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Abstract

A synthesis of previous literature is used to derive a model of an in-service
direct-spring pressure relief valve. The model couples low-order rigid body
mechanics for the valve to one-dimensional gas dynamics within the pipe.
Detailed laboratory experiments are also presented for three different com-
mercially available values, for varying mass flow rates and length of inlet
pipe. In each case, violent oscillation is found to occur beyond a critical pipe
length, which may be triggered either on valve opening or closing. The test
results compare favorably to the simulations using the model. In particu-
lar, the model reveals that the mechanism of instability is a Hopf bifurcation
(flutter instability) involving the fundamental, quarter-wave pipe mode. Fur-
thermore, the concept of the effective area of the valve as a function of valve
lift is shown to be useful in explaining sudden jumps observed in the test
data. It is argued that these instabilities are not alleviated by the 3% inlet
line loss criterion that has recently been proposed as an industry standard.
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1. Introduction

This paper summarizes and extends recent scientific investigations into
the mechanisms of instability in pressure relief valves (PRVs) and considers
their implications for practical operation. The overall aim is to develop a
new comprehensive understanding of the issues that affect valve stability
in operation, in order to influence a new set of design guidelines for their
operation and manufacture. In particular we shall combine theoretical model
studies with tests of fully instrumented valves within representative pipe
geometries. This paper will focus specifically on direct spring-loaded PRVs in
gas service, particularly considering the combined effect of the valve dynamics
with acoustic pressure waves within its inlet pipe.

A considerable amount of scientific literature has been published on the
description and analysis of valve systems. Green and Woods (1973) provided
the first comprehensive discussion of the possible causes of valve instabili-
ties, suggesting that they can be induced as a result of five different effects:
the interaction between the poppet and other elements, flow transition from
laminar to turbulent during opening and closing, a negative restoring force,
hysteresis of the fluid force, and fluctuating supply pressure. This paper shall
focus on the first of these, specifically instability due to interaction between
the valve and the inlet pipe (although, as we shall see, this can also be in-
terpreted as an effective negative restoring force on the valve provided by
an acoustic wave). Instabilities due to the other four effects identified by
Green and Woods have been analyzed by a number of other authors (Kasai,
1968; McCloy and McGuigan, 1964; Madea, 1970a,b; Nayfeh and Bouguerra,
1990; Vaughan et al., 1992; Moussou et al., 2010; Beune, 2009; Song et al.,
2011). Conventional PRVs subject to built-up back pressure have also been
widely investigated (Francis and Betts, 1998; Chabane et al., 2009; Moussou
et al., 2010). In this paper we do not consider effects of downstream piping.
Oscillations in other valve systems have also been studied, e.g. in plug valves
(D’Netto and Weaver, 1987), compressor valves (Habing and Peters, 2006),
ball valves (Nayfeh and Bouguerra, 1990), pilot-operated two-stage valves
(Botros et al., 1997; Zung and Perng, 2002; Ye and Chen, 2009) and control
valves (Misra et al., 2002). Again, such studies go beyond the scope of the
present work.

The first serious discussion of self-excited instabilities of poppet valves
emerged in the 1960s. Funk (1964) discussed the influence of valve chamber
volume and pipe length within a hydraulic circuit on the stability of a pop-

3



pet valve. He found that such valves are inclined to become unstable at a
critical frequency that coincides with the fundamental vibratory mode of the
pipeline. Moreover, the severity of the instability increases with the length
of the pipe. Kasai (1968) developed this analysis by deriving equations of
motion for such a poppet valve and inlet piping system. Based on linear sta-
bility analysis, he established formulas for predicting instability in the valve.
The results were shown to be in broad agreement with experiments. A sim-
ilar configuration was studied by Thomann (1976) who found that the valve
motion can couple to the acoustic oscillation of the pipe, leading to amplified
oscillation of the system. He also developed analytical criteria for the loss of
stability, finding good agreement with experiments. Later, MacLeod (1985)
developed a model that includes gas dynamical issues such as choked flow
capable of predicting the region of stable operation of a simple spring loaded
PRV mounted directly onto a gas-filled pressure vessel.

In the 1990s Hayashi (1995) and Hayashi et al. (1997) carried out detailed
linear and global stability analyses of a poppet valve circuit and showed rep-
resentative examples of ’soft’ and ’hard’ self-excited vibration. They revealed
that for the same conditions several pipe vibration modes can become simul-
taneously unstable, with the number of unstable modes increasing with pipe
length. These results agree with those obtained by Botros et al. (1997) who
find that for higher values of the pipe length two modes evolve in the system
while for lower values of the pipe length the vibration is primarily in the fun-
damental, quarter-wave mode. They also found that maximum amplitude
occurs when the oscillation frequency coincides with the quarter-wave natu-
ral frequency; for lower and higher values of the pipe length the amplitude
decreases.

