ON \((\alpha, \beta, a, b)\)-CONVEX FUNCTIONS

ATILÁ HÁZY

Abstract. In this paper we investigate the \((\alpha, \beta, a, b)\)-convex functions which is a common generalization of the usual convexity, the \(s\)-convexity in first and second sense, the \(h\)-convexity, the Godunova-Levin functions and the \(P\)-functions. This notion of convexity was introduced by Maksa and Páles in [16] in the following way: an \((\alpha, \beta, a, b)\)-convex function is defined as a function \(f : D \to \mathbb{R}\) (where \(D\) is an open, \((\alpha, \beta)\)-convex, nonempty subset of a real or complex topological vector space) which satisfies the inequality

\[
f(\alpha(t) x + \beta(t) y) \leq a(t) f(x) + b(t) f(y) \quad (x, y \in D; t \in [0, 1]).
\]

The main goal of the paper is to prove some regularity and Bernstein-Doetsch type results for \((\alpha, \beta, a, b)\)-convex functions.

1. Introduction

Maksa and Páles in [16] dealt with the following problem:

Let \(X\) be a real or complex topological vector space, \(D \subset X\) be a nonempty open set, \(T\) be a nonempty set, and \(\alpha, \beta, a, b : T \to \mathbb{R}\) be given functions. The problem is to find all the solutions \(f : D \to \mathbb{R}\) of the functional equation

\[
f(\alpha(t) x + \beta(t) y) = a(t) f(x) + b(t) f(y) \quad (x, y \in D; t \in T) \tag{1}
\]

provided that \(D\) is \((\alpha; \beta)\)-convex, that is, \(\alpha(t) x + \beta(t) y \in D\) whenever \(x, y \in D\) and \(t \in T\). To avoid the trivialities and the unimportant cases, we suppose that there exists an element \(t_0 \in T\) such that

\[
a(t_0) \beta(t_0) a(t_0) b(t_0) \neq 0.
\]

The solutions of (1) as \((\alpha; \beta; a; b)\)-affine functions and the solutions \(f\) of the corresponding inequality

\[
f(\alpha(t) x + \beta(t) y) \leq a(t) f(x) + b(t) f(y) \quad (x, y \in D; t \in T) \tag{2}
\]

will be called \((\alpha; \beta; a; b)\)-convex functions.

In our paper we investigate the \((\alpha; \beta; a; b)\)-convex functions. This notion of convexity is a common generalization of the usual convexity, the \(s\)-convexity in first and second sense, the \(h\)-convexity, the Godunova-Levin functions and the \(P\)-functions.

In the special cases when \(T = \{1/2\}\), \(T = \{t_0\}\) or \(T = \mathbb{Q} \cap [0, 1]\), the corresponding convex functions are said to be \(J\)ensen-(\(\alpha; \beta; a; b)\)-convex, \(t_0 - (\alpha; \beta; a; b)\)-convex and \(rationally-(\alpha; \beta; a; b)\)-convex.

Date: October 8, 2015.

2010 Mathematics Subject Classification. Primary 39B22, 39B12, 26A51, 26B25.

Key words and phrases. Convexity, \(h\)-convexity, \(s\)-convexity, Bernstein–Doetsch theorem, regularity properties of generalized convex functions.

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant K-111651. The second named author research has been supported by the János Bolyai research scholarship of the Hungarian Academy of Sciences.
Let $h : [0, 1] \rightarrow \mathbb{R}$ be a given function. In the case, when $\alpha(t) = t, \beta(t) = 1 - t, a(t) = h(t), b(t) = h(1 - t)$ we get the so called h-convex functions, which was introduced by Varošanec [29] and was generalized by Házy [11]. We say that $f : D \rightarrow \mathbb{R}$ is an h-convex function if, for all $x, y \in D$ and $t \in [0, 1]$, we have
\[
 f(tx + (1 - t)y) \leq h(t)f(x) + h(1 - t)f(y). \tag{3}
\]

