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We present a quantum molecular dynamics calculation of a semiclassical decoherence 

function to evaluate the accuracy of alternative short-time approximations for coherence 

loss in the dynamics of condensed phase electronically non-adiabatic processes. The 

semiclassical function from mixed quantum-classical molecular dynamics simulations 

and frozen Gaussian wave packets is computed for the electronic transition of an excited 

state excess electron to the ground state in liquid methanol. The decoherence function 

decays on a 10 fs timescale qualitatively similar to the aqueous case. We demonstrate that 

it is the motion of the hydrogen atom, and in particular, the hydrogen rotation around the 

oxygen-methyl bond which is predominantly responsible for destroying the quantum 

correlations between alternative states. Multiple timescales due to the slower diffusive 
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nuclear modes, which dominate the solvation response of methanol, do not contribute to 

the coherence loss. The choice of the coordinate representation is investigated in detail 

and concluded to be irrelevant to the decay. Changes in both nuclear momenta and 

positions on the two alternative potential surfaces are found to contribute to decoherence, 

the former dominating at short times (t < 5 fs), the latter controlling the decay at longer 

times. Various short-time approximations to the full dynamics for the decoherence 

function are tested for the first time. The present treatment rigorously develops the short-

time description and establishes its range of validity. Whereas the lowest-order short-time 

approximation proves to be a very good approximation up to about 5 fs, we also find that 

it bounds the decay of the decoherence function. After 5 fs, the coherence decay in fact 

becomes faster than the single Gaussian predicted in the lowest-order short-time limit. 

This decay is well reflected by an enhanced low-order approximation, which is also 

easily computed from equilibrium classical forces. 
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I. Introduction 

 

Due to the large density of accessible states, radiationless non-adiabatic (NA) 

quantum processes are ubiquitous phenomena in condensed phases. Important 

manifestations include electron and proton transfer reactions, internal conversion, and 

intramolecular vibrational energy redistribution.1,2,3 Non-radiative  relaxation processes 

have received considerable scientific attention in the past few years with the development 

of new theoretical approaches and experimental techniques.   

From a practical computational viewpoint, the accurate quantum dynamical 

treatment of the large number of degrees of freedom in condensed phases is still 

prohibitive due to the limitations of computational resources. Pragmatically, most 

approaches treat a small subset of the system quantum mechanically, while the rest, the 

“bath”, is described classically.4,5,6,7,8,9,10 The separation of the classical and quantal 

subsets brings about a technical obstacle: the two types of degrees of freedom must 

evolve self-consistently. Most quantum-classical molecular dynamics (QCMD) methods 

address the problem by using either one (or both) of the two main approaches to reach 

self-consistent dynamics: the mean-field method11 and/or the Preston-Tully surface 

hopping approach.12 Beyond the self-consistency problem, another major issue arises 

when one attempts to correlate the predictions of the QCMD approach to those of exact 

quantum dynamics.  Recently Berne and co-workers reviewed the adequacy of QCMD 

methods in condensed phase simulations of various radiative and non-radiative processes 
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by comparing to exact fully quantum mechanical solutions for accessible models. They 

concluded that such methods should be used with extreme caution.13,14  

It was realized in a similar context that the neglect of the dynamics of the bath 

wave functions in NA QCMD simulations can lead to serious errors.15 The bath wave 

functions evolving on alternative adiabatic potential surfaces quickly become orthogonal 

due to the divergence of the (typically nuclear) paths. Associated is a rapid loss of 

quantum correlations in the subsystem, i.e., decoherence.16,17,18,19,20,21,22,23 The 

phenomenon can be conveniently described by the reduced density matrix (�) of the 

quantum subsystem obtained by tracing the density matrix of the full system over the 

bath coordinates. Since the off-diagonal elements of this subsystem reduced density 

matrix involve the overlaps between bath wave functions,24 it is the fast divergence of the 

alternative paths (through the decreasing overlap integrals) which is responsible for the 

decay of the off-diagonal terms of the subsystem reduced density matrix and loss of 

coherence.23 

Recently, significant progress has been made in understanding the role 

decoherence plays in realistic electronically NA processes in condensed phases.15,25,26, 

27,28 Apparently, QCMD approaches usually fail to treat decoherence correctly.15,25 A 

“decoherence function”, leading to dissipation in subsystem dynamics, provides the 

necessary link between the NA QCMD approaches and the fully quantal treatment.26 For 

example, the introduction of decoherence can change NA transition rates dramatically, 

even by orders of magnitude.15,25 Simulations with a recently developed dissipative 

QCMD simulation method give a clear illustration of this effect.10 Decoherence has also 

been shown to have significant impact on electron transfer reactions potentially 
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influencing both the rate and the mechanism.27,28 A connection between the decoherence 

function and the equilibrium solvation response function, both inherently determined by 

the sensitivity of bath evolution to the electronic state of the solute, implies strong 

correlation with solvation dynamics, as well.29  

In the present paper we wish to accurately evaluate a semiclassical decoherence 

function D(t) utilizing the Gaussian wave packet approach to full quantum dynamics. 30,31 

