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On strongly convex functions

JUDIT MAKÓ AND ATTILA HÁZY

ABSTRACT. The main results of this paper give a connection between strong Jensen convexity and strong
convexity type inequalities. We are also looking for the optimal Takagi type function of strong convexity. Finally
a connection will be proved between the Jensen error term and an useful error function.

1. INTRODUCTION

Throughout this paper R, R+, N and Z denote the sets of real, nonnegative real, natural
and integer numbers respectively.

Let X be a normed space and D ⊆ X be a nonempty convex subset of X . Denote by
D∗ the set {‖x− y‖, x, y ∈ D}. It can be seen that D∗ is an interval. Let α : D∗ → R+ be a
nonnegative error function. We say that a function f : D → R is strongly α-Jensen convex,
if, for all x, y ∈ D,

(1.1) f
(x+ y

2

)
≤ f(x) + f(y)

2
− α(‖x− y‖).

Observe that if α ≡ 0, we can get the classical definition of Jensen-convexity. When α(u) =
cu2, we can get a kind of notion of strong convexity introduced by Polyak in [16] and
examined by Azócar, Giménez, Nikodem and Sánchez (in [1]), Merentes and Nikodem,
(in [12]) and Nikodem and Páles [14]. If α(u) = εup, then f is called strongly (ε, p)-Jensen
convex function. In Section 2, we are looking connection between strong α-convexity and
strong convexity type inequalities. Then, we are looking for the optimal error function.
In Section 3, we will establish the connections between strong α-convexity and strong
α-Jensen convexity, moreover the connections between strong convexity and Hermite–
Hadamard type inequalities will be shown. These results will be the generalization of
previous results of [1] and [12]. We say that f : D → R is locally upper bounded, if for all
x, y ∈ D, there exists a Kx,y such that f ≤ Kx,y on [x, y], where [x, y] = {tx+ (1− t)y | t ∈
[0, 1]}.

In the sequel, we need the famous Bernstein–Doetsch theorem.

Theorem 1.1. Let f : D → R be locally upper bounded and Jensen-convex, then f is convex and
continuous.
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Recently, some results concerning approximate convexity were proved. It is a natural
questions, what happens when we consider a nonpositive error function, namely a strong
convexity inequality.

In what follows we recall some Bernstein-Doetsch type theorem for approximately con-
vex functions. A function f : D → R is said to be approximately α-Jensen convex on D, if,
for all x, y ∈ D,

(1.2) f
(x+ y

2

)
≤ f(x) + f(y)

2
+ α(‖x− y‖).

Let introduce the Takagi type functions Tα : R×D∗ → R+ and Sα : R×D∗ → R+ by

(1.3) Tα(t, u) :=

∞∑
n=0

1

2n
α
(
dZ(2nt)u

) (
(t, u) ∈ R×D∗

)
and

(1.4) Sα(t, u) :=

∞∑
n=0

α
( u

2n

)
dZ(2nt)

(
(t, u) ∈ R×D∗

)
,

where dZ(t) := 2 dist(t,Z). Note that the first series converges uniformly if α is bounded,
on the other hand, for the uniform convergence of the second series, it is sufficient if∑∞
n=n0

α
(
2−n

)
< ∞ for some n0 ∈ N. The importance of the function Tα introduced

above is enlightened by the following result ([9], [18]) which can be considered as a gen-
eralization of the celebrated Bernstein-Doetsch theorem [2].

Theorem 1.2. Let f : D → R be locally upper bounded on D and let α : D∗ → R+. Then f is
α-Jensen convex on D if and only if

(1.5) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + Tα(t, ‖x− y‖)

for all x, y ∈ D and t ∈ [0, 1].

The other Takagi type function Sα was introduced by Jacek Tabor and Józef Tabor ([18]).
Its role and importance in the theory of approximate convexity is shown by the next the-
orem.

Theorem 1.3. Let f : D → R be upper semicontinuous on D and let α : D∗ → R+ be nonde-
creasing such that

∑∞
n=n0

α(2−n) <∞ for some n0 ∈ N. Then f is α-Jensen convex on D if and
only if

(1.6) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + Sα(t, ‖x− y‖)

for all x, y ∈ D and t ∈ [0, 1].

