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Abstract: A new, alternative form of the golden rule formula defining the non-adiabatic transition rate 

between two quantum states in condensed phase is presented. The formula involves the quantum time 

correlation function of the energy gap, of the non-adiabatic coupling, and their cross terms. Those 

quantities can be inferred from their classical counterparts, determined via MD simulations. The 

formalism is applied to the problem of the non-adiabatic sp →  relaxation of an equilibrated p-

electron in water and methanol. We find that, in both solvent, the relaxation is induced by the coupling 

to the vibrational modes and the quantum effects modify the rate by a factor of 2-10 depending on the 

quantization procedure applied. The resulting p-state lifetime for a hypothetical equilibrium excited 

state appears extremely short, in the sub-100 fs regime. Although this result is in contrast with all 

previous theoretical predictions, we also illustrate that the lifetimes computed here are very 

sensitive to the simulated electronic quantum gap and to the strongly correlated non-adiabatic 

coupling. 
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I. Introduction 

The importance of non-adiabatic (NA) relaxation in condensed phase physics and 

chemistry has attracted significant scientific attention in the last decades. With the rapid 

advance of theoretical methodologies and experimental techniques, it has become possible to 

gain insight into the microscopic nature of NA processes, of which proton and electron 

transfer, vibrational relaxation, and intermolecular energy redistribution are the most 

prominent examples.1  

In most computational treatments, liquid phase NA processes are modeled by mixed 

quantum-classical simulation techniques. In mixed quantum-classical methods, one describes 

a limited number of physically relevant degrees of freedom quantum mechanically, while the 

rest, the bath, is treated classically.2-9 In practice, the calculation of NA decay rates is 

generally based on the time-dependent perturbation theory. The most straightforward 

approach employs the Fermi golden rule to compute the NA decay rate from the simulated 

adiabatic Born-Oppenheimer dynamics.5,6,10 The great advantage of using the Fermi golden 

rule is that, beyond its simple form, it expresses the transition rate in terms of a time 

correlation function (TCF).    

In fact, the TCF formalism is a very effective tool in investigating various problems of 

statistical mechanics, in particular, phenomena in condensed phases.11-22 It is well known that, 

while classical TCF’s can be employed safely only in those systems where quantum effects 

are negligible, the computation of full quantum mechanical TCF’s is still out of reach for 

systems with a large number of degrees of freedom. This poses a serious obstacle, since one 

has to resort to predicting the full quantum TCF’s from the classical or mixed quantum-

classical analogs. A possible approximate route to circumvent the quantum many-body 

problem, an a posteriori quantization of classical TCF’s, has been recognized, and several 
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approximate quantization schemes have been proposed in the literature.13-19 Although, it has 

become clear that the general solution of the problem is unlikely, and the applicability of 

various approximation schemes may be limited to specific problems, the method is still of 

great scientific interest.18-22 In particular, the key issue is the critical application of the 

approximations to well-chosen, well-defined physical problems. Several other related 

approaches have been developed in the literature, of which we mention the dispersed 

polaron/spin-Boson Hamiltonian approach for evaluating the rate constant for electron 

transfer and related processes.23-25  

In this study, we propose a new, alternative form of the Fermi golden rule, in terms of 

quantum TCF’s, which is valid for a generic NA two-state process in condensed phase and is 

amenable to an a posteriori quantization of classically determined TCF’s. The formalism will 

be subsequently applied to the problem of the electronic relaxation of an equilibrated excited 

state solvated electron. The relaxation phenomena in solvated electron systems, the NA 

decay, and the subsequent solvent relaxation, are the direct reflection of the underlying strong 

solute-solvent coupling. For this reason the solvated electron has been considered as a 

sensitive probe and model of solvation dynamics, and has been the subject of several 

theoretical3,5-10,26-51 and experimental studies.52-63 Within our modified golden rule formula, 

we wish to calculate the classical decay rates, and compare them to the quantum transition 

rate obtained by quantizing the classical TCF’s. This comparison may shed light on the 

contributions of the different nuclear modes, and clarify the applicability of the presently 

employed quantization schemes to the solvated electron relaxation problem. The comparison 

of the classical and quantum rates makes it also possible to characterize decoherence, a 

recurring issue in mixed quantum-classical approaches.38-41,51,64,65 For this problem, we will 

follow closely the Prezhdo-Rossky treatment of decoherence.40  
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We consider two solvents, water and methanol, in the present study. For water, the 

interpretation of pump-probe experiments in terms of solvent reorganization dynamics and/or 

excited state population decay is still a controversial issue. The NA decay times inferred from 

experiments range presently from 50 to ~1000 fs.  According to an early scenario proposed by 

the Barbara group,55,56 the NA decay of the excited state occurs within ~200 fs and is 

followed by a ~1 ps relaxation of the ground state. Their later experiments were interpreted in 

terms of a ~300 fs solvent relaxation in the 2p-excited state followed by a NA decay with a 

time constant around 1 ps.57,58 More recent work by Assel et al.,59,60 supported the former 

scenario. Very recently Pshenichnikov et al.61 have performed photon-echo experiments with 

very short (5 fs) pulses and they have concluded that the p-state lifetime should be much 

shorter than stated before, ~50 fs, with an (expected) 2  kinetic isotope effect in heavy 

water. From theoretical point of view, the results are also quite scattered and the 

determination of NA decay rates from MD simulations seems to depend drastically on the 

water model, the electron-water pseudopotential, and the level of quantum simulation 

methodology employed. Using a golden rule approach with an equilibrated excited state 

trajectory, and with a rigid, polarizable water model, Staib and Borgis obtained a NA decay 

time of ~300 fs,6 whereas, with a similar approach but with a different flexible water model 

and incorporation of nuclear semi-classical (high-temperature) corrections, Neria and Nitzan 

predicted ~220 fs.5,10 Schwartz and Rossky have performed direct non-adiabatic simulations 

of an electron excited from its ground state to one of the p-states and they have monitored the 

subsequent relaxation, including solvent reorganization and surface hopping to the initial 

electronic state. Although their approach intermixes the two effects, they were able to extract 

an averaged p-state lifetime of 700 fs and they proposed an extrapolated lifetime of 450 fs for 

an equilibrated p-state.34,35 
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For methanol, no evident controversy seems present, but it must be noticed that 

experiments62,63 and simulations47-51 are less plethoric. The transient hole-burning experiments 

of Barbara et al. suggest a sp →  non-adiabatic decay of ~500 fs followed by an order of 

magnitude slower ground state solvation.63 From their  non-adiabatic MD simulations, Mináry 

et al. predicted  an equilibrated p-state survival time of ~660 fs, and they found also that, on 

average, the excited state solvation is complete by the time the electronic transition occurs.50 