In particular, we shall use the frozen Gaussian (FG) based method developed by Neria 

and Nitzan for evaluating NA transition rates.32 The thermal transition rate between the 

initial electronic state 1 and the final electronic state 2 is expressed within perturbation 

theory (Golden Rule) with FG wave packets as 

T

cqcqqm tJVtdtVk �
∞

∞−

−−
→ = )()0()(

1
2112221

�
, (1) 

where )(12 tV cq−  is the time-dependent quantum-classical coupling along the classical 

trajectory propagated on the initial potential surface, and J(t) is the complex valued 

overlap of the two nuclear wave functions evolving on different potential surfaces. Since 

J(t) and the closely related decoherence function D(t) connect the quantum and the 

quantum-classical rate expressions, accurate evaluation of these quantities from MD 

simulations is of central importance to understand the role of quantum correlations on 

rate processes. This evaluation is the fundamental issue we address in the present paper. 

As a model for NA transitions, we choose the non-radiative relaxation of an 

excited state localized solvated electron to its ground state. Due to the strong coupling 

between the solute electronic states and the solvent fluctuations, the solvated electron is a 

sensitive probe of the NA processes in (at least) two respects. On one hand, the solvated 

electron may be used to monitor the solvation dynamics following abrupt changes of the 
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solute electronic distribution (i.e. electronic transitions), and, on the other hand, it may 

test the influence of solvent fluctuations on the mechanism and the rate of the NA 

relaxation of the solute. To achieve these goals both experimental33,34,35,36 and theoretical 

techniques have been developed and applied for the solvated electron in various solvents 

in the last two decades.4,6,7,8,9,37,38,39,40 Several papers have examined the specific role of 

decoherence in the solvated electron system per se. 10,15,25,26,27,28,29,41 The present study 

goes beyond these previous works based primarily on a lowest-order short-time (ST) 

approximation.26 As an equally important goal, we evaluate the applicability of this ST 

approximation for a potentially challenging case. For this purpose, we shift our attention 

from aqueous systems, which are characterized by very fast and large amplitude inertial 

solvent response to NA transitions, to a significantly slower and more complex solvent, 

methanol. In methanol, the solvation response to a change in solvent-solute interaction 

manifests times from tens of fs to picoseconds.42,43 At the same time the shortest time 

inertial dynamics accounts for a rather small part of the response,40,44 in contrast to 

water.38,44 Hence one might well question whether the short time dynamics determined 

only by the initial positions and forces acting on the nuclei are sufficient to completely 

determine the coherence decay.  While electron solvation in methanol has been 

investigated in QCMD simulations on several occasions, 39,40,44,45,46,47 the present work 

focuses on the general understanding of the relation of the physics of solvation processes 

and those of subsystem coherence loss. 

The structure of the paper is as follows. First, we review the FG method, the 

definition of the decoherence function, the approximations involved in the definition, 

and, in particular, the short-time approximation for this decoherence function. Choices of 
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coordinate system representation for the nuclear dynamics and their connection are also 

discussed. Sec III contains the description of the model (equilibrium first excited state 

solvated electron in methanol) and the computational details of the simulations. We 

present and analyze the decoherence dynamics in comparison with its various 

approximations, emphasizing those which are readily evaluated from equilibrium 

classical bath quantities. A subsequent discussion on the relation between solvation 

dynamics and decoherence closes the section. Sec IV concludes the paper.  

 

II. Methods 

 

II.1. The decoherence function in the FG formalism 

 

 Following Neria and Nitzan,32 in the FG approximation, the nuclear wave 

function )(tGα  is approximated by the product of Gaussian wave packets: 
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where 2/1−
na is the (frozen) width of the nth nuclear wave packet, while L� is the 

Lagrangian. Frozen Gaussians evolve on the adiabatic potential surfaces and follow 

purely classical dynamics with position x�n(t) and momentum p�n(t) for the nth nuclear 

mode. The FG approximation is expected to be valid at short times, that is, as long as the 
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wave function remains localized.26,32 Following Refs 26 and 32, the complex valued 

overlap of the nuclear wave functions on the diverging �=1 and �=2 adiabatic electronic 

surfaces  

( ) ( ) ( )tGtGtJ 12=   (4) 

can be evaluated analytically leading to the following expressions: 

( ) ( ) ( )tJtJtJ phaseoverlap= ,  (5) 
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Jphase(t) is an oscillatory function containing the potential energy (the electronic energy) 

difference, and the kinetic energy difference for the nuclear dynamics on the two 

different potential surfaces, while Joverlap(t) is the (real) overlap between individual 

nuclear wave packets neglecting the overlap cross terms between different nuclei. Note 

that both nuclear trajectories in Eq (4) (evolving on the final and the initial electronic 

surfaces) start from the same initial conditions, classical positions and momenta sampled 

from the initial potential surface. 
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With the specific FG functional form for the nuclear wave function and a 

decorrelation assumption the Golden Rule formula for the NA transition rate (see Eq (1)) 

can be expressed as26  

( ) ( ) ( ) ( )� �
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The decoherence function D(t) is defined as  

