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Abstract 

A general formalism for introducing nuclear quantum effects in the expression of the 

quantum time correlation function of an operator in a multi-level electronic system is 

presented in the adiabatic limit. The final formula includes the nuclear quantum time 

correlation functions of the operator matrix elements, of the energy gap, and their cross terms. 

These quantities can be inferred and evaluated from their classical analogs obtained by mixed 

quantum-classical molecular dynamics simulations. The formalism is applied to the 

absorption spectrum of a hydrated electron, expressed in terms of the time correlation 

function of the dipole operator in the ground electronic state. We find that both static and 

dynamic nuclear quantum effects distinctly influence the shape of the absorption spectrum, 

especially its high-energy tail related to transitions to delocalized electron states.  Their 

inclusion does improve significantly the agreement between theory and experiment for both 

the low and high frequency edges of the spectrum. It does not appear sufficient, however, to 
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resolve persistent deviations in the slow Lorentzian-like decay part of the spectrum in the 

intermediate 2-3 eV region. 



 4

I. Introduction 

 

Linear response theory makes it possible to relate experimental observables to time 

correlations functions (TCF), and, in general, to quantum time correlation functions (QTCF).  

It is of theoretical importance to be able to estimate these quantities. For many-body 

molecular systems, this implies knowing how to compute TCF’s using molecular simulations. 

The quantum character can originate from the involvement of many electronic states, from 

quantum nuclear effects, or both. There is presently an intense activity in this field and several 

methods for computing quantum correlation functions have been proposed. For a fairly recent  

review, see, e.g., Ref. [1]. Those methods are devoted to either pure quantum nuclear 

dynamics2,3,4,5,6,7,8,9,10 or multilevel electronic systems coupled to a classical or semiclassical 

bath.11,12,13,14,15 The ring polymer molecular dynamics method8 has also been extended to 

simulate the dynamics of electronic degrees of freedom with an application to a solvated 

electron in supercritical helium.16 Recently, Causo et al.14,15 have derived an adiabatic 

linearized path integral formula for quantum time correlation functions and they have applied 

their approach to the problem of electron transport in molten salt solutions. They considered 

the limit of classical nuclear motions.  

In this paper we address the similar issue of electronically adiabatic QTCF’s for cases 

when the nuclear modes should be quantized too. Our approach is inspired by a previous work 

where we derived a quantum time correlation formula for the nonadiabatic decay rate between 

two adiabatic quantum electronic states coupled to a nuclear bath starting from the Fermi 

golden rule.17,18 The quantum time correlation of the nonadiabatic coupling operator, 

involving both electronic and nuclear degrees of freedom, was expressed in terms of the 

nuclear quantum time correlation functions of the state-to-state nonadiabatic (kinetic energy) 

coupling, of the energy gap, and of their cross terms.  At the end, the transition rate can be 
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computed from the classical nuclear counterpart of the correlation functions. Those are 

obtained using adiabatic mixed quantum-classical simulations, and they are further corrected 

to account for quantum effects according to various quantization schemes. 

We applied the formalism to the nonadiabatic decay rate of an excited p-like hydrated 

electron to its s-like ground state and found that, depending on the quantization schemes 

applied, quantum corrections can change the classical transition rate dramatically.17 The 

present work follows a similar theoretical path. The theory will be illustrated by application to 

another unsolved problem concerning the hydrated electron: the influence of the static and 

dynamic nuclear quantum effects on its ground state absorption spectrum. 