This means that computing the decay rate independently, from an equilibrated excited state 

trajectory, is legitimate, and the overall relaxation process can be thought of as a three-step 

process, excited state solvent relaxation first, followed by non-adiabatic transition, and then 

ground state relaxation. The present work will focus mainly on the second step. 

The structure of the paper is as follows. In Sec. II we derive an alternative form of the 

full, quantum mechanical golden rule expression which is especially suitable for the 

application of the TCF formalism. Starting from the classical form of the golden rule 

expression we examine the harmonic quantization scheme17,18 in more detail, as well as the 

standard quantization15,16 for comparison. Sec. III shows and discusses the numerical results 

of our mixed quantum-classical simulations for a solvated electron in water and methanol in 

connection to available theoretical and experimental predictions. Evaluation of the classical 

and quantized rates is performed in time-domain and in frequency-domain formulation. We 

also point out a close connection of our formalism and decoherence. Sec. IV concludes the 

paper. 

 

II. Fermi Golden Rule Expression for Non-Adiabatic Electronic Transitions 

 

The golden rule expression for the thermal transition rate between two adiabatic 

electronic states, 1 and 2, may be written in a time-dependent form5,10,40 
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where H1 and H2 are the nuclear Hamiltonians corresponding to the first and second adiabatic 

electronic states, 1  and 2 , V is the non-adiabatic coupling operator resulting from the 

nuclear kinetic energy, and Tρ  is the canonical density operator for the thermal equilibrium 

of the nuclear modes, i, on the initial electronic surface 

 � −=
i

E
T iie

Z
i1

1

1 βρ , (2) 

with )Tr( 1
1

HeZ β−= , the canonical partition function. In the following, for the sake of 

compactness, we will adopt the ...  notation for thermal averaging (tracing) over the initial 

(nuclear) distribution.  

  According to the usual procedure,10,11,20,40 the coupling matrix elements are 

approximated by neglecting the second derivatives of the electronic wavefunction with 

respect to the nuclear coordinates,  

 �� ==
α

αααα
α

PSPPV 2121 , (3) 

where Pα are the conjugate momenta of the nuclear  mode α. 

Staib and Borgis introduced an alternative form for the NA transition rate writing6 
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where exp(+) is the time-ordered exponential, and  )(12 τH∆  and )(12 tV are defined as 

 �� /-iH/iH eHHeH τττ 11 )()( 2112 −=∆ , (5) 

and  
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 �� t/-iHt/iH eVetV 11 21)(12 = . (6) 

Note, that the dynamics involved occurs on the initial adiabatic surface with Hamiltonian 1H . 

Eq. (4) will serve as a starting point to derive another useful form of the golden rule. First, we 

use the following simple relation to bring an operator, A, to exponential form: 
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Application of Eq. (7) in the golden rule formula of Eq. (4) leads to 
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In the evaluation of Eq. (8), we successively employ the cumulant expansion of the 

exponentials including the cumulant expansion of the time ordered exponential to second 

order, and assume that the order of differentiation with respect to λ and tracing over the initial 

nuclear conditions can be exchanged. The procedure is similar in spirit to that of Nitzan and 

Silbey for the relaxation in simple quantum systems.66 The final form of the golden rule reads 

now as 
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where we introduced �/)()( 1212 τHt ∆=Ω , and δ stands for the fluctuations from the 

averages. With the expression of the coupling in Eq. (3), and noting that the momentum Pα is 
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odd in time, one can infer that the thermal average of the coupling matrix disappears. 

Consequently, we write for the quantum transition rate 
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Eq. (10), and the more general Eq. (9) represent two of the main results of the present paper. 

They provide fully quantum mechanical expressions for the transition rate using the cumulant 

expansion of the exponential operators up to second order as the only approximation beyond 

the original Fermi golden rule first order perturbation treatment. Note, that the great 

advantage of the above expressions is that they do not contain time-ordered exponentials, and 

that only thermal correlation functions for the relevant quantities appear in the transition rate. 

Despite the relatively simple form of the golden rule transition rate of Eq. (10), its 

application may still be cumbersome in practical applications mainly due to the difficulty of 

the evaluation of the quantum correlation functions. An attractive approach is to replace the 

quantum correlation functions by their classical counterparts computed from mixed quantum-

classical molecular dynamics simulations. The evaluation of the classical correlation 

functions is straightforward: �/)()( 2112 EEtcl −=Ω  is simply the energy gap of the quantum 

subsystem submerged in the classical bath. The transition rate, thus, simplifies in the classical 

limit to 
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where the quantum thermal averaging is replaced for classical averaging.  
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The rate can also be expressed in a more condensed form as5,10  

 )(
0

21 tKdtk �
∞

→ = , (12) 

where K(t) represents the real part of the integrand in Eq. (10) multiplied by 2/2 � . This 

quantity can be interpreted, in a Kubo sense, as the "chemical flux" correlation function 

associated to the transport coefficient constituted by the chemical rate.67-69  

In the remaining of the paper, for convenience, we drop the cl superscripts for the 

classical quantities. Instead, the quantum quantities will be denoted by a q index. To facilitate 

further discussion we can introduce the following (normalized and unnormalized) classical 

correlation functions: 
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where G(t) is the “dephasing function” defined by 
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and, in reference to the theory of band shapes in condensed phases,12 
2/12

12

−
Ω= δτφ  defines 

the classical dephasing time. 