The Godunova-Levin functions was investigated by Godunova-Levin [7]. We say that $f : I \rightarrow \mathbb{R}$ (where I is a real interval) is a Godunova-Levin function, if f is nonnegative and for all $x, y \in I$ and $t \in (0, 1)$ we have
\[
 f(tx + (1 - t)y) \leq \frac{f(x)}{t} + \frac{f(y)}{1 - t}.
\]

Some properties of this type of functions are given in Dragomir, Pečarić and Persson [6] Mitro- nović and Pečarić [27], Mitrošnović, Pečarić and Fink [28]. Among others, it is proved that nonnegative monotone and nonnegative convex functions belong to this class of functions. The Godunova-Levin functions are $(\alpha; \beta; a; b)$-convex functions, with $\alpha(t) = t, \beta(t) = 1 - t, a(t) = 1/t, b(t) = 1/(1 - t)$.

The concept of s-convexity in the first sense was introduced by Orlicz [21]. A real valued function $f : D \rightarrow \mathbb{R}$ is called Orlicz s-convex or s-convex in the first sense, if
\[
 f(t^s x + (1 - t)^s y) \leq tf(x) + (1 - t)f(y)
\]
for every $x, y \in D, t \in [0, 1]$, where $s \in [1, \infty]$ is fixed number. The Orlicz s-convex functions are $(\alpha; \beta; a; b)$-convex functions, with $\alpha(t) = t^s, \beta(t) = (1 - t)^s, a(t) = t, b(t) = 1 - t$.

The concept of s-convexity in the second sense was introduced by Breckner [4]. A real valued function $f : D \rightarrow \mathbb{R}$ is called Breckner s-convex or s-convex in the second sense, if
\[
 f(tx + (1 - t)y) \leq t^sf(x) + (1 - t)^sf(y)
\]
for every $x, y \in D$ and $t \in [0, 1]$, where $s \in [0, 1]$ is a fixed number. The Breckner s-convex functions are $(\alpha; \beta; a; b)$-convex functions, with $\alpha(t) = t, \beta(t) = 1 - t, a(t) = t^s, b(t) = (1 - t)^s$.

The case $s = 1$ means the usual convexity of f.

In Breckner [4] and Breckner and Orban [5] Berstein-Doetsch type results were proved on rationally s-convex functions, moreover, for the s-Hölder property of s-convex functions. Pycia [26] gives a new proof of the latter statement, when f is defined on a nonempty, convex subset of a finite dimensional vector space. In the paper Hudzik and Maligranda [14] the authors collect some properties of s-convex functions defined on the nonnegative reals. In the paper Burai, Házy and Juhász [2] there are some Berstein-Doetsch type result on (H, s)-convex functions.

The P-functions was investigated in Dragomir, Pečarić and Persson [6]. A real valued function $f : D \rightarrow \mathbb{R}$ (where D is a convex, open, nonempty subset of a real (complex) linear space X) is called P-function, if for every $x, y \in D$ and $t \in [0, 1]$ we have
\[
 f(tx + (1 - t)y) \leq f(x) + f(y).
\]

Some results about the P-functions there are in Pearce and Rubinov [25], Tseng, Yang and Dragomir [28]. The P-functions are $(\alpha; \beta; a; b)$-convex functions, with $\alpha(t) = t, \beta(t) = 1 - t, a(t) = 1, b(t) = 1$.
In Bernstein and Doetsch [1] proved that if a function \(f : D \to \mathbb{R} \) (where \(D \) is a convex, open, nonempty subset of a real (complex) linear space \(X \)) is locally bounded from above at a point of \(D \), then the Jensen-convexity of the function yields its local boundedness and continuity as well, which implies the convexity of the function \(f \) (see Kuczma [15] for further references). This result has been generalized by several authors. The first such type results are due to Nikodem and Ng [20] for the approximately Jensen-convex functions (the so-called \(\epsilon \)-Jensen-convexity), which was extended by Páles (Páles [22] and [23]) to approximately \(t \)-convex functions. Further generalizations can be found in papers Mrowiec [19], Házy [9] and [10], Házy and Páles [12] and [13]. In the paper Gilányi, Nikodem and Páles [8] there are some Bernstein-Doetsch type results for quasiconvex functions.