In early work by two of us (Licsko et al., 2009), we used nonlinear dynam-
ical systems methods to analyze a low-order system of ordinary differential
equations describing a simplified version of the set up used by Kasai (1968)
and Hayashi et al. (1997), ignoring the effect of the pipe. Here we showed
that upon reduction of the inlet flow rate, loss of stability is due to a Hopf
bifurcation (also known as a flutter instability in aeroelastics) is initiated by
a so-called self-excited oscillation; a dynamic instability which is present in
the system even in the absence of explicit external excitation. The system
was further investigated by Hős and Champneys (2012), where we elucidated
the nature of grazing bifurcations in the system that underlie the onset of
impacting motion between the valve and its seat, and performed detailed two-
parameter continuation. At the same time, Bazsó and Hős (2013a) report
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experimental results in a hydraulic system that showed qualitative agreement
to the nonlinear dynamics predicted by Licsko et al. (2009). That paper also
presented a preliminary stability map that shows the frequency of the evolv-
ing self-excited vibration along the boundary of loss of stability, again for
hydraulic application. Furthermore, Bazsó et al. (2013b) provide a detailed
mathematical derivation of the model studied here in section 2, which ex-
tends the reduced-order model of Licsko et al. (2009) to include the more
realistic effects of a downstream inlet pipe. The present paper though is the
the first to compare that model with experimental data and to consider the
practical application of the findings of the model. It should be noted that
our model and conclusions bear similarities with that used in the study by
Izuchi (2010). Our work though has far more detailed test data and we have
also identified the key parameters and mechanisms affecting instability.

In parallel to the scientific literature, there has been industry-funded
studies into the safe operation of pressure relief systems. For example, the
American Institute of Chemical Engineering (AIChE) founded in 1976 the
Design Institute for Emergency Relief Systems (DIERS) whose twin aims are
the reduce pressure producing accidents and to develop new techniques to
improve the design of relief systems. Meanwhile, the American Petroleum
Institute (API) have funded their own internal program into the causes of
PRV instability. Many of their findings are included in the draft 6th edition
of API standard RP520 Part II. In particular, the standard is careful to
point out the difference between valves undergoing three different types of
behaviour, all of which have previously been referred to as instability. These
are

1. cycling,

2. valve flutter, and

3. valve chatter.

Here, cycling refers to a valve that opens and closes multiple times during a
pressure-relief event. Typically this behaviour is of low frequency (< 1Hz)
and can be caused either by valve oversizing or inlet pressure loss causing
the pressure to drop transiently, and the valve to shut. As pressure builds
up again, the valve re-opens, with this chain of events happening repeatedly.
In contrast, flutter is a high-frequency self-excited periodic oscillation of the
valve (typically > 10Hz) that does not result in the valve completely closing
off. Finally, chatter is a more violent form of rapid oscillatory motion that
involves the valve repeatedly impacting with its seat at high frequency. The
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API RP520 standard is less clear on the precise causes of flutter or chatter-
ing instability mechanisms, but resonant coupling between the valve and its
pipework, or instabilities being triggered from periodically shed vortices have
been postulated as possible causes of flutter.

One of the aims of this paper is to explain these three phenomena in
terms used in the recent scientific literature. In particular, we shall show
that the onset of flutter can be regarded as a Hopf bifurcation (which is
also commonly known as flutter in the aeroelastic research community). As
shown in detail in simplified models (Licsko et al., 2009; Hős and Champneys,
2012), chatter often arises as the amplitude of the limit cycle resulting from
a Hopf bifurcation grows to the extent that the valve body touches the valve
seat. This causes a so-called grazing bifurcation that causes the onset of
more violent, repeatedly impacting motion. Cycling behaviour is, as we have
mentioned, better understood industrially and is not the subject of this paper
per se. Nevertheless we do show in Section 4.3 below that our mathematical
model is capable of reproducing this behaviour.

To avoid cycling, the API standard proposes that the line pressure loss
should be less than 3% of the set pressure. However, as we shall see, this
is not sufficient to prevent self-excited flutter or chatter instabilities in the
valves we have tested.

The remainder of this paper is outlined as follows. First, Sec. 2 presents a
mathematical model that combines the rigid-body dynamics of a direct spring
valve with 1D gas dynamics within the pipe. The valve model is sufficiently
complex to consider realistic valve design parameters such as set pressure
and a prescribed relation between the effective valve area and the valve’s
lift. Then, in Sec. 3 we present a detailed validation of the model against
test data performed on three different commercially available valves. In each
case we run a pressure run-up and run-down event for for several different
mass flow rates and inlet pipe lengths. A detailed comparison between model
and data is presented, and close agreement is found for both the nature of
the instabilities observed and for the flow rates and pipe lengths for which
instability is triggered. This leads to a detailed discussion in Sec. 4 which
identifies the possibility of dynamic jumps due to steepness of the effective
area versus lift curves, and the origin of cycling, flutter and chatter. These
terms are also explained using the language of nonlinear dynamical systems
theory, in order to provide a link between the practical engineering literature
and more scientific studies. Finally, Sec. 5 provides a summary, including
some tentative conclusions on how instability may be prevented in future,
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Figure 1: Definition sketch of the mathematical model

and gives an outlook to the results of future studies.

2. Model development

Consider the system depicted in Fig. 1 consisting of a reservoir, a pipe
and a direct spring-loaded valve. The reservoir is taken to be perfectly rigid
with volume V , pressure pr (that might vary in time) and temperature Tr.
The mass flow rate ṁr,in of the compressible fluid entering the reservoir is
presumed either to be constant or to vary slowly when compared to other
timescales present in the system (notably valve and pipe eigenfrequencies ).
The change of state in the reservoir is assumed to be isentropic, that is, there
is no heat exchange with the surroundings and there are no internal losses.
The mass outflow from the reservoir is in general assumed to be time varying.

The flow in the long, thin pipe with diameter D, length L and friction fac-
tor f is assumed to be captured by one-dimensional unsteady gas-dynamics
theory, including the effects of wall friction. Such an approach captures the
inertia of the fluid, its compressibility and pressure losses, which allows for
the presence of both wave effects and damping.