The transition rate calculated from classical correlation functions, however, may differ 

significantly, even by several orders of magnitude, from the quantum rate as was illustrated 
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by studies of Berne and his co-workers.18,20,21 These authors also point out that the classical 

limit of Eq. (10) is not uniquely defined, with dynamics taking place on the average of the 

initial and final potential surfaces provide the most accurate result in cases examined.20 A 

posteriori quantization schemes of the classical correlation functions, that have been 

introduced mostly in a spectroscopic context,13-19 provide an effective way to include 

quantum effects. They have been reviewed and tested recently for simple analytical 

examples19 and for vibrational relaxation in liquids.22 The so-called harmonic quantization 

scheme assumes linear coupling of the quantum subsystem to a bath of linearly coupled 

harmonic oscillators.17,18 In that case, the quantized version of a classical correlation function 

) A(t)A( C(t) 0=  is written in the frequency domain as 

 )(ˆ
1

)(ˆ
1

2
)2/tanh(2

)(ˆ ωωβω
ωβ

ωβω ωβωβ C
e

C
e

C q
��

�

�

�

−− −
=

+
×= , (19) 

where )(ˆ ωC is the Fourier transform of the classical correlation function C(t), )(ˆ ωqC  is the 

quantized correlation function in the frequency domain, and β =1/kT. In the first equality, the 

first term accounts for the renormalization of the individual modes amplitude when going 

from the classical to the quantum regime, whereas the second one accounts for the detailed 

balance condition fulfilled by quantum correlation functions, )(ˆ)(ˆ ωω ωβ qq CeC �−=− . This 

formula transforms in the time domain to  

 ))sin()cos()2/(coth(
2

)(ˆ
)(

0

tit
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π
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∞

�
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. (20) 

Another well-known quantization method, the standard quantization scheme,15,16 which 

retains only the second multiplication factor of the first equality of Eq. (19), transforms to a 

similar expression: 

 ))sin()cos()2/)(coth(2/tanh(
)(ˆ

)(
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�� . (21) 
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The standard quantization, thus, accounts only for the detailed balance condition, but neglects 

the renormalization of the individual mode amplitudes. Several other quantization schemes 

have also been proposed in the literature, of which we can mention the Schofield,13 the 

Egelstaff,14 and the Kim-Rossky scheme.19 Since we believe that the electronic relaxation is 

predominantly coupled to the vibrational modes of the classical bath, it is the harmonic 

scheme which we examine in more detail in the present work. For comparison we also 

evaluate the rates with the standard quantization scheme. 

 If the harmonic quantization is chosen for )(tCΩ , )(tCV and )(tCVΩ , and if one 

defines the spectral density of C(t) as πωω /)(ˆ)( CJ = , then one finds the following formula 

for the quantum transition rate, similar to the one derived by Kubo and Toyozawa,11 and 

Egorov et al.,20 in terms of )(ωΩJ , )(ωVJ , )(ωΩVJ  as 

( )
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 (22) 

At this point, we note, that following similar work,11,20,40  we further simplified the coupling 

matrix elements in Eq. (22), by assuming that the S� terms (see Eq. (3)) are basically 

independent of the nuclear coordinates. The general expression of Eq. (22) relates to the 

formula discussed by Egorov et al.,20 for the particular case of a two-state system linearly 

coupled to a bath of harmonic oscillators in the Born-Oppenheimer linear diagonal coupling 

case. The relation of the formulas can be easily proved by using the Hamiltonian of Ref 20 

and the exact classical spectral densities for the correlation functions of Eq. (22). We, 

however, note a minor difference in the expressions for the last term of Eq. (22), (which 
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appears as modulo square in the work of Berne and his co-workers) and is the consequence of 

the application of the cumulant expansion to the time-ordered exponential. 

Eq. (22) illustrates two important points. First, one finds that Eqs (9) and (10) closely 

reproduce the quantum mechanical result of a simple, analytically solvable model. This 

illustrates the applicability of the modified golden rule formula. Perhaps this is not surprising 

considering that the approach is exact for constant coupling, and coupling linear in coordinate 

space. The fact that it gives results that are similar (not completely identical) to the exact 

analytical results discussed in Ref 20 for a coupling linear in momentum space is a good 

indication that the approximation remains reasonable beyond its domain of exact application. 

For more general couplings, one certainly has to rely on the general applicability of a second-

order cumulant expansion which has proved its accuracy in many instances beyond the linear 

coupling/harmonic bath case. On the other hand, it is also evident, that the application of the 

classical transition rate with the harmonic correction scheme (Eqs (20) and (22)) yields the 

identical transition rate derived from Eqs (9) and (10) for the same analytically solvable 

model. This finding is our main motive to use the harmonic correction scheme in the present 

study. Nevertheless, in order for Eq. (22) to be applicable for a particular problem, the two 

basic assumptions must be satisfied, namely, that the S� terms are nearly independent of the 

nuclear coordinates, and that the nuclear modes coupled to the quantum subsystem are 

predominantly harmonic. In our investigated model, electronic relaxation of an excited state 

solvated electron in water and methanol, both approximations appear to hold well.  