Since its original identification19 in 1962 the hydrated electron has been the subject of 

intensive experimental and theoretical research. As a result, structural, energetic and 

spectroscopic properties of the hydrated electron are understood in great detail.20 A long-

standing issue, the shape of the optical absorption spectrum, however, is still not satisfactorily 

explained. Experiment measures a broad, featureless, asymmetric band with a maximum at 

1.72 eV.21 Theory, based mainly on a mixed quantum-classical approach, has not been able to 

fully describe the position and the shape, and particularly, the intensity of the blue-side of the 

spectrum, the high energy tail, with acceptable accuracy.22,23,24,25 Pseudopotential-based 

methods, although inadequate in some quantitative respects, shed light on fundamental 

qualitative aspects underlying the origin of the spectrum. It is accepted that three transitions 

dominate the spectrum, from the s-type electronic ground state to the first three, non-

degenerate p-states.20 It was also found that solvent fluctuations determine the general shape 

and breadth of the optical spectra; radial fluctuations of the solvent cavity accomodating the 

electron influence the mean s-p energy gap, whereas fluctuations in the shape of the cavities 

(asymmetric distortions) modulate the splitting of the p-levels.20 The failure to correctly 

reproduce the experimental spectrum in simulations has two major, related origins. First, in 
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most mixed quantum-classical approaches the solvent bath is treated classically, while the 

electron is described by quantum mechanics. The greater source of discrepancy between 

experiment and theory likely originates from the approximate nature of the pseudopotentials 

employed, especially in describing the energetics of the excited states. Subsequent 

improvements of the pseudopotentials led to a more satisfactory agreement of the position of 

the spectral maximum with experiment.25,26,27 Inclusion of solvent electronic polarizability 

makes it possible to fine tune the band maximum to the exact position. The high energy tail of 

the spectrum, however, is still not fully developed in any model. We note that the only ab 

initio molecular dynamics study of which we are aware on the bulk hydrated electron resulted 

in a similar characteristics of the absorption spectrum, with a correct position for the 

maximum but notable underestimation of the high energy tail.28   

The effect of the quantum behavior of the solvent bath in calculated spectra, the 

second main source of discrepancy between experiment and theory, will be addressed here. 

The neglect of nuclear quantization is a problem that occurs when computing observables 

with any mixed quantum-classical approach, including available ab initio molecular dynamics 

techniques. A new approach to this general nuclear quantization issue will be the focus of the 

present paper. 

The structure of the paper is as follows. In Sec. II we derive a theoretical expression 

for the quantum time autocorrelation function of an operator Â  acting on a multilevel 

electronic system coupled to a nuclear bath, in the electronically adiabatic limit, in terms of 

appropriate quantum correlation functions in nuclear space. These functions can be inferred 

from their classical counterparts, computed by classical molecular dynamics simulations, by 

using an appropriate quantization scheme. In Sec III, the theoretical approach is applied to the 

computation of the absorption spectrum, starting from the Gordon-Kubo formula. After 

providing the details of the simulations, we discuss the classical and quantized absorption 
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spectra for the case of the hydrated electron, obtained according to our formalism, and 

evaluate the effects of various approximations. Sec. IV concludes the paper. 

 

II. Adiabatic quantum time correlation functions 

For a system described by a set of electronic states coupled to a bath of nuclear states, 

the thermally averaged time autocorrelation function of an operator Â  can be written as 
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where Tρ̂  is the canonical density operator, expanded on the basis of the eigenfunctions I  

of the full Hamiltonian of the system, 
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with )Tr( ĤeZ β−= , the canonical partition function, and �/ˆ)(ˆ tHietU −=  is the full quantum 

propagator of the system. In the Born-Oppenheimer approximation, when the state of the 

system can be expressed as a direct product of nuclear state p  and electronic wave function 

i , and assuming that only a single electronic state (the ground state) is accessible (i=0) in the 

dynamic process, the time correlation function simplifies to 
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In Eq (4) Z0 is the canonical partition function for the thermal equilibrium of the nuclear 

modes, p, on the ground state electronic surface 0 . In the following, for the sake of 

compactness, we will adopt the ...  notation for thermal averaging (tracing) over the nuclear 

distribution on the ground state electronic surface, as implemented in the second equality of 

