 replacing the Lebesgue-Stieltjes integral by an integral with respect to an arbitrary Borel probability measure. This allows to view an approximate Jensen inequality as a particular approximate Hermite-Hadamard inequality.

Throughout this paper, the notation $\delta_{t}$ stands for the Dirac measure concentrated at the point $t \in[0,1]$.

First certain Korovkin type theorems ([13], [1]) will be proved, which will play an important role in the proof of the main result Theorem 5. The subsequent results are Korovkin type theorems. In the sequel, denote by $C([0,1])$ and $B([0,1])$ the space of continuous and bounded Borel measurable real valued functions defined on the interval $[0,1]$ equipped with the usual supremum norm. Denote by $p_{i}:[0,1] \rightarrow \mathbb{R}$ the following polinomyals:

$$
p_{i}(u):=u^{i}, \quad(i=0,1,2)
$$

Theorem 4. Let $\mathcal{T}_{n}: B([0,1]) \rightarrow B([0,1])(n \in \mathbb{N})$ be a sequence of positive linear operators such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\mathcal{T}_{n} p_{0}\right)=p_{0} . \tag{8}
\end{equation*}
$$

Suppose that there exists a function $g \in C([0,1])$ with $g\left(\frac{1}{2}\right)=0$ and $g>0$ on $[0,1] \backslash\left\{\frac{1}{2}\right\}$ such that $\lim _{n \rightarrow \infty}\left(\mathcal{T}_{n} g\right)=0 p_{0}$. Then, for all bounded lower semicontinuous function $h:[0,1] \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \mathcal{T}_{n} h \geq h\left(\frac{1}{2}\right) p_{0} \tag{9}
\end{equation*}
$$

Remark 1. It easily follows from the above theorem that, if $f$ is continuous, then (9) holds with equality and the "liminf" can be replaced by "lim".

In what follows, we construct a large family of positive linear operators on $B([a, b])$ which satisfies the assumptions of the previous results and will be instrumental in the investigation of approximate convexity. Let $\mu$ be a Borel probability measure on $[0,1]$ and define a sequence of linear operators $\mathcal{T}_{n}^{\mu}: B([a, b]) \rightarrow B([a, b])$ by the following formula:

$$
\begin{equation*}
\left(\mathcal{T}_{n}^{\mu} h\right)(u):=\int_{[0,1]} \ldots \int_{[0,1]} h\left(\frac{1}{2}+\frac{1}{2}\left(2 t_{1}-1\right) * \cdots *\left(2 t_{n}-1\right)\right) d \mu\left(t_{1}\right) \ldots d \mu\left(t_{n}\right) p_{0}(u) . \tag{10}
\end{equation*}
$$

Proposition 1. Assume that $\mu$ is a Borel probability measure on $[0,1]$ and define $\mathfrak{T}_{n}^{\mu}$ by (10). Then, for all $n \in \mathbb{N}, \mathcal{T}_{n}^{\mu}: B([a, b]) \rightarrow B([a, b])$ is a bounded positive linear operator with

$$
\begin{equation*}
\left\|\mathcal{T}_{n}^{\mu}\right\| \leq 1 \tag{11}
\end{equation*}
$$

In addition, $\mathfrak{T}_{n}^{\mu}$ has the following property: For all $h \in B([0,1])$,

$$
\begin{equation*}
\mathfrak{T}_{n}^{\mu} p_{0}=p_{0} \tag{12}
\end{equation*}
$$

Proposition 2. Assume that $\mu$ is a Borel probability measure on $[0,1]$, such that $\mu \notin\left\{\alpha \delta_{0}+(1-\alpha) \delta_{1} \mid \alpha \in[0,1]\right\}$ and for all $n \in \mathbb{N}$ define $\mathfrak{T}_{n}^{\mu}$ by (10). Then, for all lower semicontinuous $h \in B([0,1])$,

$$
\begin{equation*}
h\left(\frac{1}{2}\right) \leq \liminf _{n \rightarrow \infty}\left(\mathcal{T}_{n}^{\mu} h\right)(u) \quad(u \in[0,1]) . \tag{13}
\end{equation*}
$$