 

III. Application to a solvated electron in water and methanol 

 

A. Motivations 
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As stated in the introduction, the solvated electron has been the subject of intensive 

work in the past two decades. First, as the simplest quantum mechanical solute which can be 

conceived, it constitutes an ideal probe for solvation dynamics since no internal energy 

redistribution has to be considered. It is also perfectly suited to quantum/classical molecular 

dynamics simulations so that ultrafast time-resolved spectroscopy and theoretical predictions 

can be confronted. From a computational point of view, there are two ways to envision the 

problem. One route is to directly mimick the experiments on the computer and study the non-

adiabatic dynamics of the electron from a prepared excited electronic state via non-adiabatic 

simulation techniques. Another way, familiar in spectroscopy is to interpret the experimental 

signal in terms of bath dynamics (T2) and population relaxation (T1) times. Those times can be 

computed from MD simulations using linear response theory and the suitable Green-Kubo 

relation relating the observable quantity to the time integral of an associated correlation 

function. In this perspective, the solvation dynamics time can be related to the energy gap 

autocorrelation function in either the ground or excited state. The population decay rate can be 

obtained from the time dependent formulation of the Fermi golden rule developed in the 

previous section, where it was defined as the time integral of a “chemical flux” correlation 

function; see Eqs (10)-(12). Compared to direct non-adiabatic simulations, the correlation 

function approach has a number of potential weaknesses, in particular the validity of linear 

response for solvation dynamics and of first order perturbation theory for the population 

decay rates. Furthermore, solvent reorganization and electronic relaxation can be intertwined 

rather than well separated phenomena. On the other hand, if the separation is justified,  the 

theoretical expression of the third-order time-dependent pump-probe signal, involving, in 

general, a 4-time correlation function, reduces to a simpler expression involving the two-time 

correlation function of the energy gap and the non-adiabatic decay rates.44,70 These 

considerations motivate the present work. 
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B. Simulation results 

To compute the non-adiabatic decay from an excited p-state to an s-type ground state 

hydrated electron, we have performed adiabatic mixed quantum-classical molecular dynamics 

simulations of an excited state electron embedded in a classical water bath. The basics of the 

method can be found in Ref. 7. The details of the actual simulations are similar to our 

previous simulations in Ref. 46. The solvent bath consists of 1600 water molecules in a cubic 

simulation cell. The molecular interactions are described by three-site classical model 

potentials with added internal flexibility. The electron is treated quantum mechanically in a 

plane wave basis represented on 163 gridpoints equidistantly distributed in a box, with the 

edge length equal to half of the length of the simulation cell. The interaction between the 

quantum particle and the classical molecules is modeled by a pseudopotential.46 The nuclear 

configurations are adiabatically propagated on the potential surfaces using the sum of 

classical and Hellmann-Feynman forces. The simulation time step is 1 fs. The long-range part 

of the interactions and the forces are calculated using the Ewald summation technique 

including solvent-solvent and the solvent-electron interactions explicitly, similar to the work 

of Rossky and co-workers.42 We note, that it turns out to be quite difficult to generate lengthy 

stable equilibrium adiabatic excited state trajectories in the solvated electron systems; 

instability is signified by an unphysical collapse of the energy gap. Nevertheless, it is clear, 

that it is not the model that is at fault, but the accumulation of numerical errors that appears to 

cause the problem. For this reason, in the present work, we illustrate the use and 

consequences of the formalism introduced in Sec. II for a relatively short but stable, 20 ps 

long excited state hydrated electron trajectory.  

We have also considered results obtained from a stable 20 ps equilibrium excited state 

trajectory portion of a previous methanol simulation. The details of generating that trajectory 
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are very similar to those above, and are described in detail in Ref 51. We note, that in the 

methanol case the simulation box contained only 200 molecules, and we employed the 

modified pseudopotential of Zhu and Cukier.47,48 

In Figure 1, we display the time dependent frequency gap, )(12 tΩ , and the time-

dependent non-adiabatic coupling, �/)(12 tV , for water and methanol. Perturbation theory 

treatment of a non-adiabatic decay rate requires that the non-adiabatic condition 

1
)(

)(

12

12 <<
Ω

=
t

tV
λ  is fulfilled. It can be verified visually on the trajectories that this condition is 

generally fulfilled, with only rare (<1%) periods of time when the coupling magnitude 

exceeds the energy gap. Hence, both the water and methanol simulations appear well within 

the perturbative regime, 1<<λ , and one finds along the trajectories that 10.0≅λ . Thus, 

we believe, the application of a perturbative approach to the water and methanol trajectories is 

well justified.  

For the present models, the average energy gap turns out to be larger in water than 

methanol, 12H  = 431 meV and 12H = 275 meV, respectively corresponding to 12Ω = 

0.65 fs-1 and 12Ω = 0.42 fs-1. The smaller energy gap for the present (Turi-Borgis) 

pseudopotential46 relative to the Schnittker-Rossky pseudopotential (0.8 eV)32,42 can be 

attributed to the fact that the Turi-Borgis pseudopotential is both softer and finite at the 

oxygen origin.46 Note also, that, for methanol, the ground-state absorption spectrum computed 

with the pseudopotential of Zhu and Cukier is red-shifted relative to the experiment. A 

corresponding deficiency may carry over to the equilibrium excited state.48 In both solvents, 

as expected based on the discussion in Sec. II, the computed average coupling, 12V , is 

virtually zero. The different values found for the energy gap and the non-adiabatic coupling 
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are summarized in Table I for the two cases. Note, that the classical dephasing times 

2/12
12

−
Ω= δτφ  are very small in both solvents, around 5 fs. 

 The normalized energy gap correlation function for methanol and water are displayed 

in Figure 2. For water, the fast initial Gaussian part with a characteristic time of ~10 fs 

accounts for about 30% of the overall decay. The longer time decay occurs with a single 

exponential of ~700 fs characteristic time. Similarity of the present numbers to those obtained 

previously from the ground state equilibrium simulation indicates that the linear response 

theory holds well for the model.46 In the case of methanol, the initial Gaussian decay has a 

much smaller amplitude, and the overall decay is slower than for water. This fact has already 

been recognized for both the ground and excited state electrons,49 and it is a reflection of the 

slower overall rotational reorganization in methanol. Nevertheless, one can readily notice that 

for the correlation functions in water and methanol even the fastest decay takes place on a 

timescale which is longer than the dephasing time Φτ , so that the “homogeneous broadening” 

limit will apply to the thermal rate expressions. 