( ) ( ) ( )tJdK
i

tD overlap

t
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12exp ττ

�
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Eqs (8) and (9) clearly indicate that, within perturbation theory for the NA transition 

rates, the decoherence function represents the correction between the quantum-classical 

and the quantum formulas in the frozen Gaussian wave packet approximation. We note a 

slight difference in the definition relative to Ref 26: in the phase terms of Eqs (8) and (9), 

we use the rigorous integration of the potential energy and the kinetic energy. This frozen 

Gaussian/classical dynamics-based form for the decoherence in Eq (9) is a well-defined 

semiclassical approximation which neglects contributions from wave packet spreading 

and non-classical paths, and, in particular, does not explicitly treat interference between 

amplitudes on alternative potential surfaces. The assumption underlying this 

approximation is that coherence will be lost in condensed phases before such effects 

become important. It is also important to point out that D(t) can be considered as a 

sensitive measure of decoherence. Due to the connection of D(t) and Joverlap(t) (Eq (9)), 

and the fact that the off-diagonal elements of the electronic reduced density matrix 

involve the overlap between bath wave functions, the decay of D(t) directly reflects the 

decay of the coherences in that matrix. Although conventionally other measures of  

decoherence are often used (for example, the exponent of the “fringe visibility function”, 
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the linear entropy, or Tr[ρ2]),17  the use of D(t) is especially appealing within the QCMD 

methodology due to its explicit role as a correction factor relating the quantum-classical 

and the quantum rate formulas. 

 As just noted, Tr[ρ2] has been introduced as a measure of decoherence19,20 or, 

more precisely, as a measure of the purity of a quantum state, and we comment briefly 

here on this alternative before proceeding. The advantage of the measure Tr[ρ2] is that it 

is invariant with respect to a change of basis. Creation of a diagonal reduced density 

matrix alone can always be done in some basis at any instant in time, even if the quantum 

states retain coherence.  However, in the preferred (pointer) basis, the density matrix will 

evolve to a diagonal form due to coherence loss, and, in this case, the associated decay of 

the off-diagonal elements is sufficient to characterize the process.21 The preferred states 

are the energy eigenstates when the environment is adiabatic.22 Hence, the dynamical 

decay of the off-diagonal elements is routinely used in the literature as a means to 

characterize decoherence.21,22,23 In fact, the recent development in Ref 23 closely parallels 

that in the earlier work of Prezhdo and Rossky26 and that summarized here in Eq (21).  It 

is perhaps worth noting that in the present context, where the quantum electronic system 

decays, in effect irreversibly, from the pure excited state to what is essentially the pure 

ground state, Tr[ρ2] would, in fact, be expected to decrease initially, but then increase 

again as ground state equilibrium is established. The latter population dynamics, of 

course, has no immediate relationship to coherence evolution. 

 Application of the first-order cumulant expansion for the ensemble average of the 

decoherence function and the lowest-order short-time approximation (ST) for the power 

series of x�n(t) and p�n(t) of Joverlap(t) leads to a particularly useful expression:26 
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According to Eq (10) the decay of the decoherence function can be approximated as a 

single Gaussian function with a characteristic decoherence time 
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The numerical evaluation of the ST decoherence function from real time MD simulation 

requires only the equilibrium trajectory of the system on the initial surface. Since frozen 

Gaussians evolve along the classical trajectory, it is sufficient to describe the nuclear 

propagation by classical dynamics. One can then simply calculate the force difference 

upon the classical bath from the quantum subsystem in the initial and the final states 

along this trajectory. 

 The fully dynamical evaluation of Eq (9) requires more elaborate calculations. 

Although an equilibrium initial state trajectory is still needed, it is only a starting point of 

the procedure. The decoherence function D(t) is computed from the parallel evolution of 

the two diverging nuclear wave functions on the initial and the final surfaces starting 

from the same initial classical positions and momenta.32 The initial conditions are 

sampled from the adiabatic equilibrium trajectory of the initial surface to achieve thermal 

averaging.   

Due to the classical nature of the nuclear evolution, the only unknown parameter 

of the FG approach is the width of the wave packets of the individual nuclear modes 

2/1−
na . Neria and Nitzan derived the exact analytical expression for the width of the FG 
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wave packets within the displaced harmonic oscillator model.32 The analytical expression 

contains the reduced mass mn and eigenfrequency ωn of the n-th nuclear mode: 

n
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The same width can be obtained from the variational effective harmonic treatment of 

Feynman and Kleinert,48 for highly localized nuclear wave packets. In the high 

temperature limit Eq (12) takes a simpler form which is independent of the frequency of 

the nuclear modes.  