Eq. (3). Inserting the resolution of the identity for the electronic variables in terms of 

electronic states transforms Eq. (3) to 
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Eq. (4) contains the matrix elements of operator Â , and the two nuclear Hamiltonians 

corresponding to the 0th and kth Born-Oppenheimer potential surfaces. The expression can be 

easily modified to a form which is similar to that originally introduced by Staib and Borgis for 

the golden rule formula of non-adiabatic transition rates25 
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where exp(-) is the negative time-ordered exponential, and )()0(
0 τkH∆  and )()0(

0 tAk are defined as 
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The superscripts in Eqs. (5)-(7) indicate that the nuclear dynamics take place on the ground 

electronic surface. In the following we drop these superscripts for convenience. 

To proceed forward to a more tractable form we follow a similar route to the one we 

applied in our previous paper on non-adiabatic transition rates.17  We use the following simple 

relation to bring an operator, Â , to exponential form: 

 AeA
ˆ

0 d
d

limˆ λ

λ λ→
= ,       (8) 

and then successively employ the cumulant expansion of the exponentials including the 

cumulant expansion of the time ordered exponential to second order. Since λ is an arbitrary 

parameter, the order of differentiation with respect to λ and tracing over the initial nuclear 

conditions can be exchanged. The final form of the time autocorrelation function reads now as 
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where we introduced �/)()( 00 tHt kk ∆=Ω , and δ stands for the fluctuations from the 

averages. This formula is reminescent of the adiabatic time correlation formula derived by 

Causo et al. from a linearized path-integral approach, followed by a cumulant expansion14,15 

similar to ours.17 In their case, however, the dynamics appears to be defined on the half state 

( )k+0
2
1

 for each quantum number k in the sum, whereas it is the ground state dynamics 

which emerges naturally for every k-state in our formalism.  

 At this stage, the time correlation functions appearing in Eq. (9) are fully quantum 

statistical objects in nuclear phase space and their direct evaluation remains a very difficult 

task. A second step can be taken by approximating those QTCF’s from their classical 

counterparts using a suitable quantization scheme. Various formulae have been proposed to 

relate an arbitrary correlation function, )()0()( tBAtC q = , to its classical counterpart, 

)(tC .29,30,31,32,33,34,35,36 We will argue below that, at least for the problem considered, the 

absorption spectrum of an excess electron in water, the so-called harmonic quantization 

scheme29,30 is adequate. The harmonic quantization, which is exact for harmonic systems, 

prescribes )(ˆ ωqC  in the frequency domain as 

 )(ˆ
1

)(ˆ
1

2
)2/tanh(2

)(ˆ ωωβω
ωβ

ωβω ωβωβ C
e

C
e

C q
��

�

�

�

−− −
=

+
×= ,                     (10) 

where )(ˆ ωC  is the Fourier transform of the classical correlation function C(t), )(ˆ ωqC  is the 

quantized correlation function in the frequency domain. In the first equality, the first term 



 10

accounts for the renormalization of the individual mode amplitudes when going from the 

classical to the quantum regime, whereas the second one accounts for the detailed balance 

condition fulfilled by quantum correlation functions, )(ˆ)(ˆ ωω ωβ qq CeC �−=− . This formula 

transforms in the time domain to  

 ))sin()cos()2/(coth(
2

)(ˆ
)(

0

tit
C

dtC q ωωωβωβ
π
ωω −= �

∞

�
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.                    (11) 

For a multidimensional system, the determination of )(tC q  implies the computation of the 

corresponding classical )(tC  by molecular dynamics simulations, its Fourier transform to get 

)(ˆ ωC , and then to return to the time domain using Eq. (11). 

 

III. Application to the absorption spectrum of a solvated electronic system 

 

Theoretical expression of the absorption spectrum 

For a general electronic-bath quantum mechanical system, the frequency resolved 

absorption spectrum is given by the well-known Kubo-formula37 

�
∞

∞−
−−−= )(ˆˆ)exp())exp(1(

2
)( ttidtI µµωωβ

π
ωω �     (12) 

where β =1/kT, � stands for the frequency, and )(ˆ tµ denotes the time-dependent electronic 

dipole moment operator. Eq (12) contains the quantum time autocorrelation function of the 

dipole moment operator averaged over the electronic eigenstates and the solvent degrees of 

freedom. 