2. Main results

In this section we assume that \((X, \| \cdot \|) \) is a real (complex) normed space. We recall that a function \(f : D \to \mathbb{R} \) is called locally bounded from above on \(D \) if, for each point of \(p \in D \), there exist \(g > 0 \) and a neighborhood \(U(p, g) := \{ x \in X : \|x - p\| < g \} \) such that \(f \) is bounded from above on \(U(p, g) \). We assume that \(a, b : [0, 1] \to \mathbb{R} \) are nonnegative.

Proposition 1. Let \(t_0 \in [0, 1] \) be fixed such that \(\alpha(t_0) + \beta(t_0) = 1 \) and \(f : D \to \mathbb{R} \) be an \((\alpha; \beta; a; b)\)-convex function. Then

(i) if \(a(t_0) + b(t_0) > 1 \) then \(f \) is nonnegative.

(ii) if \(a(t_0) + b(t_0) < 1 \) then \(f \) is nonpositive.

Proof. Let \(x \) be an arbitrary element of \(D \). Using \((\alpha; \beta; a; b)\)-convexity of \(f \)

\[
 f(x) = f(\alpha(t_0)x + \beta(t_0)x) \leq a(t_0)f(x) + b(t_0)f(x) = (a(t_0) + b(t_0))f(x),
\]

which implies

\[
 0 \leq (a(t_0) + b(t_0)) - 1)f(x).
\]

If \(a(t_0) + b(t_0) - 1 > 0 \), then we have \(f(x) \geq 0 \) and if \(a(t_0) + b(t_0) - 1 < 0 \), then we have \(f(x) \leq 0 \).

\[\square\]

Theorem 1. Let \([0, 1] \subset T, \alpha, \beta, a, b : T \to \mathbb{R} \) be given nonnegative functions and let \(t_0 \in [0, 1] \) be fixed such that \(\alpha(t_0)\beta(t_0)a(t_0)b(t_0) \neq 0 \) and \(\alpha(t_0) + \beta(t_0) = 1 \). Furthermore let \(D \subset X \) be open, nonempty, \((\alpha; \beta)\)-convex set, let \(f : D \to \mathbb{R} \) be a \(\alpha - (\alpha; \beta; a; b) \)-convex function, which is locally bounded from above at a point of \(D \). Then \(f \) is locally bounded at every point of \(D \).

Proof. Since \(\alpha(t_0)\beta(t_0) \neq 0 \) therefore we get \(\alpha(t_0), \beta(t_0) > 0 \). We prove that \(f \) is locally bounded from above on \(D \).

First we prove that \(f \) is locally bounded from above on \(D \). Define the sequence of sets \(D_n \) by

\[
 D_0 := \{ p \}, \quad D_{n+1} := \alpha(t_0)D_n + \beta(t_0)D.
\]

Using induction on \(n \), we prove that \(f \) is locally upper bounded at each point of \(D_n \). By assumption, \(f \) is locally bounded from above at \(p \in D_0 \). Assume that \(f \) is locally upper bounded at each point of \(D_n \). For \(x \in D_{n+1} \), there exist \(x_0 \in D_n \) and \(y_0 \in D \) such that \(x = \alpha(t_0)x_0 + b(t_0)y_0 \). By the inductive assumption, there exist \(r > 0 \) and a constant \(M_0 \geq 0 \) such that \(f(x') \leq M_0 \) for \(\|x_0 - x'\| < r \). Then, by the \(t_0 - (\alpha; \beta; a; b) \)-convexity of \(f \), for \(x' \in U_0 := U(x_0, r) \) we have

\[
 f(\alpha(t_0)x' + \beta(t_0)y_0) \leq a(t_0)f(x') + b(t_0)f(y_0) \leq a(t_0)M_0 + b(t_0)f(y_0) =: M.
\]
Therefore, for
\[y \in U := \alpha(t_0)U_0 + \beta(t_0)y_0 = U(\alpha(t_0)x_0 + \beta(t_0)y_0, t_0r) = U(x, t_0r), \]
we get that \(f(y) \leq M \). Thus \(f \) is locally bounded from above on \(D_{n+1} \).