The valve body is modeled as a single degree-of-freedom oscillator that
obeys a Newtonian equation of motion. The mass of the moving parts is m,
the spring constant is s, the viscous damping coefficient is k. The set pressure
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is adjusted by varying the spring pre-compression x0. The pipe pressure close
to the valve body will be denoted by pv, which is in general time-dependent.
In contrast we assume constant back-pressure p0 behind the valve.

2.1. Valve body dynamics

The valve itself consists of an inertial mass, the valve body, and a pre-
compressed spring. The motion of such PRVs are usually very weakly damped.
Nevertheless, we shall include some very low, nearly zero viscous damping
in the model to represent the internal damping of the spring and the drag
and added-mass effect of the fluid, see e.g. (Khalak and Williamson, 1997;
Askari et al., 2013). The motion of the valve disk can be described as a
single degree-of-freedom rigid body, with mass m, spring constant s and vis-
cous damping with coefficient k. The pre-compression of the spring will be
denoted by x0 while xv stands for the displacement of the valve disk. The
governing equation is thus given by

mẍv + kẋv + s(x0 + xv) = Ffluid(xv, pv), for xv > 0, (1)

where a dot represents differentiation with respect to time.
The fluid force consists of two parts: pressure force and momentum force

due to the deflection of the fluid jet, see the left-hand side of Figure 2. We
have

Ffluid(xv, pv) = pvA+ ṁ (vf,v + vf,j cos β) , (2)

where pv is the pressure beneath the valve, A = D2π/4 is the pipe cross-
section, ṁ is the mass flow rate through the valve, vf,v and vf,j are the mean
fluid velocities in the pipe and in the jet, respectively, and β is the jet angle.
We assume that the density change is negligible between the valve end of
the pipe and jet, hence ṁ = ρvAvf,v = ρvAft(xv)vf,j with Aft(xv) = Dπxv
being the valve flow-through area (see Figure 2 for details). Upon using the
standard choked discharge equation (6) (see the next sub-section for details),
we have

Ffluid(xv, pv) = pvA

(
1 + c2C2

d

Aft(xv)

A

(
Aft(xv)

A
+ cos β

))
:= pvAeff(xv)

(3)
The function Aeff will be referred to as effective area, which is defined as

the force on the valve divided by the fluid pressure pv. Introducing this quan-
tity enables us to combine the pressure and momentum force into a single
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expression, thus greatly simplifying the analysis. However, analytical esti-
mation based on (3) requires a priori knowledge of the flow deflection angle
β, which is highly non-trivial and depends not only on the valve geometry
but also on the valve lift. Moreover, the effective area is likely to be a de-
tailed function of the valve’s geometry, (blow down rings, huddling chamber
or shroud, etc.) and the fluid mechanics within the valve’s orifices. We have
found it convenient to characterize a valve by the variation of this effective
area with valve lift. As we shall see, the stability of a valve can be greatly
affected by the shape of this effective-area versus lift curve, which can be
measured or computed by means of CFD as in Bazsó and Hős (2013b)) for
each individual valve. See, for example, the right-hand side of Fig. 2 for a
schematic or Fig. 11 below for an actual measured effective area curve).

Once the valve body hits the seat, i.e. when xv = 0 with ẋv < 0, we apply
the impact law

ẋ+
v = −rẋ−v , (4)

where ẋ±v are the valve velocities immediately before and after the impact
and r is a coefficient of restitution.

On the other hand, if the valve is closed xv = 0 and the mean flow in the
pipe is zero (so that xv = 0 and ẋv = 0), the reservoir pressure at which the
valve opens, the so-called set pressure, is given by

pset =
sx0

Aeff(0)
+ p0 . (5)

2.2. Reservoir dynamics and discharge flow rate

When modeling the fluid dynamics in the orifice (i.e. at the valve) and
the reservoir pressure dynamics, we should keep in mind that we are trying
to capture the behaviour of PRVs. Such valves are only designed to open
when there is a significant pressure difference between the upstream pressure
and the downstream pressure, as given by (5). It is therefore reasonable to
assume that this difference is large enough for choked flow to occur. This
means that flow reaches the sonic velocity at the narrowest cross section, the
so-called vena contracta and hence the downstream pressure does not affect
the flow rate; for details, see Zucrow and Hoffman (1976).

As an illustration to quantify when such a choked flow assumption is valid,
consider the case of air, whose specific heat ratio is κ = 1.4. Straightforward
calculations reveal that choking occurs if the pressure ratio pv

p0
is greater than

1.893, which is clearly the case for pressure relief devices used in practice.
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prv_zoom_and_Aeff.pdf

Figure 2: The momentum force on the valve (left) and a typical effective area curve (right);
notice the rapid increase close to zero lift which is indicative of the blowdown effect of the
valve.
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Note that we do not assume that back-pressure is necessarily ambient, merely
that it is constant.