Let ε, q ≥ 0 be arbitrary constants. When α(u) := εuq, (u ∈ D∗), the two corollaries
below (see [6] and [18]) are immediately consequences of the previous theorems. For
q ≥ 0, define the Takagi type functions Sq and Tq by

(1.7) Tq(t) :=

∞∑
n=0

(
dZ(2nt)

)q
2n

, Sq(t) :=

∞∑
n=0

dZ(2nt)

2nq
(t ∈ R).

They generalize the classical Takagi function

T (t) :=

∞∑
n=0

dist(2nt,Z)

2n
(t ∈ R)
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in two ways, because T1 = S1 = 2T holds obviously. This function was introduced by
Takagi in [19] and it is a well-known example of a continuous but nowhere differentiable
real function. It is less trivial, but it can be proved that T2(t) = S2(t) = 4t(1 − t) for
t ∈ [0, 1].

Corollary 1.1. Let f : D → R be locally upper bounded on D and ε, q ≥ 0. Then f is (ε, q)-
Jensen convex on D, if and only if

(1.8) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εTq(t)‖x− y‖q

for all x, y ∈ D and t ∈ [0, 1].

Corollary 1.2. Let f : D → R be upper semicontinuous on D and ε, q ≥ 0. Then f is (ε, q)-
Jensen convex on D if and only if

(1.9) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εSq(t)‖x− y‖q

for all x, y ∈ D and t ∈ [0, 1].

In [3], Boros proved that if q = 1 and t ∈ [0, 1] is fixed, then S1(t) = T1(t) = 2T (t) is the
smallest possible. In [17] Tabor and Tabor showed that if 1 ≤ q ≤ 2 and t ∈ [0, 1] is fixed,
then Sq(t) is the smallest possible value so that (1.9) be valid for all (ε, q)-Jensen convex
functions f on D. Later in [8] and [11], the authors examined whether the error terms
Tα(t, ‖x−y‖), Sα(t, ‖x−y‖) in (1.5) in (1.6) and Tq(t) in (1.8) are the smallest possible ones.
In other words, for all fixed x, y ∈ D, the exact upper bound of the convexity-difference
of α-Jensen convex functions defined by

(1.10) Cα(x, y, t) := sup
f∈JCα(D)

{f(tx+ (1− t)y)− tf(x)− (1− t)f(y)},

where
JCα(D) := {f : D → R |f is α-Jensen convex on D}

was examined. The statement of Theorem 1.2, Theorem 1.3, Corollary 1.1, and Corol-
lary 1.2 can be stated as

(1.11) Cα(x, y, t) ≤ τ(t, ‖x− y‖),

where τ : R×D∗ → R+ is given by

τ := Tα, τ := Sα, τ(t, u) := εTq(t)u
q, and τ(t, u) := εSq(t)u

q,

respectively. To obtain also a lower bound for Cα(x, y, t), (and thus to prove the sharpness
of the inequality (1.11)), the following important observation was done by Páles in [15].

Theorem 1.4. Let α : D∗ → R be continuous. Let τ : R × D∗ → R be continuous in its first
variable, with τ(0, u) = τ(1, u) = 0 for all u ∈ D∗, which is Jensen convex in the following sense,
for all u ∈ D∗ and s, t ∈ [0, 1],

τ
( t+ s

2
, u
)
≤ τ(t, u) + τ(s, u)

2
+ α(|t− s|u).

Then,
Cα(x, y, t) ≥ τ(t, ‖x− y‖).
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2. FROM STRONG α-JENSEN CONVEXITY TO STRONG CONVEXITY

With the help of the following theorem, we can "strengthen" our error function α. (See
in [7].)

Theorem 2.5. Let f : D → R be a strongly α-Jensen convex function. Then f is strongly
α̃-Jensen convex on D, where

(2.12) α̃(u) := sup
{
n2α

(
u
n

)
| n ∈ N

}
(u ∈ D∗).

This means that, we can assume that α(2u) ≥ 4α(u) for all u ∈ D∗. In the case of strong
(ε, q)-convexity, this means that q ≥ 2. Similarly as in Theorem 1.2 and Theorem 1.3, it can
be proved two Bernstein–Doetsch type results for locally upper bounded strongly Jensen
convex functions. Thus, these theorems give us connections between strong α-Jensen
convexity and convexity type inequalities. See also in [4].

Theorem 2.6. Let f : D → R be locally upper bounded on D and let α : D∗ → R+. Then f is
strongly α-Jensen convex on D if and only if

(2.13) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− Tα(t, ‖x− y‖)

for all x, y ∈ D and t ∈ [0, 1].