On the other hand, we show that
\[D = \bigcup_{n=1}^{\infty} D_n. \]

From the definition of \(D_n \), it follows by induction that \(D_n = (\alpha(t_0))^n p + (1 - (\alpha(t_0))^n)D \). For fixed \(x \in D \), define the sequence \(x_n \) by
\[x_n := \frac{x - (\alpha(t_0))^n p}{1 - (\alpha(t_0))^n}. \]

Then \(x_n \to x \) if \(n \to \infty \). As \(D \) is open, \(x_n \in D \) for some \(n \). Therefore
\[x = \alpha(t_0)^n p + (1 - (\alpha(t_0))^n) x_n \in (\alpha(t_0))^n p + (1 - (\alpha(t_0))^n) D = D_n. \]

Thus \(f \) is locally bounded from above on \(D \).

Now, we prove that \(f \) is locally bounded from below. Let \(q \in D \) be arbitrary. Since \(f \) is locally bounded from above at the point \(q \), there exist \(\rho > 0 \) and \(M > 0 \) such that
\[\sup_{U(q, \rho)} f \leq M. \]

Let \(x \in U(q, \beta(t_0)q) \) and \(y := \frac{q - \alpha(t_0)x}{\beta(t_0)} \). Then \(y \) is in \(U(q, \rho) \). By \(t_0 - (\alpha; \beta; a; b) \)-convexity,
\[f(q) \leq a(t_0)f(x) + b(t_0)f(y), \]

which implies
\[f(x) \geq \frac{f(q) - b(t_0)f(y)}{a(t_0)} \geq \frac{f(q) - b(t_0)M}{a(t_0)} =: M'. \]

Therefore \(f \) is locally bounded from below at any point of \(D \). \(\square \)

Corollary 1. Let \(f : D \to \mathbb{R} \) be a Jensen-convex or \(t_0 \)-convex function. If \(f \) is locally bounded from above at a point of \(D \), then \(f \) is locally bounded at every point of \(D \).

Corollary 2. Let \(f : D \to \mathbb{R} \) be a Breckner \((t_0, s) \)-convex function. If \(f \) is locally bounded from above at a point of \(D \), then \(f \) is locally bounded at every point of \(D \).

Corollary 3. Let \(f : D \to \mathbb{R} \) be a \((t_0, h) \)-convex function such that \(h(t_0) \) and \(h(1 - t_0) \) are not zero simultaneously. If \(f \) is locally bounded from above at a point of \(D \), then \(f \) is locally bounded at every point of \(D \).

Remark 1. It is a well-known fact that if a Jensen-convex function \(f \) is locally bounded above at a point of its domain (see [1], [15]), then it is continuous on its domain. This is not true for \((Jensen, h) \)-convex functions, which implies is not true for \(Jensen - (\alpha; \beta; a; b) \). Indeed, in the case \(h(\lambda) = \lambda^s \) (where \(0 < s < 1 \) is a fixed number), in [2] we give an example which is \((Jensen, h) \)-convex, bounded and nowhere continuous.

Next theorem gives a sufficient condition when local boundedness implies continuity.
Theorem 2. Let α, β, a, b be given nonnegative, continuous functions satisfying the limit conditions
\[
\lim_{t \to 0} a(t) = 0 \quad \text{and} \quad \lim_{t \to 0} b(t) = 1.
\]
and $\alpha(t) + \beta(t) = 1$.