The next theorem gives a connection between an approximate upper Hermite-Hadamard type inequality and a Jensen type inequality. In what follows, let $X$ be a real linear space, $D \subseteq X$ be a convex set and denote by $D^{*}$ the set $D-D$.
Theorem 5. Assume that $\mu$ is a Borel probability measure on $[0,1]$, such that $\mu \notin$ $\left\{\alpha \delta_{0}+(1-\alpha) \delta_{1} \mid \alpha \in[0,1]\right\}$. Let $\lambda \in \mathbb{R}$ and $\alpha_{H}: D-D \rightarrow \mathbb{R}$ be an even error function and assume and $f: D \rightarrow \mathbb{R}$ is a lower hemicontinuous and, for all $x, y \in D$, satisfies the following Hermite-Hadamard type inequality:

$$
\begin{equation*}
\int_{[0,1]} f(t x+(1-t) y) d \mu(t) \leq \lambda f(x)+(1-\lambda) f(y)+\alpha_{H}(x-y) . \tag{14}
\end{equation*}
$$

Then $f$ is approximate Jensen-convex in the following sense:

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}+\alpha_{J}(x-y) \quad(x, y \in D) \tag{15}
\end{equation*}
$$

where $\alpha_{J}: D^{*} \rightarrow \mathbb{R}$ is a radially $\mu$-integrable solution the following functional inequality:

$$
\begin{equation*}
\alpha_{H}(u)+\int_{[0,1]} \alpha_{J}(|1-2 t| u) d \mu(t) \leq \alpha_{J}(u) \quad\left(u \in D^{*}\right) \tag{16}
\end{equation*}
$$

providing that $\alpha_{J}(0) \geq \alpha_{H}(0)$.
The proof of this theorem is based on a sequence of lemmata.
Lemma 1. Let $\alpha_{H}: D^{*} \rightarrow \mathbb{R}$ be even, $\mu$ is a Borel probability measure on $[0,1]$, such that $\mu \notin\left\{\alpha \delta_{0}+(1-\alpha) \delta_{1} \mid \alpha \in[0,1]\right\}$ and $\lambda \in \mathbb{R}$. Then every $f: D \rightarrow \mathbb{R}$ lower hemicontinuous function satisfying the approximate Hermite-Hadamard inequality (14), fulfills

$$
\begin{equation*}
\frac{1}{2} \int_{[0,1]}(f(t x+(1-t) y)+f((1-t) x+t y)) d \mu(t) \leq \frac{f(x)+f(y)}{2}+\alpha_{H}(x-y) \quad(x, y \in D) \tag{17}
\end{equation*}
$$

In what follows, we examine the Hermite-Hadamard inequality (17). For a sequense $\left(t_{n}\right), n \in \mathbb{N}$ define the following sequense by induction,

$$
\begin{equation*}
T_{1}:=t_{1} \quad \text { and } \quad T_{n+1}:=\left(1-t_{n+1}\right) T_{n}+t_{n+1}\left(1-T_{n}\right) \tag{18}
\end{equation*}
$$

Lemma 2. Let $T_{n}$ be definied by (18), then

$$
\begin{equation*}
T_{n}=\frac{1}{2}-\frac{1}{2}\left(2 t_{1}-1\right) * \cdots *\left(2 t_{n}-1\right) \tag{19}
\end{equation*}
$$

Lemma 3. Let $\alpha_{H}: D^{*} \rightarrow \mathbb{R}$ be a radially upper semicontinuous function. If $f: D \rightarrow$ $\mathbb{R}$ is lower hemicontinuous and fulfills the approximate Hermite-Hadamard inequality (17) then, for all $n \in \mathbb{N}$, the function $f$ also satisfies the Hermite-Hadamard inequality

$$
\begin{align*}
\frac{1}{2} \int_{[0,1]} \ldots \int_{[0,1]}\left(f\left(T_{n} x+\left(1-T_{n}\right) y\right)\right. & \left.+f\left(\left(1-T_{n}\right) x+T_{n} y\right)\right) d \mu\left(t_{1}\right) \ldots d \mu\left(t_{n}\right) \\
& \leq \frac{f(x)+f(y)}{2}+\alpha_{n}(x-y) \tag{20}
\end{align*}
$$

for all $x, y \in D$, whenever $n \in \mathbb{N}$, where the sequences $T_{n}$ and $\alpha_{n}: D^{*} \rightarrow \mathbb{R}$ are defined by (18) and