The mass flow rate through the valve is given by

ṁ = CdAft(xv) c
√
ρv pv, (6)

where Cd is the empirically derived discharge coefficient,

c =

√
κ

(
2

κ+ 1

)κ+1
κ−1

(7)

and κ is the gas’s heat capacity ratio. And Aft is the valve’s flow through
area which unlike the effective area, is a pure function of geometry, which we
write as

Aft = Dπxv,

The imbalance between the inflow and outflow rates results in a change
in the reservoir pressure. We assume that the fluid obeys the ideal gas
law, p/ρ = RT , and that the process in the reservoir is isentropic, p/ρκ =
constant. Mass balance in the reservoir of volume V therefore gives

dm

dt
= V

d

dt
(ρr(t)) = V

d

dt

(
p(t)

RT (t)

)
= ṁin − ṁout (8)

Given an ambient reference state p0, T0, the temperature can be related to
the pressure via

T (t) = T0

(
pr(t))

p0

)κ−1
κ

, (9)

which gives

ṗr = κ
RT0

V

(
pr
p0

)κ−1
κ

(ṁin − ṁout) =
a2

V
(ṁin − ṁout) , (10)

with a =
√
κRT being the sonic velocity associated with the reservoir tem-

perature T .
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2.3. Pipeline dynamics

The flow inside the pipe is assumed to be compressible, one-dimensional
and any pressure loss can be attributed to wall friction. The gas is assumed
to be ideal but the change of state is not fixed hence, besides the usual
continuity and momentum equations of gas dynamics, we also need to solve
an energy equation (Zucker and Biblarz, 2002; Zucrow and Hoffman, 1976).
We also assume a constant pipe cross section and that the flow is adiabatic,
that is there is no heat flux through the walls. Under these assumptions, the
gas dynamics equations can be written in the compact vector form

∂U
∂t

+
∂F
∂ξ

= Q, (11)

with

U =

 ρ
ρv
ρe

 , F =

 ρv
ρv2 + p
ρev + pv

 , and Q =

 0

ρf v|v|
2D

0

 .

Here ρ(ξ, t), v(ξ, t). p(ξ, t) and e(ξ, t) are the density, velocity, pressure
and energy distributions respectively, which are assumed to be functions of
both the axial coordinate ξ and time t. The overall energy e of the gas can
be expressed as the sum of the internal energy cvT and the kinetic energy
v2/2. Assuming the gas to be ideal, we can eliminate temperature via T =
p/(ρR). The source vectorQ takes the wall friction into account via a friction
coefficient f , see Bazsó et al. (2013a) for more details of this derivation.

The boundary conditions are defined as follows. At ξ = 0, the reservoir
end of the pipe, we assume isentropic inflow into the pipe. That is, the total
enthalpy at the reservoir and at the pipe entrance are assumed equal:

cpTv = cpT (0, t) +
1

2
v2(0, t). (12)

Note that this boundary condition assumes inflow into the pipe, but dur-
ing cycling or violent chatter behaviour, care has to be taken to implement
correct modifications to this condition (using the isentropic method of char-
acteristics) to account for either outflow or choked flow. At ξ = L, the valve
end of the pipe, we set the mass flow rate leaving the pipe to be equal to the
mass flow rate through the valve. Thus, we have

Av(L, t)ρ(L, t) = CdAft(xv)c
√
ρ(L, t)p(L, t). (13)
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2.4. Solution technique

Putting the above pieces together, the model consists of the equation
of motion of the valve (1), (4), the reservoir dynamics (10) and the pipeline
dynamics (11) with boundary conditions (12) and (13). Note that the system
of equations is fully coupled; we do not solve for the valve motion and pipe
flow separately. The coupling arises through the boundary conditions (12),
(13) of the partial differential equation (PDE) system (11) and the right-hand
side forcing terms of the ordinary differential equations (ODEs) (1) and (10).

The model is solved using a finite difference scheme, implemented in Mat-
lab. In each time step ∆t the ODEs (1) and (10) are solved using a standard
Runge-Kutta technique, while the PDE system solved using a standard Lax-
Wendroff finite difference scheme (described, for example, in Cebeci et al.
(2005) or Warren (1983)). The spatial step length ∆ξ is chosen to be uni-
form and to satisfy the CFL condition, ∆ξ = max(a+ |v|)∆t. This criterion
ensures that information propagation does not jump over any cell during one
time step. Once the pipeline dynamics is updated, the valve and reservoir
dynamics are also integrated from t to t+ ∆t. Finally, the boundary condi-
tions (12) and (13) are solved in an iterative way. Hence, the dynamics of
the three elements are integrated in a fully coupled way. During a typical
simulation, a minimum of 20 grid points are placed along the pipe; hence a
minimum of 20 time steps are taken during one full pipe oscillation period
T = L/a.

Experimentation with more grid points showed this choice to be suitable
to resolve the gas dynamical effects in the pipe with high fidelity. Notably,
wave propagation and reflections at the ends could be reliably reproduced.
The computational effort required was found to be such that a typical com-
putation took 5–10 minutes on a standard desktop PC.

3. Experimental results and model validation

In what follows we shall describe the results of simulations of the above
equations of motion, to match experimental results on three commercially
available valves, with product codes 1E2, 2J3 and 3L4. The actual parameter
values used in the simulations are given in Table 1. Unless otherwise stated,
the effective area Aeff = D2

effπ/4 was taken to be constant.
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Quantity Symbol 1E2 2J3 3L4 Units

Mass flow rate ṁr,in 0-3 0-15 0-16 lbm/s
Pipe length L 0-72 0-72 0-72 inch
Pipe diameter (nom. inner) D 1.049 2.067 3.068 inch
Effective pressure diameter Deff 0.635 1.6043 2.3493 inch
Reservoir volume V 375 375 375 ft3

Total effective moving mass m 0.976 3.358 14.43 lbm

Spring constant s 415 714 688 lbs/inch
Damping coefficient % of kcrit 4.9% 2% 1% lbs s/inch
Set pressure pset 452 253 100 psi
Coefficient of discharge Cd 0.93 0.93 0.93 -
Coefficient of restitution r 0.8 0.8 0.8 -
Maximum lift xmax 0.204 0.472 0.770 inch
Ambient temperature T0 293 293 293 K
Ambient pressure p0 14.7 14.7 14.7 psi
Gas constant R 288 288 288 J/(kgK)
Specific heat ratio κ 1.4 1.4 1.4 -

Table 1: Parameter values used for each of the three valves.