The normalized coupling autocorrelation function, )(tCV , and the coupling-frequency 

gap cross correlation function, )(tCVΩ , appear highly oscillatory and are best represented 

directly by their spectral densities. In Fig. 3 we show the coupling spectral density defined 

previously as πωω /)(ˆ)( VV CJ =  for water, and methanol. It is clear that the coupling 

fluctuations are entirely driven by the solvent vibrations. In both spectra, one can clearly 

distinguish the librational, bending, and O-H stretching modes. Further, these vibrational 

mode coupling amplitudes typically appear considerably blue-shifted with respect to the bulk 

vibrational density of states. This is an indication of the intensity of the interaction between 

the excited state electronic wave function and the nearest solvent molecules’  vibrations. These 

results are in accord with previous analysis of Prezhdo and Rossky.37 
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 C. Classical rates 

 Using the various computed correlation functions, we can directly generate the 

classical flux correlation function )(tK  of Eq. (17). The calculated functions are displayed in 

Fig. 4 for water and methanol. It can be seen that )(tK decays on an extremely fast timescale 

of a few femtoseconds. On this short timescale it appears that two simplifications can be made 

safely for the evaluation of the rate. First, the cross correlation term is, for short times, )( 4tΟ  

and can be neglected. Thus, )(tK  simplifies to 

 )cos()()(
2

)( 122
ttGtCtK V Ω=

�
. (23)   

This decorrelation approximation between coupling and energy gap was postulated in Ref. 6 

and is fully justified here. Furthermore, since solvent dynamics occurs on a slower timescale, 

the exponential function )(tG  can be replaced by a Gaussian function, leading to 

 )cos()(
2

)( 12
2
1

2

22
12

tetCtK
t

V Ω=
Ω− δ

�
. (24) 

The complete (Eq. (17)) and approximated (Eq. (24)) flux correlation functions are compared 

in Fig. 4. Clearly, they are undistinguishable on the scale of the figure so that Eq. (24) 

provides a very good (and simple) approximation. Then, the chemical flux function, )(tK , 

can be integrated in time according to Eq. (12) to provide the classical rate and the associated 

non-adiabatic transition time 1
2121

−
→→ = kτ . 

 We find fs6021 =→τ  for water, and fs16021 =→τ  for methanol. In both cases, this is 

much shorter than previous estimates also based on classical nuclear dynamics. Various 

reasons can be invoked for explaining this discrepancy. For water, the calculations of Staib 

and Borgis are the easiest to reason since those authors used a rigid water model, with no 

consideration of the intramolecular vibrational mode contributions,6 and it appears clear from 
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the coupling spectral density in figure 3 that this approach misses the dominant effect. It is 

possible to include the vibrational contributions in this rigid-water scheme by using a normal 

coordinate Taylor expansion of the electronic coupling around the water rigid geometry.71 

This procedure leads to conclusions which are close to those described in this paper. Neria 

and Nitzan, employing a Fermi golden rule approach similar to the one proposed here with a 

high temperature approximation to quantization of the nuclear dynamics,5,10 found a 220 fs 

lifetime. We can easily attribute this discrepancy to different electron-water pseudopotentials 

and the different water models. The rate is most sensitive to both the initial value of the 

coupling, 2
12V , and the average electronic frequency gap, 12Ω . These quantities do differ 

from one model to the other, and their influence on the computed rate will be discussed in 

more detail later in this paper. 

 The simulations of Schwartz and Rossky with the same water model and different 

pseudopotential32 resulted in much longer lifetimes in the half-picosecond range.34-36 These 

authors, however, have not applied an equilibrium golden rule, but, rather, performed non-

equilibrium non-adiabatic simulations, exciting an equilibrium ground state electron at time 

zero for a specific excitation wavelength and monitoring the subsequent solvation dynamics 

and non-adiabatic events. An estimated equilibrated p-electron decay rate is extracted from an 

extrapolation formula based on the observed survival times. For water, Schwartz and Rossky 

found that, on average, the radiationless transition occurs after the major part of the solvation 

dynamics is completed.34 Similar conlusions were drawn from non-adiabatic electronic 

relaxation trajectories in methanol by Mináry et al.50 These observations favour the possibility 

of decoupling the two types of entangled events. It might, however, also be true that our 

finding of a shorter lifetime for an equilibrated p-electron reflects the interdependency 

between solvation dynamics, spectral diffusion and electronic transition in the non-adiabatic 

dynamics. Before proceeding further in this discussion, it seems judicious to examine the 
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nuclear quantum effects on the transition rate. It is one advantage of the time correlation 

function approach that it allows for an easy incorporation of the quantum character of nuclear 

motions. We illustrate these considerations below. 

 

 D. Quantized correlation functions and quantum transition rates: Time domain 

formulation 

 For the procedure to compute the quantum corrections to the classical rate, we use the 

calculated classical spectral densities, in particular the one displayed in figure 3, and apply 

them in the time-dependent formula of Eq. (22). Integration of the equation in time results in 

the quantized rate. Note again, that this formula is based on the so-called harmonic 

quantization procedure which is likely to be valid here since the coupling to the bath occurs 

predominantly through the vibrational modes. For comparison, the standard15,16 quantization 

scheme will also be considered. The (normalized) quantized chemical flux correlation 

function )(tK q  is plotted in Fig. 5, and can be compared to the classical one. Again, the two 

approximations discussed previously, the neglect of the cross-correlation contribution, and the 

Gaussian approximation for the quantized dephasing function )(tG q , can be tested, yielding a 

simplified expression of  )(tK q  

 

 

 (25) 

where the quantized frequency gap fluctuation is defined by 
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In Eq. (26) πωω /)(
~

)(~
Ω= CJ  is the spectral density of the normalized classical energy gap 

fluctuation autocorrelation function. Eqs (25) and (26) provide an excellent approximation to 

( ) ( ) ( )( )�
�

�
�
�

�
−= �

∞Ω−Ω

0

2
1

sincos2/coth
2

)(Re)(
22

12
12 titJdeetK V

ttiq q ωωωβωβωω
δ

�
�



 21

the quantized classical flux correlation function (see Fig. 5). Interestingly, the computed 

quantized frequency gap fluctuations are increased only slightly relative to the classical 

counterparts. However, the values of the mean square of the coupling, 
q

V 2
12 , are a factor of 

approximately 6-8 times greater than the classical values (see Table I), implying a significant 

increase of the quantized rates. 