Applying the general formula of Eq. (9) for µ̂ˆ =A , we note first that the thermal 

average of the electric transition dipole moment k0µ  disappears. Secondly, symmetry tells us 

that the trivial term of the sum (k=0) should be equal to zero. Thus, for the time 

autocorrelation function of the dipole moment operator we have 



 11

{

�
�
�

�

	


�

Ω×Ω−

�
�

� ×
	


�

�

� ΩΩ��−×=

� �

�
=

Ω

)()0()()0(dd

)()0()()0(exp)(ˆˆ

200100
0 0

21

1
00200

0
2

0
1

10

τδµδτδδµττ

µµτδδττµµ
τ

kkkk

t t

k
kkkk

t

tddet
tki

  (13) 

Inserting Eq. (13) into Eq (12) one can easily obtain the frequency resolved absorption 

spectrum 
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where we have introduced an obvious notation for the quantum transition dipole moment  

correlation function, the frequency gap autocorrelation function, and their cross-correlation 

functions. Note again that the TCF’s are still fully quantum objects at this stage. 

Since, as mentioned earlier, the direct evaluation of the nuclear quantum correlation 

functions is a very difficult task, we opt for the usual alternative approach and replace the 

quantum correlation functions in a first step by their classical counterparts computed from 

mixed quantum-classical molecular dynamics simulations. For example, 

�/))()(()( 00 tEtEt kk −=Ω  is simply the time-dependent energy gap of the quantum 

subsystem submerged in the classical bath. A purely classical spectrum has  the following 

form: 
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In the quantum version, Eq. (14), the TCF’s have to be inferred from their classical 

analogs using a suitable quantization formula. We argued previously that the harmonic 
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quantization scheme was fully justified for quantizing the solvated electron nonadiabatic 

transition rates.17,18 We have shown17 that, for the energy gap fluctuations, this scheme leads 

to the correct decoherence times for an excited p-electron when compared to the Gaussian 

packet propagation approach of Prezhdo and Rossky,38 and Turi and Rossky,39 both for water 

and methanol. This argument is still valid for the present application. We have also found that 

the non-adiabatic coupling fluctuations are strongly dominated by the librational and 

vibrational solvent modes.17,18 We will show in the next section that this is also true for the 

transition dipole fluctuations. A harmonic bath description (for which the formula is exact) is 

thus quite sensible, at least for this application.  

 

Application to the hydrated electron: Mixed quantum-classical adiabatic molecular dynamics 

simulations 

To compute the frequency resolved absorption spectrum of an equilibrium, ground 

state hydrated electron we have performed adiabatic mixed quantum-classical molecular 

dynamics simulations of a ground state electron embedded in a classical water bath. The 

basics of the method can be found in Ref. 40. The details of the actual simulations are similar 

to our previous simulation in Ref. 27. The solvent bath consists of 1600 water molecules in a 

cubic simulation cell, with a box length of 36.34 Å. The molecular interactions are described 

by a three-site classical model potential with added internal flexibility. The electron is treated 

quantum mechanically in a plane wave basis represented on 323 gridpoints equidistantly 

distributed in the simulation box. The interaction between the quantum particle and the 

classical molecules is modeled by an electron-water molecule pseudopotential.27 The nuclear 

configurations are adiabatically propagated on the ground state potential surface using the 

sum of classical and Hellmann-Feynman forces. The long-range part of the potential and the 

forces are treated using a smooth cut-off. The simulation time step is 1 fs, and the simulation 
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has been run for 25 ps. The transition dipole matrix elements were computed from direct 