3.1. Experimental set-up

The general experimental set up used is depicted in Fig. 3. The test rig
consists of a reservoir connected to the test valve via a standing pipe. The
reservoir is fed with nitrogen gas through a sonic nozzle allowing constant
inflow, so that upstream reservoirs (not depicted in the figure) can effectively
be considered to be infinitely large. Besides direct valve displacement mea-
surements, several pressure and temperature measurements were also taken,
as indicated in the figure. All sensors were sampled at 1kHz with a standard
desktop PC.

Each valve was tested for several different pipe lengths, chosen from
among pipes of length 12, 18, 24, 48, 72 inches and at mass flow rates which
represent 30, 50, and 100% of that valve’s nominal flow rate.

Constant inlet mass flow rate was set with the help of a sonic nozzle. The
mass rate of flow at the sonic nozzle was computed by means of the ASME
Research Report on Fluid Meters (see Bean (1971)):

14



Control valve Sonic nozzle Line blind

Reservoir

Test port Regulator

Test valve

p1 T1

p2 T2

p3

p4

x

Pressure tap, 
pipe bottom

Pressure gauge,
valve inlet

Displacement
indicator

Test pipe 

section

L

Figure 3: Schematic representation of the experimental test rig

ṁ

[
lbm
s

]
= Caφ∗i

(
φ∗

φ∗i

)(
p1t√
T1t

)
(14)

where C stands for the discharge coefficient (for ASME flow nozzles C =
0.990), a is the throat area of sonic-flow primary element p1t and T1t are the
inlet stagnation pressure and temperature, respectively. φ∗i is the sonic-flow
function (φ∗i = 0.52295) and φ∗

φ∗i
is the ratio of the real-gas sonic-flow function

and the sonic-flow function, which can be obtained from tables. The actual
value for nitrogen is φ∗

φ∗i
= 1.0130.

During the measurements, the control valve before the sonic nozzle was
opened, resulting in constant inflow to the tank and an increase to tank
pressure. Once the tank pressure reached the set pressure of the valve, the
PRV opened and was found to either operate in a stable manner or to become
unstable to flutter. In both cases, after a few seconds the tank regulator
valve was opened, which allowed the tank pressure to reduce and led to the
re-closure of the valve.

3.2. Test results

Typical measurement results are shown in Figs. 4–7 showing examples of
both stable and unstable operations.
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Figure 4: Example of a stable test for valve 2J3 with drive pressure 500 psig and an inlet
pipe of 24 inches. (Upper panel) Valve lift, depicted as percentage of maximum lift, which
is represented by a dashed line. (Lower panel) pressure at the reservoir (red) and valve
(black) end of the pipe.

Figures 4 and 5 show the two extremes of the observed dynamics: a stable
opening-closing cycle and an unstable one, respectively. Note in the stable
case Fig. 4, that even though there are no oscillations of the valve body, there
are sudden ’jumps’ in the valve’s lift; a single ‘jump up’ to maximum lift on
opening, and a sequence of ‘jumps down’ as the valve closes. This issue will
be addressed in Sec. 4.1 below. Note also, that that the jumps on opening
and final closing cause impulsive, rapidly decaying oscillations in the pipe
that are not translated into the valve motion.

In contrast, Fig. 5 depicts a completely unstable valve cycle: after open-
ing, the valve goes immediately unstable, and vibrates heavily. Note that
these oscillations are of the most extreme kind, chatter, under the classi-
fication outlined in Sec. 1, because the valve lift reaches zero during each
oscillation cycle. Each closure involves a hard impact of the valve with its
seat. The resulting vibrations are strongly audible and, were it not for extra
strengthening procedures that were instigated in the lab, would have likely
permanently damaged the valve. Note also that the valve motion is clearly
coupled to that of the pipeline and we observe severe pressure pulsations.

We have also found examples where the valve is stable on opening but
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Figure 5: Similar to Fig. 4 but showing a completely unstable test for valve 2J3 with drive
pressure 500 psig and an inlet pipe of 72 inches. The unrealistically high displacement
measurements are due to a lost contact between the displacement transducer and the valve
shaft.

unstable on closing, see Fig. 6. Here note the initial oscillation, at around
16 seconds, can be classified as flutter, using the scheme outlined in Sec. 1
because the valve does not impact with its seat. There is a sudden transition
though into chatter at around 19 seconds, at which point the oscillations
became strongly audible.

Figure 7 shows another intermediate case, where a flutter instability is
triggered on opening the valve at around 3 seconds, which abruptly ends
at 4.5 seconds. A similar instability is then triggered on closing the valve,
which apart from a brief grazing event at around 15 seconds does not develop
into chatter. Note that the final large excursion into large positive lift is a
measurement failure, as in Fig. 5 when the displacement transducer lost
contact with the valve as the valve closed.