 The quantized rate can be obtained by direct numerical integration of Eq. (12). The 

non-adiabatic transition times (classical and quantized) are summarized in Table II. With the 

application of the harmonic quantization scheme we find q
21→τ = 4.0 fs for water, and q

21→τ = 17 

fs for methanol, respectively. There are (at least) two points to emphasize here. First, the 

quantum effects appear indeed very important, with roughly an order of magnitude between 

the classical and quantum answers. This fact can be expected since, as illustrated in Fig. 3, the 

coupling fluctuations are entirely dominated by the relatively high frequency solvent 

vibrational modes. The intensity of these modes (and of the associated velocities which 

appear in the non-adiabatic coupling 12V ) are multiplied by a factor ( )2/tanh2 ωβ
ωβ
�

�
 when 

going from the classical to the quantum limit. The second observation is that the quantum 

effects somehow overemphasize the conclusion already found in the classical case. We find 

that the lifetime of an equilibrated p-state in both methanol and water is extremely short, and, 

at the timescale of a pump-probe experiment, it could be even considered as “instantaneous”. 

The standard quantization scheme provides a somewhat slower relaxation, with q
21→τ = 30 fs, 

and q
21→τ = 80 fs, for water and methanol, respectively, but still predicts exceedingly fast rates. 

We will come back to the implication of these findings for the interpretation of pump-probe 

experiments below. Before that discussion, however, we find it instructive to discuss the 

quantum dephasing function )(tG q , and make a connection to the decoherence time 
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formalism introduced by Rossky and collaborators.38-41,51 We then look at the quantum rates 

from a different perspective, in the frequency rather than time domain.   

 

 E. Quantized correlation functions and quantum transition rates: Decoherence 

 Let us define a Gaussian decoherence function similar in spirit to that of Prezhdo and 

Rossky40 as )(/)()( tGtGtD q= , accounting for the nuclear quantum effects in the energy gap 

correlation function. Thus, we are lead to the following expression for the decoherence 

function 

 
22
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t
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==
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where dτ  defines the decoherence time  as 
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in the harmonic quantization scheme. In the high temperature limit of the frozen Gaussian 

wave packet formulation5,10,40,51 each normal mode (or each atom) is represented by a fixed 

Gaussian with a width na , which, is related to the De Broglie wavelength nλ  by 6/nna λ= . 

The decoherence time in this approximation may be approximated by 
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ωβωωδτ �
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Since the energy gap spectral density is known from the Fourier transform of )(
~

tCΩ  (Fig. 2), 

the decoherence time can be computed for both water and methanol by numerical integration 

of the integrals in Eqs (28) and (29). The computed decoherence times are collected in Table 

II. For methanol, we find dτ  = 16.5 fs and ht
dτ = 12.0 fs. This is very close to the results 

obtained recently by Turi and Rossky using the overlap between Gaussian wave packet 

trajectories starting from the excited state surface and propagating both on the excited and 
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ground state potential surfaces ( dτ = 16 fs and ht
dτ = 13 fs, respectively).51 A higher order 

expansion of the exponent with terms of order t4 gives an effective decoherence time, dτ = 14 

fs. In agreement with previous findings40,51 we computed shorter decoherence times for water 

than for methanol. For our simulation, the present formalism yields dτ = 7.5 fs, ht
dτ = 4.8 fs, in 

full agreement with the wave packet calculations of Prezhdo and Rossky.40  

  

 F. Quantized correlation functions and quantum transition rates: Frequency-

dependent expression of the rate 

 We have seen that the non-adiabatic coupling is predominantly modulated by the 

solvent vibrations (Fig. 3). Since the average excited state energy gap for both methanol and 

water models falls just in the bending/stretching region of the solvent vibrational spectra, one 

could invoke resonance phenomena which would be responsible for the surprisingly high 

value of the non-adiabatic decay rates. In order to quantify this assertion and to estimate how 

much each region of the solvent vibrational spectrum contributes to the rates, it is convenient 

to express the rate in a frequency dependent rather than time dependent form. For this, we 

return to the initial quantum rate formula, Eq. (10). If cross-correlation terms are neglected, as 

suggested above, the transition rate can be expressed as 

 )()(
1

12

221 tGtCedtk qq
V

ti

�
∞

∞−

Ω
→ =

�
, (30) 

where )(tC q
V  is the quantized coupling autocorrelation functions and )(tG q  is the quantized 

dephasing exponential function. Now we can write )(tC q
V  as a Fourier transform  

 )(ˆ
2
1

)( ωω
π

ω q
V

tiq
V CedtC �

+∞

∞−

= , (31) 

and substitute in Eq. (30). Performing the integration over t yields 
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 )(̂21 ωω kdk �
+∞

∞−
→ = , (32) 

where )(̂ωk  gives the contribution of the frequency ω  to the total rate. The frequency 

dependent rate contribution then reads as 

 )(̂)(ˆ
2
1

)(̂ ωω
π

ω WCk q
V= , (33) 

where )(̂ωW  is a "window function" defined by 
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The last equation follows from the previously discussed Gaussian approximation. Note, that 

following the time domain formulation of Eqs (12)-(23), another equivalent interpretation of 

the rate in Eqs (32)-(34) is the convolution, in frequency space, of the coupling correlation 

function )(ˆ ωq
VC  by the dephasing function )(ˆ ωqG , evaluated at the mean frequancy 12Ω . 