Let the sequence $\{t_n\}_{n \in \mathbb{N}}$ be such that $t_n \in [0, 1]$ and t_n tends to 0 (when $n \to \infty$) and assume that $a(t_n)$ and $b(t_n)$ are not simultaneously zero. Let $T = \{t_n\}_{n \in \mathbb{N}}$.

If $f : D \to \mathbb{R}$ is $T - (\alpha; \beta; a; b)$-convex function and f is locally bounded from above at a point of D. Then f is continuous on D.

Proof. Since $a(t_0)$ and $b(t_0)$ are not zero simultaneously, therefore, without loss generality, we may assume that $b(t_0) > 0$.

Since f is locally bounded from above at a point $x_0 \in D$, there exists a neighborhood U at x_0 and a constant $K \geq 0$ such that $f(x) \leq K$ for every $x \in U$. Let ε be an arbitrary nonnegative constant. Then there exists $n_0 \in \mathbb{N}$ such that if $n \geq n_0$, then
\[
a(t_n)K + [b(t_n) - 1] f(x_0) < \varepsilon,
\]
whence
\[
\frac{a(t_n)}{b(t_n)} K + \left[1 - \frac{1}{b(t_n)} \right] f(x_0) < \varepsilon.
\]

Let V be a neighborhood of 0 such that $x_0 + V \subseteq U$, and let $U' = x_0 + \alpha(t_n)V$. We prove that
\[
|f(x) - f(x_0)| < \varepsilon \quad (x \in U').
\]

For $x \in U'$ there exist $y, z \in x_0 + V$ such that
\[
x = \alpha(t_n)y + \beta(t_n)x_0,
\]
\[
x_0 = \alpha(t_n)z + \beta(t_n)x.
\]

Indeed,
\[
y - x_0 = \frac{1}{\alpha(t_n)}(x - x_0) \in \frac{1}{\beta(t_n)}\alpha(t_n)V = V,
\]
and
\[
z - x_0 = \frac{1 - \alpha(t_n)}{\alpha(t_n)}(x_0 - x) \in \frac{1 - \alpha(t_n)}{\alpha(t_n)}\alpha(t_n)V = (1 - \alpha(t_n))V \subseteq V.
\]

According to $T - (\alpha; \beta; a; b)$-convexity of f,
\[
f(x) \leq a(t_n)f(y) + b(t_n)f(x_0) \leq a(t_n)K + b(t_n)f(x_0),
\]
\[
f(x_0) \leq a(t_n)f(z) + b(t_n)f(x) \leq a(t_n)K + b(t_n)f(x).
\]

We get
\[
f(x) - f(x_0) \leq a(t_n)K + [b(t_n) - 1] f(x_0) < \varepsilon \quad (4)
\]
and
\[
f(x) \geq \frac{f(x_0) - a(t_n)K}{b(t_n)},
\]
which implies
\[
f(x) - f(x_0) \geq \left[\frac{1}{b(t_n)} - 1 \right] f(x_0) - \frac{a(t_n)}{b(t_n)} K > -\varepsilon. \quad (5)
\]

The inequalities (4) and (5) show that $|f(x) - f(x_0)| < \varepsilon$, that is f is continuous at x_0, which was to be proved. \(\square\)
Remark 2. The previous limit conditions are not necessary, since in the case of Jensen-convexity are not fulfilled. However, the result of Bernstein and Doetsch is valid for Jensen-convex functions. In contrary, the nonnegative monotone functions - which are not necessary continuous - belongs to a special class of the \((\alpha; \beta; a; b)\)-convex functions, to the class of Godunova-Levin functions. Therefore, in this setting, the limit conditions in question cannot be ignored.

3. Convexity property of rationally-\((\alpha; \beta; a; b)\)-convex

The following result offers a generalization of the theorem of Bernstein-Doetsch [1], Breckner [4], Burai-Házy-Juhász [2] and Házy [11] for rationally-\((\alpha; \beta; a; b)\)-convex functions.