Figure 8 shows a close-up of valve displacement and pressure fluctuation
measured over several periods of steady, limit cycle oscillation during flutter.
Zooming in on these pressure fluctuations, over this short time scale, we
observe that the pressure at the top of the pipe is one quarter of a cycle
out of phase with that at the tank end. Moreover, the valve oscillation is
half a cycle out of phase with the pressure. This data is typically of all the
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Figure 6: Similar to Fig. 4 but showing a case where the valve is stable on opening but
unstable on closing. Valve type: 3L4, pipe length: 4 ft, 50% of capacity flow rate.

oscillatory motion we have observed during flutter, and will prove important
in Section 4 where we seek an explanation for this phenomenon.
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Figure 7: Similar to Fig. 4 but where the valve is stable on opening but unstable on closing.
Valve type: 3L4, pipe length: 6ft, 100% of capacity flow rate.
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Figure 8: Close-up of valve displacement (upper panel) and pressure (bottom panel) mea-
surements during flutter. In the pressure plot, the almost constant solid black line shows
tank pressure and the solid red line shows the pressure at the valve end of the pipe; the
set pressure is represented by a dashed line. (parameters: 3L4 valve, 4 ft pipe, mass flow
rate: 50% of capacity)
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3.3. Comparison with simulations

We have performed a large number of numerical computations, which
will be analyzed later in detail. At this point we only emphasize that we
have been able to replicate all this behaviour using the simulation model as
shown for example in Figure 9 and 10. In the simulations below, we used the
effective area curve depicted in the upper left panel of Figure 11.
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Figure 9: Comparison between experimental data and model simulation for valve size 3L4
at 50% of capacity (i.e. 6 lbm/s).

Figure 9 shows a comparison between experiment and simulation on a
range of tests for the valve 3L4 with a mass flow rate 50% of the valve’s
capacity rating, but for different pipe lengths. Note the strong qualitative
and good quantitative comparison between the two sets of data. Note also
that this has been achieved without any parameter fitting, except for taking
a reasonable, ballpark estimate of valve damping k. Nor have we bothered
with measuring and fitting an accurate effective area versus lift curve. This
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figure also highlights the general trend we have seen in both the tests and
simulations; namely that for each value of mass flow rate, there is a critical
pipe length beyond which instability occurs. For pipes just longer than this
critical length, the amplitude of the fluttering motion grows and transitions
into chatter, becoming more violent with increasing pipe length.

We have experimented with changes to how the convective terms in the
equations of motion are introduced, how much pipe friction was included,
with the coefficient of damping and found that each of these had a weak
effect on the location of the critical pipe length at which instability occurred.
The same is true of the shape of the effective area curve, although this did
seem to change some of the transient dynamics close to the instability point,
particular in whether instability was seen on opening, on closing or both.
Changes to the coefficient of restitution obviously only affected the post-
chattering motion and had no influence on the location of the instability
point.

Figure 10 shows similar data for a much smaller valve, the 1E2. This
valve is designed to withstand much greater pressure build up. Again we see
the same trends in the data and the same level of correspondence between
the simulations and the test data, although we do note that the instability
when it occurs appears more immediately and with larger amplitude in the
simulation than the data. Careful fitting of damping parameters and effective
area curves would likely produce a stronger degree of quantitative similarity.

4. Identification of instability mechanisms

We shall now explore our experimental and computational findings in
more detail. In particular the mechanisms by which instabilities are triggered
will be elucidated.

4.1. Valve jumps

The first issue we discuss is the possibility of a static instability (i.e.
sudden jump in the valve lift without long-lasting oscillations). Such effects
can be seen on valve opening in the test data in Fig. 7 where there is a jump
up in valve lift on initial valve opening that triggers a flutter instability
followed a second such jump that causes the instability to suddenly cease).
Similar effects can also be observed on valve closing in the test and simulation
data in Fig. 9 where there are two jump downs, the second of which triggers
a chatter type instability for a short time before the valve closes for good.
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Figure 10: Comparison between experimental data and model simulation for valve size
1E2 at 50% of capacity (i.e. approx. 1.15 lbm/s).

We have found that such effects can be explained by consideration of the
shape of Aeff(xv), the effective area versus lift curve, as we now explain.

Suppose that x0
v is the static equilibrium lift for a given valve pressure pv

and consider a small perturbation xv = x0
v+ε while valve pressure pv remains

approximately constant. This is a reasonable assumption to leading-order
since pressure is constrained in practice to be no more than 10% above set
pressure when the valve is fully open. Then, to leading order, ε satisfies the
differential equation

mε̈+ κε̇+ sε = A′0ppε,+O(ε2) where A′0 =
dAeff

dxv

∣∣∣∣
x=x0v

(15)

where A′0 stands for the slope of the effective area curve evaluated at the
equilibrium valve lift, see the upper panel of Figure 11, where measured data
and a curve fit through that data are shown.
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Figure 11: Measured static instability curves for the 2J3 valve and the prediction of jump
instabilities. Left: upper panel — effective area curve as a function of valve lift (here
A1 stands for seat area), measured values (thin blue line) and curve fit (dashed black
curve); bottom panel — effective spring constant which is calculated from the slope of
the measured effective area curve (dashed black line) and spring constant (horizontal red
line) as a function of the valve lift. For a given valve lift (x/xmax value) the equilibrium
is stable if the spring stiffness is larger than the slope of the effective area curve. Right:
simulation data with for a particular run of the J23 data in which jumps can be observed
for the unstable lift values predicted by the theory in the left-hand panel.

Notice from (15) that the equilibrium valve lift is stable as long as the
effective spring stiffness

seff = s− A′0pp > 0.

This is because the term seff multiplies the linear displacement term ε in the
equation. However, if seff becomes negative (i.e. the effective area curve is
too steep), then we have a negative stiffness term (multiplying ε). Hence
the equilibrium lift becomes unstable. At such a point we would have a
so-called fold (or saddle-node) bifurcation, see e.g. Kuznetsov (2004) which
would result in a jump to another (stable) equilibrium position. Note that
for the results in Fig. 11, the unstable portion is between about 42% and
65% lift for this valve.