2

6
�

Tkm
a Bn

n =   (14) 

Below we shall use both definitions of an, and assess their effect on the decoherence 

function. The assignment of nuclear mode frequencies in the analytical harmonic 

expression (Eqs (12) and (13)) is also a delicate issue which can be addressed only in 

conjunction with the proper choice of coordinate system. Although the instantaneous 

normal mode (INM) treatment of the solvated electron system has been developed 

successfully,49 for the present work we use the simpler atomistic Cartesian coordinate 

system (CC, only applicable in the high temperature limit) and a single molecule-based 

normal coordinate system (quasi normal modes, QNM) similar in philosophy to that of 

Prezhdo and Rossky.50 The computational details of QNMs and the assignment of the 

frequencies are given in the next section. We will demonstrate below that the 
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decoherence function is insensitive to the choice of coordinate system for our model. 

Thus, the simpler CC and QNM treatments are sufficient. 

 

II.2. Coordinate systems: Cartesian coordinates and quasi normal modes 

 

The evolution of the nuclear subsystem is described in terms of two different 

coordinate systems, atomic Cartesian coordinates and single molecule quasi normal 

modes.  The simulations are performed in Cartesian coordinates and orthogonal 

transformations to QNMs are performed at each time step. In the QNM approach, every 

molecule is treated individually, neglecting its interaction with the environment. The 

transformation of Cartesian vectors (displacement, momentum and quantum force in Eqs 

(7) and (10)) is performed in the mass-weighted Cartesian coordinate system and is based 

on the projection of the vectors onto the basis vectors of the individual molecular modes. 

As usual, three modes correspond to the center-of-mass motion (translation) and three to 

rotations around the instantaneous principal axes. The basis vectors for the remaining 

three modes, the intramolecular vibrations, are constructed from the normal modes of the 

isolated methanol molecule at its equilibrium configuration. The exact normal modes, 

starting with the OH stretching normal mode, the COH bending and the CO stretching 

mode, are then orthogonalized by successive application of the Gram-Schmidt 

orthogonalization procedure to the six instantaneous basis vectors of the translational and 

rotational motions for each molecule in the simulation box. The nine basis vectors form 

the transformation matrix which projects out the individual components of the Cartesian 

vectors. We note that the transformation matrix, and the procedure employed here, is the 
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analog of that used in large-scale ab initio quantum chemistry. Thus, at every time step a 

new orthogonal transformation is performed to transform the Cartesian vectors to QNMs. 

Clearly, the QNM analysis is not fully rigorous in the sense that QNMs are not 

eigenvectors of the Hessian, and they slightly change during the time evolution of the 

system. Nevertheless, the QNM treatment allows one to decompose the complicated 

multi-body dynamics of the system to (approximate) individual molecular motions with 

well-defined physical interpretation. In contrast, the otherwise rigorous INM analysis is 

hampered by the appearance of imaginary frequency modes.41,49 The development of the 

QNM analysis also reveals that within the high-temperature approximation for the 

Gaussians, the three coordinate systems should predict an identical decoherence function 

in the ST limit (Eq (10)) and nearly identical functions in the exact treatment (Eq. (9)).  

To illustrate the point let us insert Eq (14) to Eq (10) in Cartesian coordinates 

leading to 
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The expression within the bracket is the square of the total force in the 3N-dimensional 

mass-weighted Cartesian coordinate system, where N is the number of atoms (N = 600 in 

our simulations). Since, orthogonal transformations do not change this quantity, the ST 

decoherence function in the high-temperature limit remains unaffected upon either QNM 

or INM transformations, for example. Similar argument proves that the exponent of the 

first exponential of Joverlap(t)  in Eq (7) would also be independent of the choice of the 

coordinate system in the high-temperature limit. While the second and third terms change 

upon transformation (due to the different reference geometries), we illustrate in the next 
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section that for practical purposes this effect is negligible. In addition, the exact analytical 

expression of Eq (12) contains the frequencies of the nuclear modes which exclude the 

possibility of similar simplification. Below, we shall also examine the effects of 

transformations and temperature dependence of the width of the Gaussians on the 

decoherence function.   

For the assignment of frequencies to quasi normal modes, we take the 

experimental IR vibrational frequencies of liquid methanol,51 and use them as average 

frequencies in the analysis. This approach has been successfully applied for the aqueous 

case.26 The frequency of the OH stretch is 3337 cm−1, 1429 cm−1 for the COH bend, and 

1029 cm−1 for the CO stretch. Experimentally, only one broad band is observed in the 

librational regime at 655 cm−1. Since this peak shifts by 2  to lower frequencies upon 

deuteration to CH3OD, we assign this peak to the hindered rotation around the x-axis 

(essentially around the O-Me bond). Assuming the same force constants for the other two 

rotations, around the axis perpendicular to the x-axis in the molecular plane of the three-

site model (z-axis) and around the axis perpendicular to the molecular plane (y-axis), and 

using the moments of inertia values calculated from the normal mode analysis of the 

methanol molecule at its equilibrium configuration, we estimate the librational 

frequencies for the y and z-rotations to be 260 cm−1 and 240 cm−1, respectively. For 

translational motions we set the frequency to 100 cm−1, a choice which is not 

consequential here as long as the value is in the low frequency regime. 