quadrature in the position representation. The origin of the dipole vector was chosen to be the 

center of the simulation box. Since the excess electronic states are orthogonal, the choice of 

the dipole vector does not affect the integrals. To produce sufficiently small sampling 

intervals for the Fourier transforms, we proceeded in two different ways. First, we calculated 

the correlation functions in every 0.2 fs, using a linear interpolation between the simulated 

data points. This approach provides sufficient number of data points to produce smooth 

spectra, but may also lead to slight numerical artifacts. To rule out this possibility, for 

comparison, we have also fitted the dipole-dipole and gap autocorrelation functions as a sum 

of one Gaussian and one exponential function, and used the values of the analytic functions in 

the numerical procedure. For the evaluation of the time autocorrelation function of the dipole 

moment operator, we performed the summations in Eqs (9), (13)-(15) for the first twelve 

states of the hydrated electron in our model. The influence of higher states will also be 

discussed below.  

  

Classical spectrum 

Figure 1 shows the normalized classical gap and the transition dipole autocorrelation 

functions, )(
0

tC
kΩ  and )(

0
tC

kµ , respectively, for the first five 0�k transitions (k=1-5). We 

notice that all functions decay quickly, reaching <~10% of their initial amplitude within the 

first 0.5 ps of the dynamics. Interestingly, the gap autocorrelation functions show very similar 

decay in time, irrespective of the width of the energy gap. This behavior reflects the fact that 

the fluctuations in the energy gaps take place largely in parallel fashion. The transition dipole 

autocorrelation functions have more distinct features. For the first three functions (electronic 

p-states), although some relatively minor differences appear in their decay, they show 

qualitatively similar behavior. On the other hand, the other functions, corresponding to higher 
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transitions (0�k, where k>3), have at least an order of magnitude smaller unnormalized 

amplitude and decay significantly faster than the first three functions. This indicates that the 

higher transitions contribute to the spectrum to a significantly lesser extent. The first one of 

these (k=4) exhibits some oscillations due to water bending and stretching modes. All others 

for k>5 demonstrate a behavior similar to k=5, with a fast Gaussian-like decay and no 

apparent oscillations. The Fourier transform of the functions (see below) indicate that 

translational and librational modes dominate in the gap fluctuations and transition dipole 

correlations; higher frequency vibrations are essentially absent from the classical 

autocorrelation functions. As a very important further observation, we found that the (very 

noisy) cross-correlation terms appear to contribute negligibly in the classical treatment (see 

Eq. 15); the contribution remains ~1 % of that of the transition dipole autocorrelation function 

by the time the fast decaying gap correlation function drops below 1 % of its original value.   

In the next step, we have also calculated the classical absorption spectrum with and 

without the cross-correlation terms (see Eq. 15). The resulting spectra are practically 

indistinguishable. For this reason, we will not consider the cross-correlation terms in the 

remainder of the paper; that is, we use  
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The classical spectrum normalized to unity at its maximum is shown in Figure 2, with the 

subbands of the first eleven transitions. It is clear, that the three s-p transitions dominate the 

spectrum, all other contributions have significantly smaller weight. This observation is in 

agreement with the results of previous simulations of Rossky and his co-workers.20,22 Notable, 

nevertheless, is a distinct spectral high energy tail, observable from 2.5 eV to 5 eV, resulting 

from higher transitions (see the inset in Fig. 2). Since the intensity of these transitions decays 

very slowly, the high energy tail extends through a long energy range. In an attempt to model 
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the contribution of further possible high energy states to the spectrum we fit the decay of the 

maximum intensities of the bands for states k=5-11 by a Lorentzian function, and extrapolated 

the tendency for twelve more states (k=12-23) (Fig. 3). We also assumed that all the bands of 

the higher states have the same Gaussian shape as the one we fitted for the last computed 

subband, 0�11, and their corresponding maxima (computed from the Lorentzian extrapolation) 

are separated by 0.07 eV. Fig. 2 also shows the classical spectrum augmented by the twelve 

extra states. Although the estimate is based on some ad hoc assumptions, it demonstrates the 

important role transitions to high energy, delocalized states can play in determining the 

spectral shape.  

