
ON APPROXIMATELY (k, h)-CONVEX FUNCTIONS
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Abstract. A real valued function f : D → R defined on an open convex
subset D of a normed space X is called rationally (k, h, d)-convex if it
satisfies

f (k(t)x + k(1− t)y) ≤ h(t)f(x) + h(1− t)f(y) + d(x, y)

for all x, y ∈ D and t ∈ Q∩[0, 1], where d : X×X → R and k, h : [0, 1]→ R
are given functions.

Our main result is of a Bernstein-Doetsch type. Namely, we prove that
if f is locally bounded from above at a point of D and rationally (k, h, d)-
convex then it is continuous and (k, h, d)-convex.

1. Introduction

Convexity and its generalizations are very important both in pure mathe-
matics and in applications. It is wildly known that in applications we can not
state convexity (generalized convexity) on the examined function, but we know
some convexity like (generalized convexity like) behavior on the function. This
means, we do not know weather the function in question is convex (generalized
convex) or not, but we know that it is close to a convex (generalized convex)
function. So, examining approximate convexity and approximate generalized
convexity is an important task mainly in terms of optimization theory.

On the other hand we can not know regularity on the unknown function in
general. Improving regularity of an unknown function is also an important and
useful topic not only in applications but in pure mathematics too. Improving
regularity means getting a stronger regularity property from a weaker one.

Several authors have dealt with the above mentioned questions. The first
approximate convexity result is due to Hyers and Ulam [HU52], where the
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authors used a constant error term. An another possibility to make a math-
ematical model of ”being close to a convex function” is to use a function
error term, which depends on the distance of the variables (see e.g. [LNT00]
or [Pal03]).

Probably the most significant result in the early history of regularity theory
of convex functions was developed by Bernstein and Doetsch [BD15]. They
proved that the local boundedness from above at a point of a Jensen convex
function implies its continuity and convexity as well on the whole domain.

The starting point of this work is a very recent generalization of convex-
ity, namely (k, h)-convexity. This notion of k-convex set and (k, h)-convex
functions were introduced in [MR12] by B. Micherda and T. Rajba and was
investigated in [Haz12].

Let k : (0, 1) → R be a given function. Then a subset D of a real linear
space X will be called k-convex if k(t)x + k(1− t)y ∈ D for all x, y ∈ D and
t ∈ (0, 1).

Let k, h : (0, 1) → R be two given functions and suppose that D ⊂ X is a
k-convex set. Then a function f : D → R is (k, h)-convex if, for all x, y ∈ D
and t ∈ (0, 1),

f(k(t)x+ k(1− t)y) ≤ h(t)f(x) + h(1− t)f(y).

They prove some properties of these sets and functions and gave some ex-
ample too. Now we introduce notion of (k, h)-convexity with respect to T .

Let X be a real or complex topological vector space, T be a nonempty set,
such that the following property fulfill:

t ∈ T if and only if 1− t ∈ T .

For example T = {1/2}, T = {t0, 1− t0}, or T is an interval (or an arbitrary
subset of R) which symmetric with respect to 1/2. Furthermore, T may be a
subset of C, but it can be a subset of Rn or Cn too.

Furthermore let D ⊂ X be a nonempty open, k-convex set (that is, k(t)x+
k(1 − t)y ∈ D whenever x; y ∈ D and t ∈ T ), and k, h : T → R be given
functions. We say the function f : D → R is T − (k, h)-convex function, if

f(k(t)x+ k(1− t)y) ≤ h(t)f(x) + h(1− t)f(y), (1.1)

for all x; y ∈ D and t ∈ T . To avoid the trivialities and the unimportant cases,
we suppose that there exists an element t0 ∈ T such that

k(t0)k(1− t0)h(t0)h(1− t0) 6= 0.

The concept of h convexity appeared first in [Var07] defined by Varošanec.
This is a far generalization not only of convexity (h(t) = t) but e.g. of s-
convexity (h(t) = ts , 0 < s ≤ 1) due to Breckner [Bre78], and other classes of
functions (see [Var07] again) too.
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We examine such functions which are ”close to” a (k, h)-convex function
in some sense. A function, on which some natural requirements are made,
measures the error. More precisely: let d : X ×X → R be given. A function
f : D → R is said to be (k, h, d)-convex if

f (k(t)x+ k(1− t)y) ≤ h(t)f(x) + h(1− t)f(y) + d(x, y) (1.2)

for all x, y ∈ D and t ∈ [0, 1]. We are using two other concepts, rational
(k, h, d)-convexity and t-(k, h, d)-convexity, which mean f fulfills (1.2) only for
all rational t or a fixed t (0 < t < 1) respectively.

In the earlier investigations, ‖x− y‖p (p > 0) or a linear combination with
positive coefficients of such expressions were applied as an error term (see
e.g. [LNT00], [Pal03], [HP05]). Other type of approximate convexity were
investigated in [BHJ09, BHJ11, BH11, MP10, MP11a, MP12a, MP12b]. These
define metrics on X, where the distance of two points does not change if we
translate them, and they possess some kind of homogeneity property. Thus,
generalizing and summing of the previous attributes simultaneously, we as-
sume that d is a ψ-subhomogeneous, translation invariant semimetric, namely

(i) d(x, y) ≥ 0,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y),

(iv) d(x+ z, y + z) = d(x, y),

(v) d(ux, uy) ≤ ψ(u)d(x, y)

for all x, y, z ∈ X and u > 0, where the function ψ : R+ → R+ is bounded.
The first three property declare that d is a semimetric on X, (iv) states the
translation invariance of d, and (v) is the subhomogeneity of d with respect to
ψ.

In the sequel d always denotes a continuous, ψ-subhomogeneous, translation
invariant semimetric.