Theorem 2.7. Let f : D → R be upper semicontinuous on D and let α : D∗ → R+ be∑∞
n=n0

α(2−n) <∞ for some n0 ∈ N. Then f is α-Jensen convex on D if and only if

(2.14) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− Sα(t, ‖x− y‖)

for all x, y ∈ D and t ∈ [0, 1].

We can also look for the optimal Takagi type function. In other words, for all fixed
x, y ∈ D, we want to obtain the exact upper bound of the convexity-difference of strongly
α-Jensen convex functions defined by

(2.15) SCα(x, y, t) := sup
f∈SJCα(D)

{f(tx+ (1− t)y)− tf(x)− (1− t)f(y)},

where

SJCα(D) := {f : D → R |f is locally upper bounded and strongly α-Jensen convex on D}.

By Theorem 1.4, it is enough to prove the Jensen-convexity of Sα(·, u) or Tα(·, u). We
shall prove that the Takagi type function Sα(·, u) will be the optimal choice. To show this
suspicion let introduce the following Takagi type function Sϕ : [0, 1]→ R defined by

(2.16) Sϕ(x) =

∞∑
n=0

ϕ
(

1
2n

)
dZ(2nx),

where P := {1, 12 ,
1
4 , . . . ,

1
2n , . . . , } and ϕ : P → R+ is a nonnegative function. In fact,

the proof of these results are very similar as in [11], so we ignore it. The main results of
this section state that, under certain assumptions on the function ϕ : P → R, (−Sϕ) is
well-defined and strongly Jensen convex in the following sense: For all x, y ∈ [0, 1],

(2.17) − Sϕ
(x+ y

2

)
≤ −Sϕ(x)− Sϕ(y)

2
− ϕ ◦ dZ

(x− y
2

)
.

First we describe the situation when the definition of Sϕ is correct.
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Lemma 2.3. Let ϕ : P → R+ be a nonnegative function. Then Sϕ is well-defined, i.e., the series
on the right hand side of (2.16) is convergent everywhere if and only if

(2.18)
∞∑
n=0

ϕ
(

1
2n

)
<∞.

In the sequel, the class of nonnegative functions ϕ : P → R+ satisfying the condition
(2.18) will be denoted by H:

H :=

{
ϕ : P → R+ |

∞∑
n=0

ϕ
(

1
2n

)
<∞

}
.

The next theorem, which was discovered by Jacek Tabor and Józef Tabor, has an impor-
tant role in the proof of the main theorem of this section.

Theorem 2.8. For every x, y ∈ R

S2

(x+ y

2

)
≤ S2(x) + S2(y)

2
+ d2Z

(x− y
2

)
.

The following simple observation is a direct consequence of the previous theorem.

Corollary 2.4. For every x, y ∈ [0, 1]

− S2

(x+ y

2

)
=
−S2(x)− S2(y)

2
− d2Z

(x− y
2

)
.

In the next result we give a representation of Sϕ(x) as an infinite linear combination of
the values S2(2nx), n = 1, 2, . . . .

Theorem 2.9. Let ϕ ∈ H. Then, for every x ∈ R,

(2.19) Sϕ(x) = ϕ(1)S2(x) +

∞∑
n=1

(
ϕ
(

1
2n

)
− 1

4ϕ
(

1
2n−1

))
S2(2nx).

An immediate consequence of the previous two theorems is the next result which states
the strong convexity of (−Sϕ).

Theorem 2.10. Let ϕ ∈ H such that, for all u ∈ 1
2P , ϕ(2u) ≥ 4ϕ(u). Then, for all x, y ∈ [0, 1],

(2.20) − Sϕ
(x+ y

2

)
≤ −Sϕ(x)− Sϕ(y)

2
− Φ2

(x− y
2

)
,

where Φ2 : R→ R is defined by

(2.21) Φ2(u) :=

∞∑
n=0

ϕ
(

1
2n

)(
d2Z(2nu)− 1

4
d2Z(2n+1u)

)
.

In the next proposition we describe a decomposition property of the function Φ2.

Proposition 2.5. For ϕ ∈ H, for all u ∈]0, 12 ],

(2.22) Φ2(u) = Φ2

( 1

2[log2
1
u ]
− u
)

+ ϕ
( 1

2[log2
1
u ]−1

)(
1− 2 · 2[log2

1
u ]u
)
.

The next theorem has an important role in the proof of our subsequent main results.