The computed spectrum based on the classical correlation functions can be compared 

to the experimental spectrum,21 as shown in Figure 4. The classically calculated spectrum 

estimates the position of the maximum of the experimental spectrum reasonably well (1.90 eV 

vs. 1.72 eV). We argued previously, that based on an estimate using dielectric theory 

arguments, the simulated peaks are expected to be slightly red-shifted (by about 0.2-0.3 eV), 

and, thus, in better agreement with the measurements, after the proper self-consistent 

treatment of solvent electronic polarization in the presence of the excited electronic state.27,41 

The width of the optical band at half of its maximum, 0.73 eV, also compares favorably to the 

experimental 0.85 eV. The underestimation is mainly due to the fact that the classically 

computed spectrum suffers from a well-known deficiency; it underestimates the high energy 

tail of the absorption band. Nevertheless, due to the acceptable reproduction of the position of 

the maximum and the appearance of the higher energy spectral feature, the present classical 

results represent clear improvement relative to previous results. It is interesting to compare 

the classical spectrum computed in the present work to our previously published spectrum27 

based on the histogram technique calculation of the transition dipole matrix elements in the 

slow-modulation limit.25 Figure 4 illustrates that the spectra appear reasonably similar, but the 
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full classical treatment (Eq. 16) results in broader, more developed spectrum than in the 

previous approximate procedure.  

 

Quantized spectra 

We computed the quantized spectra using the quantized form of Eq. (16), 
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where the q superscript indicates the quantized quantities. In the quantization procedure we 

followed the harmonic quantization scheme29,30 according to Eq. (11). Quantum corrections 

apparently influence the autocorrelation functions, increasing the individual mode amplitudes, 

as shown in Fig 5 for the harmonic quantization scheme. Although it is still the translational 

and librational modes which dominate the quantized spectra, as they did the classical result, 

the contributions of the higher frequency vibrational modes are notably increased. As a 

further illustration of the influence of the quantum corrections, one can directly compare the 

t=0 values of the classical and quantum corrected autocorrelation functions. These values are 

collected in Table I, with the corresponding quantum to classical ratios. The initial value of 

the gap autocorrelation functions, which appears in the exponential of Eqs (16) and (17), and 

influences the width of the individual absorption bands, increases by a consistent 60-70% 

after quantization. It is clear, however, from Eqs (16) and (17) that the dipole moment 

autocorrelation function bears a more direct role in determining the intensity of the spectrum. 

In this respect, we take notice of two effects. First, the initial value of the transition dipole 

moment autocorrelation function drops by a factor of ~20 going from k=3 to k=4 so that the 

high energy states contribute to the spectrum to a significantly lesser extent. On the other 

hand, we observe that the effect of quantum corrections appear more important for higher k 

values, gradually approaching a ratio of ~5 for the highest computed transitions. This 



 17

indicates that quantum effects clearly play an important role in influencing the shape of the 

spectrum, especially at its high energy tail and mainly through the transition dipole moment 

correlation functions.   

 In computing the spectrum, in parallel to our previous work,17 we may assume that 

since solvent dynamics occurs on a slower timescale, the exponential function of the gap 

autocorrelation function can be replaced by a Gaussian function, the dephasing function.  
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In the harmonic quantization this approximation leads to the following equation:   
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where )(
~