Using preferably the Gaussian window picture with the harmonic quantization scheme, the 

following final expression is reached for )(̂ωk :  
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A similar expression arises if the alternative standard quantization scheme of Eqs (21) is 

employed instead. In Fig. 6, we have displayed the frequency dependent rate, )(̂ωk , for 

water and methanol, together with the window function, )(̂ωW . It can be checked again that 

there is an important factor (~10) between the classical answer (obtained by suppressing the 

mode renormalization factor ωβ
ωβ

�

�

−− e1
in Eq. (35)) and the harmonic quantized answers. The 

standard quantization predicts a more moderate increase (a factor of 2) of the rates relative to 
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those quoted in the preceding section. We think that the harmonic quantization procedure is 

more appropriate here, since the contributing modes are vibrational. It is nonetheless 

reassuring that a different quantization procedure produces similar trends in decay rates.  

 In a more general context, we remark that the time dependent golden rule is often 

understood as a way to extract the bath-modulated coupling contribution at the mean 

frequency of the quantum subsystem. This is the essence of the Landau-Teller formula for 

vibrational energy relaxation.72,73 In our case, this statement means looking at the resonant 

frequencies 1
12 cm3400 −≈Ω=ω  for water, and 1

12 cm2300 −≈Ω=ω  for the present 

model of methanol. In the latter case, very little spectral contribution is found since this 

frequency falls in between the bending and stretching peaks. However, we find that the 

window function is quite broad in both cases, and the whole vibrational spectrum contributes 

almost equally to the overall rate. For water, the O-H stretching mode appears more favored, 

whereas for methanol the window function enhances the bending mode and dampens 

somewhat the stretching mode contribution. Therefore, it appears crucial here to go beyond 

the Landau-Teller approximation. We believe that this statement may also be true for the 

vibrational relaxation of H-bonded systems, where substantial band broadening effects are to 

be taken into account. 

 

 G. Discussion 

 As pointed out previously, the different pseudopotentials and the different classical 

interaction potential models may lead to substantially different rates mainly through the mean 

value of the coupling, 2
12V , and the average electronic energy gap, 12Ω . The following 

discussion illustrates this complex dependency on the example of the excited state hydrated 

electron.  
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Most of the pseudopotentials are selected based on ground state properties. Thus, the 

electronic gap when the excited state is occupied may be in error. Since the average gap 

appears explicitly in the various rate formulas derived previously, one can easily evaluate the 

effect of varying this quantity, with the assumption that fluctuations remain the same. In the 

frequency dependent formulation of Eqs (32)-(35) illustrated by Fig. 6, this amounts to 

shifting the window function while keeping the Fourier decomposition of the coupling 

correlation function unchanged. Furthermore, the coupling strength appears strongly 

correlated with the energy gap. This fact is already apparent in Fig. 1 and is further illustrated 

in Fig. 7 where we have plotted the probability distribution of the excited state energy gap of 

the hydrated electron, ( )ΩP , and the average value of 2
12V  sampled at each particular energy 

value �, denoted by ( )Ω2
12V . ( )Ω2

12V  decreases sharply up to about 0.5 eV, and then tends to 

zero more gradually. Averaging this quantity over the energy gap distribution yields the 

average value quoted in Table I; that is 

( ) ( )ΩΩΩ= �
∞

PVdV 2
12

0

2
12 .     (36) 

We also note that ( )ΩP  can be well approximated by a Gaussian distribution (see Fig. 7). To 

examine the impact on rates of this correlation between coupling and energy gap, we simply 

retain Eq. (36) and consider a simple shift in the energy gap distribution with changes in 

12Ω . This provides an appropriate scaled coupling strength which depends on the average 

energy gap, ( )12
2

12 ΩV , and we can estimate the overall variation of the decay rate with the 

average energy gap from Eqs (32)-(35). Fig. 8 shows the lifetime of the excited state electron 

as the function of the average energy gap for the classical case, as well as for the standard and 

harmonic quantization schemes. For the last case we also included a curve where the 

contributions of the very high frequency coupling (above 5500 cm-1), which are likely to be 

overemphasized by the harmonic quantization formula, have been removed. The excited state 



 27

lifetime is seen to increase sharply with increasing average energy gap.  For the standard 

procedure, which can be considered as the minimal quantum correction scheme, the lifetime 

reaches 1 ps by about 0.8 eV, while the harmonic approximation still predicts sub-100 fs 

lifetimes in a similar energy range.  While we believe that the harmonic approximation is 

justified in the present context, the finding of a 4 fs excited state lifetime, a time shorter than 

any other relaxation timescale of the system, is unphysical, and points to an inconsistency in 

this application of the equilibrium golden rule expression. The larger amplitude of the 

quantum solvent vibrational modes that follows vibrational quantization should increase the 

rate, but this effect seems overestimated in the harmonic approximation.  

 With the previous considerations in mind it is important at this point to return to our 

bare numerical results (Table II) and put them into perspective of time resolved spectroscopy. 

For water and methanol, our computed excited state electron lifetimes are extremely short, 

especially within the harmonic quantization procedure: a few femtoseconds for water, and 

around 20 fs for methanol. In a simple three-step picture of electronic relaxation after an 

ultrashort excitation pulse, the solvent begins by relaxing to adapt the electron cavity to the 

new electronic state. After complete relaxation, the p-s energy gap is minimal and a 

radiationless transition can occur with maximum probability. After the electronic transition, 

the solvent relaxes to the newly formed equilibrium ground state electronic distribution. With 

our computed rates, the second step appears quasi-instantaneous and the whole dynamics is 

driven by solvent relaxation. If linear response applies (which was verified in the present 

work for water, and by Mosyak et al. for methanol49), the excited state solvent relaxation 

occurs in water with a fast 10 fs inertial response followed by a ~300-700 fs exponential 

decay, and in methanol with a similarly fast initial Gaussian decay of 20 fs followed by a 

slower biexponential response with characteristic times of 1 and 7 ps (see Fig. 2). The ground 

state relaxation occurs with more or less the same characteristic times. If one assumes that the 
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above scenario is idealized, then non-adiabatic transitions can occur before the excited state 

equilibrium is reached yielding an effective transition time which appears longer. 