 

III. Results and Discussion 
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 We performed mixed quantum classical simulations of an excited state solvated 

electron in a methanol bath in the NVE ensemble. The simulation details are similar to 

those in Ref. 39. The bath consists of 200 methanol molecules in a cubic simulation cell 

described by a three-site classical potential and internal flexibility. Although there exists 

some indication that the methyl hydrogens of the methanol molecules can weakly interact 

with the localized electron,52 based on our previous simulations39,40 we expect, that the 

present three-site model is suitable to capture the major aspects of the investigated 

physical problem. The electron is treated quantum mechanically in a plane wave basis 

represented on 323 evenly spaced gridpoints in the simulation box.37 The interaction 

between the quantum particle and the classical molecules is modeled by the modified 

pseudopotential of Zhu and Cukier.39,53 The nuclear configurations are adiabatically 

propagated on the potential surfaces using the sum of classical and Hellman-Feynman 

forces. The simulation time step is 1 fs. The long-range part of the interactions and the 

forces are calculated here using the Ewald summation technique including solvent-

solvent and the solvent-electron interactions explicitly.54  

First, we generated a 40 ps long equilibrium excited state trajectory of an excess 

electron in a methanol bath. The system temperature averages 298 K. The eigenenergy of 

the first (occupied) excited state is −0.388 eV. All other higher energy excited states are 

unbound in the sense that they have positive eigenenergies. The average energy gap 

between the first excited state and the unoccupied ground state is 0.253 eV with 0.113 eV 

standard deviation. Although previous calculations on the ground state solvated electron 

in methanol were performed with a smooth spherical cutoff for the long-range 

interactions, 39,40,44,45,46,47 the present numbers are consistent with those data. The initial 
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conditions (classical positions and momenta) for the calculation of the nuclear overlap 

and the decoherence function are sampled from the equilibrium excited state trajectory at 

every 2 ps for the total of 20 configurations. Starting from the selected configurations and 

velocities of the excited state, we simulated 20 adiabatic trajectories of 200 fs length 

evolving on the final (ground) electronic state. The corresponding excited state nuclear 

evolutions were taken from the equilibrium trajectory starting from the same initial 

conditions. 

Now we turn our attention to the calculation of the decoherence function. At the 

outset, we examine the semiclassical decoherence function within the FG approximation 

as defined in Eqs (7) and (9), and first evaluate the effect of the coordinate system 

transformations and of the width of the frozen Gaussians on the computed quantities. 

Then various approximations will be tested, in particular, the first-order cumulant 

expansion of the ensemble average of the decoherence function and the short-time 

approximation of Joverlap(t), and compared to the full semiclassical decoherence function. 

An important element is a discussion on the relationship between solvation dynamics and 

decoherence function in terms of various nuclear contributions to the solvent relaxation. 

Figure 1 presents the real part of the ensemble average of the decoherence 

function in quasi normal mode representation using both the exact T-dependent 

expression (Eqs (12) and (13)) (QNM/ET) and the high-temperature limit (Eq (14)) 

(QNM/HT) for the width of the Gaussians at 298 K. For comparison, we also show the 

HT result in Cartesian coordinates (CC/HT). First, one notices that the QNM/HT and 

CC/HT functions differ only insignificantly, indicating that for the present system the 

orthogonal coordinate transformation has only negligible effect on the decoherence 
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function. Based on this observation, one expects a very similar function in INMs, as well. 

Second, it is also clear from the essentially indistinguishable QNM/ET and QNM/HT 

functions that for the present case the high-temperature approximation is a viable one. 

Since the HT approximation at room temperature is not suitable for the highest-frequency 

modes,41 one can already anticipate that the mechanism for the coherence loss is not 

dominated by these highest-frequency nuclear motions. Nevertheless, for the sake of 

consistency and rigor, we shall use QNMs and the exact T-dependence of the Gaussian 

widths in the remainder of the paper.  

The inset to Fig 1 also shows the real part of the decoherence function for 20 

individual trajectories. It is interesting to note how different the timescale of the 

relaxation is for the different trajectories, and how efficiently the averaging process leads 

to a smooth result. The ensemble average of the decoherence function decays very 

quickly losing half of its amplitude by around 10 fs, effectively reaching zero by 30 fs. 

The decay rate is somewhat slower, but qualitatively similar to that found for the 

hydrated electron in the short-time approximation26 and using INM dynamics.41 An 

interesting feature appears in the decoherence function at ∼20 fs, as a distinct recurrence 

is observed. We believe that the recurrence is not likely attributable to statistical noise; 

performing the calculation for each of two 10 trajectory subsets, the recurrence appears 

essentially at the same position. In addition, the ensemble average of the imaginary part 

of the calculated D(t) is negligible in magnitude relative to the real part. Thus, the 

modulus of the calculated decoherence function is basically identical to the function 

shown in Fig 1. We will return to this recurrence in a little more detail below. 
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In the following steps we set out to examine the effects of various approximations 

to the dynamical FG treatment of the decoherence function. First, we consider 

decorrelation of the two terms of the decoherence function,26 
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Using the cumulant expansion to the first order, we then obtain 
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Since the mean kinetic energy difference vanishes to the second order in time, a 

reasonable approximation is26 

( ) ( )
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We refer to Eq (18) as the overlap approximation.  