0
ω

k
CΩ is the normalized classical gap autocorrelation function. Obviously, one can 

perform the full evaluation of the double integral of the gap autocorrelation function without 

difficulty. We find that the results with the Gaussian approximation and the full calculation 

are very similar, demonstrating that the Gaussian approximation works reasonably well for 

the computation of the quantized spectra. The fully corrected spectrum computed with the 

double integral, is shown in the upper panel of Figure 6, while in the lower panel the maxima 

of the computed spectra were linearly shifted to match the maximum of the experimental 

spectrum, 1.72 eV. Accordingly, the application of the harmonic quantization scheme results 

in a small, but visible, quantum effect on the position of the spectrum, as the maximum shifts 

from 1.90 eV to 1.87 eV. The half-width also increases very slightly to 0.74 eV (from 0.73 

eV). More significant changes are apparent in the increased intensity of the high energy side 

of the spectrum. The intensity of the high energy tail of the classical spectrum at 3.0 eV is 

only ~3% of the intensity of the maximum; this value basically doubles to approximately ~7% 

in the harmonic quantization scheme. Based on our observation of the dependency of the 

classical spectrum on the number of high energy states (i.e. Figs. 2 and 3), one can anticipate 
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that inclusion of additional higher energy transitions will further improve the agreement 

between the computed and the experimental data on the blue side of the spectrum. Another 

promising aspect of the harmonic quantized spectrum is observable at the low energy side of 

the spectrum. Here, Fig. 6 reveals that the quantization notably improves the shape of the 

spectrum at ~1 eV; the quantized spectrum reproduces the shape of the experimental spectrum 

at lower energies well. 

 

IV. Discussion and Conclusions  

 

 We have introduced a quantum mechanical formula for time autocorrelation functions 

of an operator Â  in the adiabatic (Born-Oppenheimer) limit. The formula is based on the 

application of the second order cumulant expansion of the exponential operator. It involves 

the nuclear quantum correlation functions of the operator matrix elements, the energy gap 

fluctuations, and the cross terms. Those quantum statistical objects can be approximated from 

their classical counterparts by suitable relations in frequency space. The corresponding 

expression for the particular case of the absorption spectrum, related to the dipole quantum 

autocorrelation function through the Kubo formula, involves the nuclear quantum time 

correlation functions of the energy gap, of the electronic transition dipole matrix elements, 

and their cross-terms.  

 These quantities were evaluated from mixed quantum-classical molecular dynamics 

simulations of a hydrated electron equilibrated in its ground state. The absorption spectrum 

computed from the resulting classical functions predicts the position of the maximum 

reasonably well and also possesses a high energy tail which is, however, not sufficiently 

developed compared to experiment. In addition, we pointed out that the high energy tail of the 

classical spectrum converges slowly with inclusion of additional high energy transitions, and 
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so this comparison may improve with a more complete treatment of high energy states. The 

classical spectrum is smoother, and slightly broader, than computed previously with a 

histogram evaluation of the transition dipole matrix elements. The quantum corrections 

provide further important improvements. The harmonic quantization procedure, that we 

argued to be  quite reasonable in this instance,  significantly influences the spectral shape. 

First, it shifts the spectrum slightly to the red, and broadens it by 0.01 eV. More substantial 

changes, are observed at the wings of the optical band. The red side of the spectrum improves 

significantly relative to the experimental shape, while the large-energy tail gains intensity, 

approximately doubling that of the classical spectrum. Nevertheless, it is apparent that, even 

with such improvements, the quantized spectrum is still distinctly lacking in intensity at 

around 2.5 eV. One likely source is an inadequacy of the present pseudopotential when 

describing the higher lying, delocalized, excited states of the hydrated electron system.  

However, it is quite interesting to note that a recent application of the same pseudopotential to 

the case of negatively charged water clusters42 does yield a spectral shape which includes the 

high energy tail in at least qualitative agreement with the tail seen experimentally for the 

absorption spectra of clusters.43 For these cases, the excess electron is bound to the cluster 

surface in simulations, and the higher energy states contributing to this tail are apparently 

relatively asymmetric compared to the bulk water solvated states. We believe that this 

observation may provide the clue to resolving this persistent discrepancy in lineshape between 

simulated and experimental hydrated electrons.  