Theorem 3. Let \(\alpha, \beta, a, b\) be given nonnegative, continuous functions satisfying the limit conditions

\[\lim_{t \to 0} a(t) = 0 \quad \text{and} \quad \lim_{t \to 0} b(t) = 1.\]

and \(\alpha(t) + \beta(t) = 1\).

Assume that \(a(t_0)\) and \(b(t_0)\) are not zero simultaneously for all \(t_0 \in \mathbb{Q} \cap [0, 1]\). If \(f : D \to \mathbb{R}\) is rationally-\((\alpha, \beta, a, b)\)-convex and locally bounded from above at a point of \(D\), then \(f\) is continuous and \((\alpha, \beta, a, b)\)-convex.

Proof. We prove that the function \(f\) is \(t_0 - (\alpha; \beta; a; b)\)-convex for all \(t_0 \in [0, 1]\). Let \(t_0 \in [0, 1]\) arbitrary. Then there exists a sequence \(\{t_n\}_{n \in \mathbb{N}}\) such that \(t_n \in \mathbb{Q}\) and \(t_n \to t_0\) (when \(n\) tends to \(\infty\)). Applying rationally-\((\alpha, \beta, a, b)\)-convexity of \(f\), we get

\[f(\alpha(t_n)x + \beta(t_n)y) \leq a(t_n)f(x) + b(t_n)f(y).\]

The local upper boundedness of \(f\) implies the continuity of \(f\) (according to Theorem 2). Therefore, taking the limit \(n \to \infty\) in (6), we get

\[f(\alpha(t_0)x + \beta(t_0)y) \leq a(t_0)f(x) + b(t_0)f(y),\]

which proves the \((\alpha, \beta, a, b)\)-convexity of \(f\). \(\square\)

Corollary 4. Let \(D \subset X\) be a nonempty, convex, open set and let \(h : [0, 1] \to \mathbb{R}\) be a given nonnegative, continuous function satisfying the limit conditions

\[\lim_{t \to 0} h(t) = 0 \quad \text{and} \quad \lim_{t \to 1} h(t) = 1.\]

and assume that \(h(t_0)\) and \(h(1 - t_0)\) are not simultaneously zero for all \(t_0 \in \mathbb{Q} \cap [0, 1]\).

If \(f : D \to \mathbb{R}\) is rationally-\(h\)-convex and \(f\) is locally bounded from above at a point \(D\), then \(f\) is continuous on \(D\) and \(h\)-convex.

Corollary 5. Let \(D \subset X\) be a nonempty, convex, open set. If \(f : D \to \mathbb{R}\) is rationally-Breckner \(s\)-convex and locally bounded from above at a point \(D\), then \(f\) is continuous on \(D\) and Breckner \(s\)-convex.

Theorem 4. Let \(T = [0, 1]\), \(\alpha, \beta, a, b : T \to \mathbb{R}\) be given nonnegative functions such that \(\alpha, \beta\) continuous on \(T\) and \(a(t) + b(t) = 1\). Let \(f : \mathbb{R}_+ \to \mathbb{R}\) an \((\alpha, \beta, a, b)\)-convex function. Then

(i) if \((\alpha + \beta)(T) = [r, 1]\) (where \(r < 1\)), then \(f\) is nondecreasing.

(ii) if \((\alpha + \beta)(T) = [1, r]\) (where \(r > 1\)), then \(f\) is nonincreasing.

(iii) if \((\alpha + \beta)(T) = [r_1, r_2]\) (where \(r_1 < 1 < r_2\)), then \(f\) is constant.
Proof. We have, for \(x > 0 \) and \(t \in [0, 1] \)
\[
f(\alpha(t)x + \beta(t)x) \leq a(t)f(x) + b(t)f(x) = f(x).
\]
Let \(\gamma = \alpha + \beta \). Then \(\gamma \) is continuous on \([0, 1]\).