Note that this prediction is borne out in the experimental measurements,
see the right-hand panel in Fig: 11, which shows dynamic jumps occurring
in a run in which a valve opens and then closes. Note that the jumps up
and jumps down occur approximately as the displacement enters the region
where the analysis predicts instability, that is between about 42% and 65%
valve lift.
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4.2. Flutter and chatter

The flutter instability bears all the hallmarks of a Hopf bifurcation, see
e.g. Kuznetsov (2004). Such instabilities are characterized, upon quasi-static
parameter variation, by a transition to negative damping. In the so-called
supercritical version of the bifurcation, a stable limit cycle motion ensues,
whose amplitude grows like the square root of the distance of the parameter
from its bifurcation point. The period of the limit cycle is related to the
imaginary part (frequency) of the eigenvalue of the linearized system at the
instability point.

We have conducted a careful analysis of the valve motion and the pres-
sure dynamics, notably extracted the frequency content of the experimentally
measured valve displacement signals with the help of the fast Fourier trans-
form (FFT). As shown in Table 2, once the valve goes unstable to flutter,
the dominant frequencies obtained from both the displacement and pressure
signals are close to the pipe quarter-wave frequency, i.e. fqw = 4L/a with a
being the sonic velocity, and are a long way from the valve spring’s own res-
onant frequency. Note that the measured dominant frequencies are slightly
lower than the quarter-wave frequency, which is due to the inertial effects on
the end of the pipe as explained e.g. in Ih (1993).

This mode of instability is also consistent with the recordings shown in
Fig. 8 where we see the motion at the two ends of the pipe are a quarter
of a cycle out of phase with each other. Although not presented here, the
1E2 and the 3L4 valve measurements resulted in similar results. Hence we
conclude that close to the critical pipe length, when the valve starts to flutter,
the mode of vibration that is involved in the Hopf bifurcation is that which
corresponds to a quarter standing wave in the pipe. Note that this is a
coupled mode that involves both the fluid and the valve; see for example
Fig. 8 where the valve oscillates at the same frequency as the fluid pressure,
albeit half a cycle out of phase as one would expect from physical principles.

This conclusion that the mode of instability at the Hopf bifurcation in-
volves a quarter standing wave is confirmed by the simulations. Figure 12
shows typical results for a pipe length just beyond that for which instability
is triggered. This again confirms that the valve and the fluid are oscillating at
the same frequency, and the mode shape inside the pipe is clearly apparent.

4.3. Cycling and the 3% inlet pressure loss criterion

It is well known that over-sized valves are susceptible to cycling behaviour.
Figures 13 and 14 show simulation results for the 3L4 valve at 6% of its
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Figure 12: Simulated instability for 2J3 valve with L = 24 inch and 30% of capacity (i.e.
close to the stability border). (a), (b) Time history of valve lift and pressure at valve
just after opening. (b),(c) Same information plot over one oscillation cycle. (d),(e) Mode
shape of the fluid flow and pressure in the pipe over half a cycle. Different line types in
each plot represent the same time instant, which are plot at intervals of 1/8 of one period
of oscillation.
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L [inch] mass flow rate
[lb/s]

dominant freq.,
experiment [Hz]

quarter-wave
frequency [Hz]

5.4 stable -
24 9.2 stable -

13.2 stable -
5.4 85.62 96.05

48 9.2 83.68 96.23
13.2 83.37 95.98
5.4 62.34 64.13

72 9.2 61.98 64
13.2 66.16 64.14

Table 2: Frequency content of the valve displacement signal (measurements) versus the
calculated pipe quarter-wave frequency (from the model) in the case of the 2J3 measure-
ments. Note that the valve eigenfrequency is 45.6Hz.

maximum flow rate. In the first case, for a short pipe, the valve opens into a
stable regime. The pressure relief is such that too little fluid escapes during
the initial valve opening that the pressure continues to build up again in
the tank. This then causes repeat openings, in a periodic very low frequency
cycle. Such behaviour is not intended but is not likely to be damage inducing.

In contrast, Fig. 14 shows the same effect, but for a much longer pipe.
Here when the valve opens, it is into a regime that is well into the instability
region, and chatter immediately ensues. Each time the valve opens there is a
period of rapid chattering behaviour. This behaviour is likely to be damage
inducing.

Cycling can also occur at higher flow rates, when the inlet piping pressure
loss is too much. It has been recommended in the API standard RP520 that
this pressure loss should be kept to under 3% of set pressure. The critical
pipe length corresponding to the ‘3% rule’ can easily be calculated, under
standard assumptions about frictional losses of pipes of a given parameter.
We briefly recall that the pressure loss due to wall friction in a straight pipe
is given by (see Zucker and Biblarz (2002) for details)

∆p′ = λ
L

D

ρ

2
v2 = λ

L

D

ρ

2

ṁ2

ρ2A2
, (16)

from which it is straightforward to find the critical pipe length L for which
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Figure 13: Simulation of cycling behaviour for the 3L4 valve with a 24 inch pipe at 6% of
its maximum mass flow rate.
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Figure 14: Similar to Figure 13 but for a 72 inch inlet pipe.

∆p′ = 0.03 × pset. Specifically, we used λ = 0.02 for Darcy friction factor,
which is being four times larger than the Fanning friction factor (Zucker and
Biblarz, 2002). This critical pipe length is plot on top of the stability maps
for each of the pipes which we present in the following subsection.