Theorem 2.11. Let ϕ : [0, 1]→ R+. Assume that ϕ(0) = 0 and the mapping x 7→ ϕ(x)
x is convex

on ]0, 1], then, for all u ∈ [0, 1],

(2.23) − Φ2(u) ≤ −ϕ ◦ dZ(u).
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The main result of this section is stated in the following theorem. The proof of is this
theorem is based on the previous propositions and lemmas.

Theorem 2.12. Let ϕ : [0, 1]→ R+. Assume that ϕ(0) = 0 and the mapping x 7→ ϕ(x)
x is convex

on ]0, 1]. Then (−Sϕ) is strongly Jensen convex in the sense of (2.17).

We shall prove that the error terms −Sα(t, ‖x − y‖) in (1.6) under certain assumptions
on the error function α is the smallest possible one. In other words, the next theorem
will provide exact upper bound for the convexity-difference of strongly α-Jensen convex
functions defined by (2.15).

Theorem 2.13. Let α : D∗ → R be an error function such that α(0) = 0 and the map u 7→ α(u)
u

is convex on D∗ \ {0}. Then, for all x, y ∈ D and t ∈ [0, 1],

(2.24) SCα(x, y, t) = −Sα(t, ‖x− y‖).

Taking an error function α which is a combination of power functions of exponents
from [2,∞[, we obtain the following result.

Theorem 2.14. Let ν be a nonnegative bounded Borel measure on [2,∞[. Define the error function
αν : D∗ → R+ by

αν(u) :=

∫
[2,∞[

uqdν(q) (u ∈ D∗).

Then, for all x, y ∈ D and t ∈ [0, 1],

SCαν (x, y, t) = −
∫

[2,∞[

Sq(t)‖x− y‖qdν(q),

where Sq : R→ R is given by (1.7).

Corollary 2.6. Let q ∈ [2,∞[ and ε ≥ 0. Define the error function α : D∗ → R+ by α(u) :=
εuq. Then, for all x, y ∈ D and t ∈ [0, 1],

SCα(x, y, t) = −εSq(t)‖x− y‖q.

The next figures demonstrate the strong convexity of (−Sq), when q = 2 and q = 4.

3. ON A STRONG CONVEXITY TYPE INEQUALITY

Given a nonnegative function α : D∗ → R+, we say that a map f : D → R is strongly
α-convex, if for all x, y ∈ D and t ∈ [0, 1],

(3.25) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− tα
(
(1− t)‖x− y‖

)
− (1− t)α

(
t‖y − x‖

)
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holds. In [9], a similar approximate convexity type inequality was examined. If (3.25)
holds with a t ∈]0, 1[, we say that f is strongly (t, α)-convex on D. If (3.25) holds with
t = 1

2 , we can get the strong α( ·2 )-Jensen convexity of the function f . By the nonnegativity
of α, we have that strongly α-Jensen convex and strongly α-convex functions are always
convex in the same sense, respectively.

In [7], strong α-Jensen convexity was examined and the following result was estab-
lished:

Theorem 3.15. For any function f : D → R, the following conditions are equivalent:
(i) f is strongly α-convex.

(ii) f is directionally differentiable at every point of D, and for all x0 ∈ D, the map h 7→
f ′(x0, h) is sublinear on X , furthermore for all x0, x ∈ D,

(3.26) f(x) ≥ f(x0) + f ′(x0, x− x0) + α(‖x− x0‖).

(iii) For all x0 ∈ D, there exits an element A ∈ X ′ such that

(3.27) f(x) ≥ f(x0) +A(x− x0) + α(‖x− x0‖) for all x ∈ D.

Thus, it can be important to look for connections between the strong (λ, α)-convexity
and strong α-convexity.

Theorem 3.16. If f : D → R is locally upper bounded and strongly (λ, α)-convex, with λ ∈]0, 1[
then f is strongly 1

λα-convex on D.

Proof. Since f is strongly (λ, α)-convex and locally upper bounded, we immediately have
that f is convex. Let x, y ∈ D be arbitrary. First using that the directional derivative of
f ′(y, ·) is positive homogeneuos, then appying Theorem 3.15, with α = 0, finally using
the strong (λ, α)-convexity of f , we can get that:

f ′(y, x− y) =
1

λ
f ′
(
y, λ(x− y)

)
≤ 1

λ

(
f
(
y + λ(x− y)

)
− f(y)

)
≤ 1

λ

(
λf(x) + (1− λ)f(y)− f(y)− α(‖x− y‖)

)
= f(x)− f(y)− 1

λ
α(‖x− y‖),

which is (by Theorem 3.15) equivalent to the strong 1
λα-convexity of f . �

It is not difficult to prove Hermite–Hadamard type inequalities for strongly (λ, α)-
convex function. If f : D → R is strongly (λ, α)-convex, we can get that f is strongly
1
λα-convex. Applying Theorem 2.5 from [10], we get the following theorem.