Figure 2 illustrates that the approximations involved in Eqs (16)-(18) produce 

satisfactory agreement with the full decoherence function. It should be pointed out that it 

is the decorrelation assumption of Eq (16) which leads to the disappearance of the 

recurrence at ∼20 fs, indicating that some correlation exists between the kinetic energy 

and the overlap function. This is not surprising due to the nuclear velocity dependence of 

the wave packet position. Nevertheless, the real part of the decorrelated decoherence 

function fits well to the reference function. Although the agreement of Eq (18) with the 

full calculation is slightly degraded below 20 fs, it is notable that a remnant of the 

recurrence appears here.  
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Since Joverlap(t) is a product of exponential functions (see Eq (7)), application of 

the first-order cumulant expansion to Eq (18) is a straightforward route for further 

simplifications: 

( ) ( )
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Eq (19) breaks the decoherence function into three separate contributions, the first 

depending on the positions, the second on the momenta and the third, an oscillatory phase 

term involving both. The real part of ( )
T

tD  from Eq (19) is shown in Figure 3, with 

separate contributions from the positions, the momenta and the real part of the oscillatory 

cross term. Once again, the approximated decoherence function reproduces the full one 

quite well. At this point, however, we are able to gain additional insight into the role of 

the individual components of Eq (19). Evidently, the first term depending on the 

displacements between the nuclear coordinates on two surfaces at the same time plays the 

dominant role in the loss of the phase information between diverging nuclear paths. The 

momentum difference on the two electronic surfaces, the second term, contributes to a 

lesser but not insignificant extent. We note at the outset that the relatively slow decay of 

( )
Tp tD  evident in the figure for times greater than 15 fs may be due to the small 

available sample of twenty trajectories. However, this decay plays only a minor role in 
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the overall decay of D(t). The oscillatory part varies particularly slowly, especially in the 

first 20 fs, hardly influencing the product in the most critical time window. Using  a 

power series expansion in time of the imaginary exponent, one finds that the exponent 

vanishes through second order. Further, one finds similar higher order terms and behavior 

as that for Jphase(t), justifying the neglect of the position-momentum cross term. The 

product of the remaining two real valued Gaussians provides an excellent description of 

the full function. Additionally, this simple analytical product form is well suited for 

further analysis.  

In fact, we are now in the position to interpret the decoherence function in terms 

of the underlying microscopic details, the separate molecular modes. To address the 

problem, we sum the contributions of the individual molecular modes for all the 

molecules of the bath: 
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In Eq (20), the index i stands for the summation over the molecular modes, while m runs 

over the individual molecules. The exponents di,x(t) and di,p(t) are time-dependent 

displacement and the momentum contributions of the i-th molecular mode to the 

decoherence function. It is important to note that similarly to previous observation on the 

long range character of the coherence loss contributions,28,45 we find here that practically 
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all 200 molecules in our system contribute to decoherence. Therefore, it is necessary to 

perform the summation in Eq (20) for all molecules in the simulation box.  

The time evolution of the exponents of the separate contributions, shown in 

Figures 4 and 5, is revealing in many respects. Since, the nuclear modes with larger 

contributions to the exponents contribute more strongly to the loss of coherence, the 

contributions from molecular displacements are evidently overall more important than 

those due to the change of nuclear momentum, despite the fact that Dp(t) contributes at 

lower order in a short time expansion. If one expands both exponents of Eq (20), one 

finds that that the dominating contributions of the exponent are provided through order t4, 

and are given by the lowest-order non-vanishing terms for each exponent: 
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The most distinctive feature of Fig 4 is the striking extent to which the 

displacement of the hydrogen rotational mode around the O-Me bond determines 

decoherence. By around 20 fs the weight of the contribution from the hydrogen rotation 

exceeds all other modes at least by an order of magnitude. The next two most significant 

contributions are also due to the differing motions of the hydrogen on the diverging 

potential surfaces through the COH bend and the OH stretch. After approximately 20 fs, 

essentially all displacement contributions become sizable, but this change does not 

influence the decoherence function significantly, since it already approaches zero by this 

time. Fig 4 also indicates that the relative weight of the individual contributions change in 

time. This effect is especially interesting at the very early stage of the dynamics, under 5 

fs as shown in Fig 5. Although the major component of the coherence loss still originates 
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from the hydrogen motions (x-rotation and COH bend), it is now the change of the 

momentum which plays the most important part in the mechanism. It is only after 5 fs 

that contributions from the displacement change gradually dominate. Fig 5 demonstrates 

that at very short times, t � 5 fs, mainly the t2 term of Eq (21) ( ( )
Tp tD ) determines the 

decoherence function. Correspondingly, this is the time regime where the decoherence 

function can be well approximated by the ST approximation of Eq (10).  For longer 

times, as the displacement term (starting with the t4 term in the time expansion, as in Eq 

(21)) starts dominating, one can expect even faster coherence loss than can be anticipated 

from the t2 term alone.  