The purpose of the present work was, however, not to reproduce the absorption 

spectrum of the hydrated electron system per se, but rather to illustrate a general formulation 

of adiabatic quantum time correlation functions for electrons/nuclei systems that provides a 

straightforward, although approximate, way to include nuclear quantum effects. The chosen 
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example does emphasize that those effects can indeed be important and that their inclusion 

provides a significant improvement for the computation of a time-dependent observable.    
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Table I. The initial t=0 value of the classical gap-gap and transition dipole moment 

autocorrelation functions, and their quantum/classical ratios. 
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1 0.07280 1.46 7.676 1.32 

2 0.06469 1.50 6.540 1.55 

3 0.07134 1.55 5.377 1.30 

4 0.1338 1.67 0.2007 1.89 

5 0.1571 1.65 0.0890 2.68 

6 0.1589 1.67 0.0690 3.86 

7 0.1631 1.68 0.0595 4.44 

8 0.1674 1.69 0.0555 4.78 

9 0.1720 1.68 0.0512 5.04 

10 0.1783 1.69 0.0485 5.05 

11 0.1853 1.70 0.0468 4.72 
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Figure Captions 

 

Figure 1. Normalized classical gap and transition dipole autocorrelation functions, )(
0

tC
kΩ  

and )(
0

tC
kµ , respectively, for the first five 0�k electronic transitions (k=1-5). Solid line: k=1, 

dash: k=2, dot: k=3, dash-dot: k=4, dash-dot-dot k=5.  

 

Figure 2. The absorption spectrum of an equilibrium, ground state hydrated electron 

computed using the classical correlation functions, Eq. (16). The spectrum is normalized to 

unity at its maximum. The inset shows all computed spectral contributions to the high energy 

tail. The figure also includes the extrapolated spectrum (dash) including the contributions 

from higher energy 0�k bands (k=12-23).  

 

Figure 3. The absorption bands of the highest seven computed 0�k transitions (k=5-11), with 

a fitted Lorentzian function to model the progression of the band maxima of higher energy 

delocalized states. 

 

Figure 4. Comparison of the absorption spectrum of an equilibrium, ground state hydrated 

electron computed using the classical correlation functions (solid line) to the experimental 

curve (dash),21 and the previously published spectrum in the  slow-modulation limit (dotted 

line).27 The figure also includes the extrapolated spectrum (dashed) including the 

contributions from higher energy 0�k bands (k=12-23). 

 

Figure 5. Fourier transforms of the gap (left) and the transition dipole autocorrelation 

functions (right) for the 0�1 (upper panels) and 0�5 transitions (lower panels). The dashed 

line corresponds to the classical function, while the solid line shows the quantized correlation 
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functions using the harmonic quantization scheme. Note the different scales between the two 

frames showing the transition dipole autocorrelation functions. 

 

Figure 6. The absorption spectrum of an equilibrium, ground state hydrated electron 

computed using classical correlation functions (dash-dot) and the harmonic quantization 

scheme29,30 (dashed). The spectra are normalized to unity at their maximum. The experimental 

spectrum is shown for comparison (solid line).21 The absolute peak intensities (Eq. 12) are 

50.9 a.u. and 60.5 a.u. for the computed classical and the quantized spectra, 32.8 a.u. for the 

experiment (corresponding to the maximum molar absorption coefficient, 22700 dm3mol-1cm-

1).44 The lower panel shows the calculated spectra linearly shifted to align the maximum with 

the experimental spectrum, 1.72 eV. 
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Figure 1. Turi, Hantal, Rossky, and Borgis 
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Figure 2. Turi, Hantal, Rossky, and Borgis 
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Figure 3. Turi, Hantal, Rossky, and Borgis 
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Figure 4. Turi, Hantal, Rossky, and Borgis 
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Figure 5. Turi, Hantal, Rossky, and Borgis 
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Figure 6. Turi, Hantal, Rossky, and Borgis 
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