Theorem 3.17. Let µ be a probability Borel measure on [0, 1] and α : D∗ → R be bounded and
Borel measurable function. If f : D → R is locally upper bounded and strongly (λ, α)-convex,
then, for all x, y ∈ D, f satisfies the following lower Hermite–Hadamard type inequality

(3.28)

f(µ1x+ (1− µ1)y) ≤
∫
[0,1]

f(tx+ (1− t)y)dµ(t)

− 1

λ

∫
[0,1]

(
tα((1− t)‖x− y‖) + (1− t)α(t‖x− y‖)

)
dµ(t)

with µ1 =
∫
[0,1]

tdµ(t).

Applying Theorem 3.14 from [10], we can get the following upper Hermite–Hadamard
type inequality.
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Theorem 3.18. Let A be a sigma algebra containing the Borel subsets of [0, 1] and µ be a probabil-
ity measure on the measure space ([0, 1],A) such that the support of µ is not a singleton. Denote

µ1 :=

∫
[0,1]

tdµ(t) and S(µ) := µ
(
[0, µ1]

) ∫
]µ1,1]

tdµ(t)− µ
(
]µ1, 1]

) ∫
[0,µ1]

tdµ(t).

Assume that f : D → R is µ-integrable and strongly (λ, α)-convex. Moreover, for all (x, y) ∈ D2,

I(x, y) :=

∫
]µ1,1]

∫
[0,µ1]

(t′′ − µ1)α
(
(µ1 − t′)‖x− y‖

)
+ (µ1 − t′)α

(
(t′′ − µ1)‖x− y‖

)
dµ(t′)dµ(t′′)

exists in [0,∞]. Then, for all (x, y) ∈ D2, the function f also satisfies the lower Hermite–
Hadamard type inequality

f((1− µ1)x+ µ1y) ≤
∫

[0,1]

f
(
(1− t)x+ ty)dµ(t)− 1

λS(µ)
I(x, y).

In the following theorems, we have established relations between Hermite–Hadamard
type inequalities and strong (Jensen) convexity.

Theorem 3.19. Let µ be a Borel probability measure on [0, 1] and assume that α : D∗ → R+ be
a given error function. Denote µ1 :=

∫
[0,1]

tdµ(t). If f : D → R is continuous and satisfies the
following upper Hermite–Hadamard type inequality

(3.29)

∫
[0,1]

f(tx+ (1− t)y)dµ(t)dt ≤ µ1f(x) + (1− µ1)f(y)− α(‖x− y‖), (x, y ∈ D),

then f is strongly 1
µ1
α-convex on D.

Proof. Let x, y ∈ D arbitrary. By (3.29), we have that∫
[0,1]

(f(y + t(x− y))− f(y))dµ(t) ≤ µ1(f(y)− f(x))− α(‖x− y‖), (x, y ∈ D).

Since α is nonnegative, f satisfies (3.29) with α = 0 and hence f is convex, which implies

f ′(y, t(x− y)) ≤ f(y + t(x− y))− f(y), (t ∈ [0, 1]).

Combining the above two inequalities, and using the positive homogeneity of the direc-
tional derivative the proof is complete. �

Theorem 3.20. Let µ be a Borel probability measure on [0, 1] and assume that α : D∗ → R+ be
a given error function. Denote µ1 :=

∫
[0,1]

tdµ(t). If f : D → R is continuous and satisfies the
following lower Hermite–Hadamard type inequality,

(3.30) f(µ1x+ +(1− µ1)y) ≤
∫

[0,1]

f(tx+ (1− t)y)dµ(t)− α(‖x− y‖)

then f is 1
µ1
α-convex on D.

Proof. Using again the convexity of f in (3.30), we can have that f is strongly (µ1, α)-
convex on D. Applying Theorem 3.16, with λ = µ1, we have 1

µ1
α-convexity of f . �

Remark 3.1. A lot of theorems and propositions are true in linear space, but we would
like to work in normed space in the whole paper.
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