Nonetheless, we can anticipate from our results and the expected energy gap dependence of 

the decay time (Fig. 8) that the electronic population dynamics will be dictated by solvent 

dynamics. Regarding the possibility of very short population decay times, we do note that 

Pshenichnikov et al. invoke a 50 fs excited state lifetime to interpret their photon echo 

experiments with ultrafast 5-fs pulses,61 and similar lifetimes have been predicted by 

Zharikov and Fischer using a continuum solvated electron model.74 However, it is difficult to 

reconcile these with excited state electron scavenging experiments,75 which appear to provide 

a more direct interrogation of an electronic state survival. 

 

IV. Conclusion 

 

 We have introduced a new time dependent form of the Fermi golden rule involving 

quantum time correlation functions which can be evaluated by alternate routes, the easiest 

being to infer them from their classical counterparts, followed by a suitable quantization 

scheme. When applied to the problem of the lifetime of an equilibrated p-electron in water or 

methanol, this formulation has permitted us to reach some important conclusions: (i) For this 

problem, the neglect of the cross-correlation function between the value of the non-adiabatic 

coupling and energy gap is well justified by the ultrafast dephasing. With a Gaussian 

approximation of the dephasing function, we obtain a rather simple and transparent rate 

formula in either the time or frequency domain. (ii) The non-adiabatic transition appears to be 

entirely driven by the coupling of the electron to the vibrational modes of the solvent. (iii) 

Quantum effects are substantial and increase the rate by approximately one order of 

magnitude with respect to a fully classical treatment of the nuclear degrees of freedom. (iv) In 
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contrast to a Landau-Teller formula with a single solvent frequency governing the rate, the 

whole vibrational spectrum turns out to contribute almost equally to the electronic relaxation 

rate. (v) In contrast to previous theoretical studies which explicitly considered the non-

equilibrium experimental process, the current equilibrium golden rule approach predicts 

extremely short equilibrated p-electron lifetimes. These contrasting results suggest that the 

electronic relaxation after an ultrashort photoexciting pulse is, in fact, heavily influenced by 

solvent reorganization dynamics.  

We believe that the new Fermi golden rule formulation presented here can be useful 

for other problems involving quantum transitions in condensed phases, for example 

vibrational relaxation in H-bonded molecular systems. On the other hand, we have seen that 

the equilibrium golden rule may have reached its limits for the present problem, and non-

perturbative approaches and non-equilibrium golden rule methods should be also considered 

in the future.76,77 
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Tables 

Table I. Averaged classical quantities collected along the MD runs, and the corresponding 

quantized quantities (denoted by the q subscript) computed using the harmonic quantization 

scheme. All quantities are in fs-1. 

 
12Ω  2/12

12Ωδ  
2/12

12 q
Ωδ  2/12

12

1
V

�
 

2/12
12

1
q

V
�

 

Water 0.65 0.24 0.28 0.067 0.187 

Methanol 0.42 0.17 0.18 0.044 0.104 
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Table II. Classical and quantized non-adiabatic transition times, and dephasing times for 

electronic relaxation of an equilibrated excited state solvated electron in water and methanol 

(see text). The quantized rates are computed using either the harmonic (H), and the standard 

(S) quantization schemes. The classical dephasing times and the quantum decoherence times 

using the harmonic quantization are also shown. All quantities are in fs. 

 Classical 

dephasing 

time 

Non-adiabatic transition times Quantum decoherence 

time (Eqs (28) and (29)) 

 φτ  cl
21→τ  Hq,

21→τ  Sq,
21→τ  dτ  ht

dτ  

Water 4.1 60 4.0 30 7.5 4.8 

Methanol 5.9 160 17 80 16.5 12 
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Figure captions 

 

Figure 1. 10 ps slices of the trajectories obtained for water (top), and for methanol (bottom). 

In each frame, the top curve reports the time-dependent energy gap and, for clarity, the 

bottom one gives the absolute value of the coupling, with a minus sign to avoid overlaps. 

 

Figure 2. Normalized energy gap correlation function for an equilibrated solvated p-electron 

in water (top), and in methanol (bottom).  

 

Figure 3. Spectral density (in arbitrary units) of the non-adiabatic coupling in water (top), and 

in methanol (bottom). 

 

Figure 4. Classical reactive flux correlation function for water (top), and methanol (bottom). 

The circles indicate the direct numerical integration of Eqs (12) and (17), whereas the solid 

line involves the Gaussian approximation for the dephasing function, )(tG , with neglect of 

the cross-correlation terms, as in Eq. (24). 

 

Figure 5.  Quantum reactive flux for water (top), and methanol (bottom). The solid line is for 

the direct integration of Eq. (22), including all terms, and the dashed line involves a Gaussian 

approximation for the dephasing function )(tG q  and the neglect of the cross-correlation 

terms, Eq. (25). The dot-dashed line recalls the classical results of figure 4. 

 

Figure 6. Frequency-dependent rate for water (top), and methanol (bottom). The solid curve 

indicates the quantized result using the harmonic quantization scheme, and the dashed-dotted 
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curves denote the standard quantization procedure (Eqs (20)-(23)). The Gaussian-like dashed 

curve on top is the “window” function of Eq. (34) (renormalized to fit in the figure). 

 

Figure 7. The probability distribution of the energy gap, ( )ΩP , and its approximation by a 

Gaussian distribution (dashed, upper frame). The average value of 2
12V  sampled at each 

particular energy value �  (lower frame). 

 

Figure 8. The lifetime of the excited state electron for alternative approximations as a 

function of the mean energy gap (see text). Classical case (solid), standard (dashed), and 

harmonic quantization schemes (dotted). The harmonic quantization with the very high 

frequency coupling contributions removed is also shown (dash-dot). 
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Figure 1. Borgis, Rossky and Turi 
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Figure 2. Borgis, Rossky and Turi 
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Figure 3. Borgis, Rossky and Turi 
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Figure 4. Borgis, Rossky and Turi 
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Figure 5. Borgis, Rossky and Turi 
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Figure 6. Borgis, Rossky and Turi 
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Figure 7. Borgis, Rossky and Turi 
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Figure 8. Borgis, Rossky and Turi 
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