$$
\begin{equation*}
\alpha_{1}=\alpha_{H}, \quad \alpha_{n+1}(u)=\int_{[0,1]} \alpha_{n}(|1-2 t| u) d \mu(t)+\alpha_{H}(u) \quad\left(u \in D^{*}\right) \tag{21}
\end{equation*}
$$

respectively.
Lemma 4. Let $\alpha_{H}: D^{*} \rightarrow \mathbb{R}$ be even, $\mu$ is a Borel probability measure on $[0,1]$, such that $\mu \notin\left\{\alpha \delta_{0}+(1-\alpha) \delta_{1} \mid \alpha \in[0,1]\right\}$. If $f: D \rightarrow \mathbb{R}$ is a lower hemicontinuous function, then

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} \frac{1}{2} \int_{[0,1]} \ldots \int_{[0,1]}\left(f\left(T_{n} x+\left(1-T_{n}\right) y\right)\right.\left.+f\left(\left(1-T_{n}\right) x+T_{n} y\right)\right) d \mu\left(t_{1}\right) \ldots d \mu\left(t_{n}\right) \\
& \geq f\left(\frac{x+y}{2}\right) \tag{22}
\end{align*}
$$

Lemma 5. Let $\alpha_{H}: D^{*} \rightarrow \mathbb{R}$ be a radially upper semicontinuous function. Then, for all $n \in \mathbb{N}$, the function $\alpha_{n}: D^{*} \rightarrow \mathbb{R}$ defined by (21) is nondecreasing [nonincreasing], whenever $\alpha_{H}$ is nonnegative [nonpositive]. Furthermore, if $\alpha_{J}: D^{*} \rightarrow \mathbb{R}$ is a radially lower semicontinuous solution of the functional inequality (16) then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \alpha_{n}(u) \leq \alpha_{J}(u)-\alpha_{J}(0)+\alpha_{H}(0) \quad\left(u \in D^{*}\right) \tag{23}
\end{equation*}
$$

A simple consequence of Theorem 5 is the following corollary which is a generalized form of Theorem 1 ([17]).

Corollary 1. Let $\alpha_{H}: D^{*} \rightarrow \mathbb{R}$ be even and radially upper semicontinuous, $\rho:[0,1] \rightarrow$ $\mathbb{R}_{+}$be integrable with $\int_{0}^{1} \rho=1$ and $\lambda \in \mathbb{R}$. Then every $f: D \rightarrow \mathbb{R}$ lower hemicontinuous function satisfying the approximate upper Hermite-Hadamard inequality

$$
\int_{0}^{1} f(t x+(1-t) y) \rho(t) d t \leq \lambda f(x)+(1-\lambda) f(y)+\alpha_{H}(x-y) \quad(x, y \in D)
$$

fulfills the approximate Jensen inequality (15). Provided that $\alpha_{J}: D^{*} \rightarrow \mathbb{R}$ is a radially lower semicontinuous solution of the functional inequality

$$
\alpha_{J}(u) \geq \int_{0}^{1} \alpha_{J}(|1-2 t| u) \rho(t) d t+\alpha_{H}(u) \quad(u \in(D-D))
$$

and $\alpha_{J}(0) \geq \alpha_{H}(0)$.