2. Main results

We have two main results. The first one is a regularity theorem on rationally
(k, h, d)-convex, and (k, h, d)-convex functions. The second one is on (k, h, d)-
convexity of rationally (k, h, d)-convex functions.

It is very important to note, that we suppose some technical conditions on
h, namely we assume

lim
t→0

h(t) = 0 and lim
t→1

h(t) = 1 (2.1)

henceforth. We draw the reader’s attention to the fact, that the special func-
tions mentioned in the introduction fulfill these conditions.
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Theorem 1. Assume that d(x, x) = 0, and f : D → R is a rationally (k, h, d)-
convex or (k, h, d)-convex function. If f is locally bounded from above at a point
of D, then it is continuous on D.

Theorem 2. Assume that d(x, x) = 0, and f : D → R is a rationally (k, h, d)-
convex function. If f is locally bounded from above at a point of D, then it is
(k, h, d)-convex.

It is clear that we can not expect the continuity of f without continuity
assumption on d. Keeping in mind the nonnegativity of d, it seems natural to
assume d(x, x) = 0.

It is worthy to mention the fact, that these theorems do not remain true
with t-(k, h, d)-convexity assumption on f . On the other hand, it is an open
problem, to find the smallest (in some sense, e.g. measure, category etc.)
subset of the unit interval, such that the theorems remain true if f fulfills
(1.2) only for all t from this subset. We know that any dense subset of [0, 1]
is enough.

3. Proofs of the main theorems

We begin with two lemmas. In the first one we deal with boundedness of
t-(k, h, d)-convex functions. We recall that a function f : D → R is called
locally bounded from above at a point of D, if there exists a neighborhood U
of this point such that f is bounded from above on U , and f is bounded from
above on D, if it is bounded from above at every point of D. One can define
local lower boundedness, and boundedness at a point or on the whole domain
in a similar way.

Lemma 1. Let k, h : T → R be given nonnegative functions and let t0 ∈ T
be fixed such that k(t0)k(1 − t0) 6= 0 and k(t0) + k(1 − t0) = 1. We assume
that h(t0) and h(1 − t0) are not zero simultaneously. Furthermore let D ⊂
X be an open, nonempty, k-convex set, and let f : D → R be a t0-(k, h)-
convex function. Then the t-(k, h, d)-convexity of a function and the locally
boundedness from above at a point of its domain implies the locally boundedness
of the function on the whole domain.

The next result states that the local upper boundedness of a rationally
(k, h, d)-convex function at a point of D yields its continuity at this point as
well.

Lemma 2. Let T =
{

1
n

}
n∈N. Let k, h : T →]0,∞[ be given continuous

functions such that k
(

1
n

)
+ k

(
1− 1

n

)
= 1 for every n ∈ N. Let d(x, x) = 0

and f : D → R be a (k, h, d)-convex function with respect to T (or rational
(k, h, d)-convex). If f is locally bounded from above at a point of its domain,
then it is continuous at the same point.
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Proof of Theorem 1. According to Lemma 1, f is locally bounded at every
point of D. So, we can use Lemma 2, which implies the continuity of f at
every point of D. �

Proof of Theorem 2. We prove that the function f is t-(k, h, d)-convex for all
t ∈ [0, 1]. Let t ∈ [0, 1] arbitrary. Then there exists a sequence {tn}n∈N such
that tn ∈ Q and tn → t (when n tends to ∞). Applying rational (k, h, d)-
convexity of f , we get

f (k(tn)x+ k(1− tn)y) ≤ h(tn)f(x) + h(1− tn)f(y) + d(x, y). (3.1)

The local upper boundedness of f implies the continuity of f (according to
Lemma 1). Therefore, taking the limit n→∞ in (3.1), we get

f (k(t)x+ k(1− t)y) ≤ h(t)f(x) + h(1− t)f(y) + d(x, y),

which proves the (k, h, d)-convexity of f . �

4. Corollaries and applications

In this section we show some applications of the previous results. We begin
with a corollary, which is an immediate consequence of Lemma 1. We call f
(k, h, d)-convex with respect to S ⊂]0, 1[, if f fulfills (1.2) only for all t ∈ S.

Corollary 1. Let f : D → R be a (k, h, d)-convex function with respect to
S ⊂]0, 1[. If f is locally bounded from above at a point of D, then it is locally
bounded on D.

If the underlying space is of finite dimension, the local boundedness from
above assumption can be weakened. Using Theorem 1, Theorem 2 we get the
following two corollaries.

Corollary 2. Let D be an open, convex subset of Rn, f : D → R be a rationally
(k, h, d)-convex function, and d(x, x) = 0. If there exists a set S ⊂ D of
positive Lebesgue measure, such that f is bounded from above on S, then f is
continuous, and (k, h, d)-convex on D.

Corollary 3. Let D be an open, convex subset of Rn, f : D → R be a rationally
(k, h, d)-convex function, and d(x, x) = 0. If there exists a Baire-measurable
set S ⊂ D of second category, such that f is bounded from above on S, then f
is continuous, and (k, h, d)-convex on D.

Theorem 1, Theorem 2, Lemma 1, and Lemma 2 are far generalizations of
earlier theorems.

We get [BHJ09, Theorem 2.] from Lemma 1 with d ≡ 0, and h(t) = λs

(λ ∈]0, 1[ is fixed here).
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With d ≡ 0, and h(t) = ts, we get [Bre78, Satz 2.1] from Lemma 2. With the
same casting one can deduce [Bre78, Satz 2.2 and Korollar 2.3] from Lemma
1, and Theorem 1 with Theorem 2 respectively.

We have [Kuc85, Theorem 6.2.1., Theorem 6.2.2., Theorem 6.2.3. 148 p.]
from Lemma 1 with h(t) = 1

2 and d ≡ 0.
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