Figure 6 lets us examine how the ST approximation fares at longer times relative 

to the full calculation. Interestingly, while the ST function employing the exact T-

dependence for the width of the wave packets predicts somewhat slower relaxation (τD = 

12.6 fs), the high-temperature limit reproduces the exact behavior quite well (τD = 9.9 fs). 

This agreement is necessarily fortuitous. The role of the molecular mode contributions 

can be easily visualized in the ST-limit with the summed coefficients of the t2 term, di, for 

the individual modes in Eqs (10) and (21).26 Such separation for analysis is supported by 

the discussion above. The static picture of Figure 7, corresponding to the very early times 

of the dynamics, conveys similar qualitative information as Figures 4 and 5, indicative of 

the dominance of the OH rotation. Overall, the ST approximation provides a reasonable 

framework to study the decoherence function, being basically equivalent at short times 

and giving a reasonable approximation to the full function at longer times. Nevertheless, 

the performance of the ST expression can be very easily improved in principle by adding 

the t4 term as in Eq (21), requiring no additional information. The resulting t4-corrected 
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ST function now shows faster decay than the full function in Fig 6, indicating that 

inclusion of other higher order terms would be necessary to achieve an even more precise 

description. To quantify the decoherence rate for the functions in Fig 6, we can employ 

the conventional definition of a characteristic time as the integral of the function, 

�
∞

=
0

)( dttDdτ . According to this definition, the coherence dissipation time is τd = 12 fs 

for the full semiclassical function, compared to τd = 16 fs or τd = 13 fs for the lowest-

order short-time approximation with either the exact model temperature dependence or in 

the high-temperature limit, respectively. The t4-corrected ST function yields a coherence 

dissipation time of τd = 8 fs. 

 Now we examine the possible implications of decoherence for the solvation 

dynamics. Prezhdo and Rossky developed a quantitative relationship between short-time 

quantum coherence loss and short-time solvent response, and illustrated the connection 

between the two phenomena for the case of electron hydration.29 Water, however, is the 

fastest solvent, giving enormous short-time response.38 The question, thus, arises: what 

happens in an apparently very different solvent, such as methanol, which manifests 

multiple timescales which are both significantly slower and carry greater amplitude than 

the inertial component of the solvation response. Figure 8 demonstrates this behavior for 

both the non-equilibrium solvent response S(t) following the electronic relaxation from 

the excited state to the ground state as calculated from non-equilibrium average of the 

electronic energy gap for the 20 trajectories 

)()0(
)()(

)(
∞∆−∆
∞∆−∆=

EE
EtE

tS
, (22) 
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and its approximation in the linear response regime C(t) calculated from the fluctuations 

of the equilibrium energy gap 

2

)()0(
)(

E

tEE
tC

∆
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=
δ

δδ

. (23) 

We note that for the asymptotic energy gap in Eq (22) we used 1.5 eV, the value from our 

previous simulation without explicit treatment of long-range interactions.39 It is evident 

from Figure 8 and from the solvation dynamics analysis of Ref. 44 that the inertial 

component of the solvation dynamics plays only a minor role in the solvation response. 

The non-equilibrium and the equilibrium response functions deviate from each other 

significantly in the computed 200 fs range. This case, thus, provides another example for 

the breakdown of the linear response approximation in methanol.42,47 A fit of a Gaussian 

and two exponentials to C(t) indicates a rather fast inertial component with τg = 4 fs 

characteristic time but only ∼5% contribution to the full relaxation amplitude. The two 

slower exponentials relax on the 0.1 and 1.5 ps timescale similar to those found in a 

previous analysis.44 The estimate for the inertial time scale based on the quantitative 

relationship between ST decoherence and solvation dynamics,29 τg = 14 fs, is in a better 

agreement with the inertial part of S(t).12 The non-equilibrium response relaxes on two 

timescales, a 12 fs Gaussian contributes 20 % to the relaxation, while the rest is fitted by 

a single exponential decay of 500 fs characteristic time within the available 200 fs 

window. As pointed out previously,44 the inertial component of the relaxation is mainly 

due to the hydrogen rotation around the C-O bond, but it is the longer timescale diffusive 

motions that are responsible for the overwhelming majority of the solvation response. 

The same nuclear mode, hydrogen rotation destroys coherence in the nuclear wave 
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function more effectively within 20-25 fs, because the coherence loss is described by a 

product over modes, while decay of the energy has roughly additive components. By the 

time the slower diffusive components would become important in the coherence loss, the 

nuclear trajectories have already lost correlation. 