4.4. Stability charts

Figures 15, 16 and 17 present a summary of the stability information we
have found for each of the three valves. The solid magenta curve in each
figure shows the flutter boundary as computed using the simulation. This
was computed by visual inspection of the output of simulation runs each
mass flow rate at intervals of 0.1 lbm/s. A simple bisection method was
then used to find the critical pipe length at which the Hopf bifurcation is
observed. This curve therefore represents the transition from stability (lower
pipe lengths) to instability (longer pipes).
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Figure 15: Stability map for valve 1E2, see text for details.

On the same diagram we have plot the results of each of the experimental
test runs, categorizing each run as either stable (marked with a red circle) or
unstable (a red cross). In cases where different stability characteristics were
found upon valve opening and on closing, this is marked by both a circle and
a cross.

Note the broad agreement between the location and the trend of the
instability curve between experiments and simulations. We should stress
here that there has been no parameter fitting whatsoever to achieve this
result.

Superimposed on each stability chart is the 3% inlet pressure loss crite-
rion derived from (16). Note how this curve has very little correlation with
the flutter instability boundary we have computed. This is hardly surprising,
since this curve is supposed to represent a completely different effect, namely
a threshold beyond which a valve may be susceptible to low frequency cy-
cling, rather than the onset of a self-excited high-frequency Hopf bifurcation
associated with the quarter-wave mode in the pipe.
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Figure 16: Similar to Fig. 15 but for valve 2J3.

5. Summary and outlook

In summary, we have produced a detailed, validated, fully parametrized
mathematical model of a direct spring operated pressure relief valve con-
nected by a pipe to a tank. There is a good match between simulation
outputs from this model and detailed experimental measurements on three
different commercially available valves.

Within this model, we have found that the effects of line pressure loss
are not important, although running the valve at low flow rates can result
in cycling in which the valve is prone to low-frequency oscillation with the
valve closed for a significant proportion of each period. Such instabilities are
not likely to be damage-inducing provided the valve opening itself is stable.

We have also found that the design of the valve can itself cause a form
of static instability, in which the valves position jumps. These jumps can
be predicted by analyzing the new concept we have introduced here of the
effective-area versus lift curve. A simple criterion that compares the slope
of this curve to the valve stiffness can be used to predict these jump points.
However, such instabilities do not lead to flutter or chatter behaviour, but
can contribute to cycling, or to rapid transitions between stable and unstable
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Figure 17: Similar to Fig. 15 but for valve 3L4.

operation.
Much more serious is a self-excited instability (a Hopf bifurcation) due

to a coupling between the valve and a pressure wave in the inlet pipe. We
should stress that the observed instability is not in any sense due to resonant
coupling between the valve and the pipe’s natural frequency. Rather it is a
fully coupled mode of instability in which the valve in effect provides negative
damping to the lowest-frequency wave within the pipe, namely the quarter
wave.

Moreover, we have been able to trace, both theoretically and in experi-
ments, a critical curve in pipe-length vs. mass flow rate, beyond which the
instability occurs. This we can think of as a neutral stability curve. Beneath
this curve, the valve effectively provides damping to the acoustic pipe mode;
whereas above it, we have the negative damping. Note the shape of the
neutral stability curve is that for a pipe of a given length, the instability is
triggered upon reducing the mass flow rate. For longer pipes (equivalently,
lower mass flow-rates) the amplitude of the valve oscillations can become
so-extreme that the valve first grazes with its seat. This leads to impacting
motion, or chatter. As first identified in Licsko et al. (2009), in terms of
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dynamical systems theory, the transition to impacting motion is an example
of a grazing bifurcation.

A much more delicate question is how the instability may be prevented in
practice. Any in-service pressure-relief event is in truth a transient operation,
and there may be insufficient time at a given mass-flow rate in order to trigger
an instability. In particular, the aim of any operation would be to be at a flow
rate beyond the critical mass flow-rate for stability for the given inlet pipe
length. This suggests that rapid opening of the valve to a sufficiently high
flow rate, or rapid closing from a high flow rate to a low one may be one way
of avoiding instability in practice. Indeed, this was effectively observed in
our experimental data, in which we found different thresholds for instabilities
upon opening the valve than upon closing.

One thing to note from the study by Izuchi (2010) is that friction effects
for very long pipes can have a stabilizing influence. We have found no direct
evidence for this effect in neither our test data nor simulations. However,
it may be that we need to investigate much longer inlet pipes to observe
this effect. However, in longer pipes, other pipe modes may additionally
become relevant, as shown in Hayashi (1995) and Botros et al. (1997), who
predict further instabilities for longer pipes. This issue is worthy of further
investigation.

We should stress that our conclusions on the mechanisms of instability
are strictly speaking only valid for the particular valves tested in the particu-
lar parameter region studied. Nevertheless, the mechanisms of instability we
describe appear quite general, as evidenced by their occurrence for three sep-
arate valves we have tested, and preliminary modeling studies that suggest
that they occur for a wide range of different parameter values. Moreover,
our mathematical model approach is in principle easily extensible to capture
for example effects of back pressure, pilot-operated valves, and relief valves
in liquid. Each of these will be addressed in future work. Indeed, prelimi-
nary analysis relevant to liquids (based on the study in Hős and Champneys
(2012)) has revealed another mode of instability that involves the valve’s
resonant frequency, without exciting quarter waves within the pipe.
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