## References

[1] F. Altomare and M. Campiti. Korovkin-type approximation theory and its applications de Gruyter Studies in Mathematics, Walter de Gruyter ©3 Co., Berlin, 17, MR 1292247 (95g:41001), 1994.
[2] M. Bessenyei. Hermite-Hadamard-type inequalities for generalized convex functions. J. Inequal. Pure Appl. Math., 9(3):Article 63, pp. 51 (electronic), 2008.
[3] M. Bessenyei and Zs. Páles. Hadamard-type inequalities for generalized convex functions. Math. Inequal. Appl., 6(3):379-392, 2003.
[4] M. Bessenyei and Zs. Páles. Characterizations of convexity via Hadamard's inequality. Math. Inequal. Appl., 9(1):53-62, 2006.
[5] J. Hadamard. Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann. J. Math. Pures Appl., 58:171-215, 1893.
[6] A. Házy. On approximate $t$-convexity. Math. Inequal. Appl., 8(3):389-402, 2005.
[7] A. Házy. On stability of $t$-convexity. In Proc. MicroCAD 2007 Int. Sci. Conf., volume G, pages 23-28, 2007.
[8] A. Házy. On the stability of $t$-convex functions. Aequationes Math., 74(3):210-218, 2007.
[9] A. Házy and Zs. Páles. On approximately midconvex functions. Bull. London Math. Soc., 36(3):339-350, 2004.
[10] A. Házy and Zs. Páles. On approximately t-convex functions. Publ. Math. Debrecen, 66:489-501, 2005.
[11] A. Házy and Zs. Páles. On a certain stability of the Hermite-Hadamard inequality. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465(2102):571-583, 2009.
[12] D. H. Hyers and S. M. Ulam. Approximately convex functions. Proc. Amer. Math. Soc., 3:821828, 1952.
[13] P. P. Korovkin On convergence of linear positive operators in the space of continuous functions Doklady Akad. Nauk SSSR (N.S.), 90:961-964, 1953.
[14] M. Kuczma. An Introduction to the Theory of Functional Equations and Inequalities, volume 489 of Prace Naukowe Uniwersytetu Ślagskiego w Katowicach. Państwowe Wydawnictwo Naukowe — Uniwersytet Ślạski. Warszawa-Kraków-Katowice, 1985.
[15] J. Makó and Zs. Páles. Approximate convexity of Takagi type functions. J. Math. Anal. Appl., 369:545-554, 2010.
[16] J. Makó and Zs. Páles. Approximate Hermite-Hadamard type inequalities for approximately convex functions. Math. Inequal. Appl., accepted, 2012.
[17] J. Makó and Zs. Páles. Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities. Cent. Eur. J. Math., 10:1017-1041, 2012.
[18] J. Makó and Zs. Páles. Korovkin type theorems and approximate Hermite-Hadamard inequalities. J. Approx. Theory, accepted 2012.
[19] J. Makó and Zs. Páles. On approximately convex Takagi type functions. Proc. Amer. Math. Soc., accepted, 2012.
[20] J. Makó and Zs. Páles. On $\varphi$-convexity. Publ. Math. Debrecen, 80:107-126, 2012.
[21] D. S. Mitrinović and I. B. Lacković. Hermite and convexity. Aequationes Math., 28:229-232, 1985.
[22] A. Mureńko, Ja. Tabor, and Jó. Tabor. Applications of de Rham Theorem in approximate midconvexity. J. Diff. Equat. Appl., 18:335-344, 2012 accepted.
[23] C. T. Ng and K. Nikodem. On approximately convex functions. Proc. Amer. Math. Soc., 118(1):103-108, 1993.
[24] C. P. Niculescu and L.-E. Persson. Old and new on the Hermite-Hadamard inequality. Real Anal. Exchange, 29(2):663-685, 2003/04.
[25] C. P. Niculescu and L.-E. Persson. Convex Functions and Their Applications. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23. Springer-Verlag, New York, 2006. A contemporary approach.
[26] K. Nikodem, T. Riedel, and P. K. Sahoo. The stability problem of the Hermite-Hadamard inequality. Math. Inequal. Appl., 10(2):359-363, 2007.
[27] Ja. Tabor and Jó. Tabor. Generalized approximate midconvexity. Control Cybernet., 38(3):655669, 2009.
[28] Ja. Tabor and Jó. Tabor. Takagi functions and approximate midconvexity. J. Math. Anal. Appl., 356(2):729-737, 2009.
[29] Ja. Tabor, Jó. Tabor, and M. Żołdak. Approximately convex functions on topological vector spaces. Publ. Math. Debrecen, 77:115-123, 2010.
[30] Ja. Tabor, Jó. Tabor, and M. Żołdak. Optimality estimations for approximately midconvex functions. Aequationes Math., 80:227-237, 2010.
[31] T. Takagi. A simple example of the continuous function without derivative. J. Phys. Math. Soc. Japan, 1:176-177, 1903.
[32] B. L. van der Waerden. Ein einfaches Beispiel einer nichtdifferenzierbaren stetigen Funktion. Math. Z., 32:474-475, 1930.


[^0]:    ${ }^{1}$ This research has been supported:

    1. by the Hungarian Scientific Research Fund (OTKA) Grant NK-81402;
    2. by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

    2000 Mathematics Subject Classification: 39B22, 39B12
    keywords: convexity, approximate convexity, lower and upper Hermite-Hadamard inequalities