 

IV. Conclusions 

 

 In the present work we have performed a real time quantum molecular dynamics 

analysis of the decoherence function for the electronic relaxation of an excited state 

solvated electron to its ground state in methanol. The analysis is based on the application 

of mixed quantum-classical molecular dynamics trajectories and the frozen Gaussian 

approximation formalism for the nuclear wave function developed originally by Neria 

and Nitzan.32 We applied Cartesian coordinates as well as single molecule based quasi 

normal modes in the analysis and pointed out that the choice of the coordinate system 

does not bear any real significance on the decoherence function as long as the coordinates 

are derived from mass-weighted Cartesians by an orthogonal transformation.  

The computed semiclassical decoherence function shows an ultrafast decay on the 

10 fs time scale, thereby providing an a posteriori justification for the use of the FG 

approximation.  Although this decay is somewhat slower than in water, the similarity of 

the time scales is striking. In particular, we find, that the multiple diffusive timescales 

characteristic of the solvation processes in methanol do not significantly influence the 

decay of the decoherence function.  We have demonstrated that the loss of coherence is 

almost exclusively dominated by the hydrogen rotation around the methyl-oxygen bond, 
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the same mode which controls the inertial part of the solvation dynamics. The faster 

decoherence in water can be attributed to the fact, that while there exist three rotational 

degrees of freedom for rotation in water with low moments of inertia, there is only one 

such rotation in methanol as analyzed previously in the context of solvation dynamics.44 

Detailed investigation into the role of the molecular modes reveals that both the change 

of the momentum and the change of the position of the nuclear modes on the ground 

electronic surface relative to the excited state influence the decoherence function. The 

relative weight of the individual contributions to decoherence is time-dependent. At the 

shortest times (< 5 fs) the momentum difference dominates, at longer times (5 fs < t < 25 

fs) the displacement of the mode coordinates determines the coherence loss. 

Contributions of the diffusive motions, which are responsible for the majority of 

solvation response in methanol, become significant only after the coherences are already 

effectively destroyed. One can then conclude that although both coherence loss and 

solvation dynamics are determined by bath evolutions, their sensitivity to individual bath 

nuclear modes can be quite different. While, the OH inertial rotation is the major factor 

for decoherence, it plays only a relatively minor role in the total solvation dynamics in 

methanol.  

  The effects of various approximations on the decoherence function have also 

been tested. In particular, we established a rigorous background for the short-time 

approximation and examined its applicability. We found that the lowest-order ST 

approximation provides a reasonable framework to study the decoherence function. The 

ST decoherence function performs excellently at short times, and gives a reasonable 

approximation of the full semiclassical function at longer times. 
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Figure Captions  

 

Figure 1. The real part of the semiclassical decoherence function calculated in QNMs 

with the analytical frequency dependent expression for the temperature dependence of the 

wave packet widths (Eqs (12) and (13)) (QNM/ET, solid line) and in QNMs with the 

high-temperature approximation (Eq (14)) (QNM/HT, dashed line). The same 

decoherence function from Cartesian coordinates in the high-temperature limit (CC/HT, 

dotted line) is also shown for comparison. The inset displays the individual contributions 

from each trajectory. 

 

Figure 2. Approximations to the semiclassical decoherence function in QNMs with the 

exact temperature expression (Eqs (13) and (14)) (solid line). The dashed line 

corresponds to the decorrelated expression (Eq (16)), the dotted line to the overlap 

approximation (Eq (18)). 

 

Figure 3. Contributions to the decoherence function: ( )
Tx tD (dotted line), ( )

Tp tD  

(dash-dot line) and the real part of ( )
Txp tD  (dash-dot-dot line) (see Eq (19)). The 

product of these three terms is represented by the dashed line. The full decoherence 

function (solid line) is also shown for comparison. 
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Figure 4. Contributions of individual nuclear modes to coordinate and momentum 

components of the decoherence function (Eq (20)). The top figure shows the 

displacement terms 
Txi td )(, , the bottom the momentum change contributions

Tpi td )(, . 

 

Figure 5. Contributions of individual nuclear modes to coordinate and momentum 

components of the decoherence function (Eq (20)) at very short times. The top figure 

shows the displacement terms 
Txi td )(, , the bottom the momentum change 

contributions
Tpi td )(, . 

 

Figure 6. Comparison of the semiclassical decoherence function (solid line) to the 

lowest-order short-time approximation (Eq (10)) in the high-temperature limit (width, Eq 

(14)) (dotted line) and with the exact model temperature dependence (width, Eqs (12) and 

(13)) (dashed line). The t4-corrected function (Eq (21)) is also shown. 

 

Figure 7. Contributions of individual nuclear modes di to the decoherence function in the 

short-time approximation. The di are defined by �
�

�
�
�

�
−= �

)modes(

2exp)(
i

itdtD  (cf. Eq (10)). 

 

Figure 8. Equilibrium and non-equilibrium solvent response functions (C(t) (Eq (23)) 

and S(t) (Eq (22)) solid and dashed lines, respectively) following the electronic transition 

of a solvated electron from the equilibrium excited state to the ground state. 
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Turi-Rossky 

Figure 3. 
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Turi-Rossky 

Figure 4. 
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Turi-Rossky 

Figure 5. 
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Figure 6. 
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Turi-Rossky 

Figure 7. 
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Figure 8. 
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