In the case (i) we get \(\gamma(T) = [r, 1] \), where \(r > 1 \). Let \(u \in [r, 1] \) be arbitrary. Then there exists a \(t \in [0, 1] \) such that \(\gamma(t) = u \). This yields that
\[
f(ux) \leq f(x) \quad (x \in \mathbb{R}_+, u \in [r, 1]).
\]

If now \(u \in [r^2, 1] \) then \(u^{1/2} \in [r, 1] \). Therefore, by the fact that (7) holds for all \(x \in \mathbb{R}_+ \), we get
\[
f(ux) = f(u^{1/2}(u^{1/2}x)) \leq f(u^{1/2}x) \leq f(x)
\]
for all \(x \in \mathbb{R}_+ \). By induction we then obtain that
\[
f(ux) \leq f(x) \quad (x \in \mathbb{R}_+, u \in [0, 1]).
\]
Therefore, taking \(0 < u < v \) and applying (8), we get
\[
f(u) = f((u/v)v) \leq f(v),
\]
which means that \(f \) is nondecreasing on \(\mathbb{R}_+ \).

The proof of the cases (ii) and (iii) are similar. \(\square \)

The above results do not hold, in general, in the case of convex functions, because a convex function \(f : \mathbb{R}_+ \to \mathbb{R} \), need not be non-decreasing. But in the case of Orlicz s-convex function this is true.

Corollary 6. Let \(0 < s < 1 \). Let \(f : \mathbb{R}_+ \to \mathbb{R} \) an Orlicz s-convex function. Then \(f \) is nondecreasing.

Remark 3. In the paper of Hudzik and Maligranda [14] is gave an example which shows that the Orlicz s-convex function is nondecreasing on \(\mathbb{R}_+ \), but not necessarily on \([0, \infty)\). For the readers convenience we recall the example: let \(a, b, c \in \mathbb{R} \) and let
\[
f(x) = \begin{cases}
a & \text{if } x = 0 \\
bx^s + c & \text{if } x \neq 0.
\end{cases}
\]
Then if \(b > 0 \) and \(c < a \) then \(f \) is non-decreasing on \((0, \infty)\) but not on \([0, \infty)\).

4. Optimization

It is a very well known fact that every local minimizer of a convex function is a global one. The same is true for \((\alpha, \beta, a, b)\)-convex functions under some assumptions.

Theorem 5. Let \(X \) be a real or complex topological vector space, \(D \subset X \) be a nonempty open \((\alpha; \beta)\)-convex set, where \(\alpha, \beta, a, b : [0, 1] \to \mathbb{R} \) be given nonnegative, continuous functions satisfying the limit conditions
\[
\lim_{t \to 0} \alpha(t) = 0 \quad \text{and} \quad \lim_{t \to 0} \beta(t) = 1.
\]
and assume that \(a(t) + b(t) = 1 \).

Then every local minimizer \(x_0 \in D \) of an \((\alpha, \beta, a, b)\)-convex function \(f : D \to \mathbb{R} \) is a global one.
Proof. Let \(x_0 \in D \) be a local minimizer of \(f \). Then there exists a positive real number \(r \), such that
\[
 f(x_0) \leq f(y), \quad y \in U(x_0, r).
\]
Assume that \(x_0 \) is not a global minimizer. Then there exists \(z \in D \), such that \(f(x_0) > f(z) \). Using this and the \((\alpha, \beta, a, b)\)-convexity of \(f \), we have
\[
 f(\alpha(t)x + \beta(t)y) < a(t)f(x) + b(t)f(y) = f(x),
\]
which is a contradiction.

\[\square\]

Corollary 7. Every local minimizer of an Orlicz-convex function \(f : D \to \mathbb{R} \) is a global one. If the function \(f \) is strictly Orlicz-convex, then there is at most one global minimum.

Corollary 8. Every local minimizer of a convex function \(f : D \to \mathbb{R} \) is a global one. If the function \(f \) is strictly convex, then there is at most one global minimum.

References

Institute of Mathematics, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary
E-mail address: matha@uni-miskolc.hu