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Griffiths phases and localization in 
hierarchical modular networks
Géza Ódor1, Ronald Dickman2 & Gergely Ódor3

We study variants of hierarchical modular network models suggested by Kaiser and Hilgetag [ Front. 
in Neuroinform., 4 (2010) 8] to model functional brain connectivity, using extensive simulations 
and quenched mean-field theory (QMF), focusing on structures with a connection probability that 
decays exponentially with the level index. Such networks can be embedded in two-dimensional 
Euclidean space. We explore the dynamic behavior of the contact process (CP) and threshold models 
on networks of this kind, including hierarchical trees. While in the small-world networks originally 
proposed to model brain connectivity, the topological heterogeneities are not strong enough to 
induce deviations from mean-field behavior, we show that a Griffiths phase can emerge under 
reduced connection probabilities, approaching the percolation threshold. In this case the topological 
dimension of the networks is finite, and extended regions of bursty, power-law dynamics are 
observed. Localization in the steady state is also shown via QMF. We investigate the effects of link 
asymmetry and coupling disorder, and show that localization can occur even in small-world networks 
with high connectivity in case of link disorder.

In neuroscience, the criticality hypothesis asserts that the brain is in a critical state, at the boundary 
between sustained activity and an inactive regime. Theoretical and experimental studies show that criti-
cal systems exhibit optimal computational properties, suggesting why criticality may have been selected 
in the evolution of the nervous system1. Although criticality has been observed in cell cultures2,3, brain 
slices and anesthetized animals4,5, the debate regarding criticality in alert animals and humans contin-
ues6–8. Thus the criticality hypothesis remains controversial in brain science; for a review see9.

Normally, for a system to be at criticality, certain control parameters need to be tuned precisely, rais-
ing the perennial question of how such tuning is achieved in the absence of outside intervention. The 
possibility of self-tuning is well known in statistical physics; the paradigm of self-organized criticality 
(SOC) has been studied since the pioneering work of10. Simple homogeneous models such as the stochas-
tic sandpile exhibit criticality with power laws both in statics and dynamics. This has been understood as 
the result of a control mechanism that forces the system to an absorbing-state phase transition11.

Real nervous systems, however, are highly inhomogeneous, so that one must take into account the 
effects of heterogeneities. It is well known in statistical physics that disorder can cause rare-region (RR) 
effects12 that smear the phase transitions. These effects can make a discontinuous transition continuous, 
or generate so-called Griffiths phases (GP)13, in which critical-like power-law dynamics appears over an 
extended region around the critical point. In these regions, moreover, non-Markovian, bursty behavior 
can emerge as a consequence of a diverging correlation time. The inter-communication times of the 
nodes (which possess no internal memory) follow a fat-tailed distribution14. Thus, heterogeneities widen 
the critical region and can contribute to the occurrence of power laws. This provides an alternative 
mechanism for critical-like behavior without fine tuning, although attaining the GP does require some 
rough tuning, of the sort that is not difficult to find in biological systems.
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It was shown recently that the topological heterogeneity of the underlying networks can result in GPs 
in finite-dimensional systems15 and can be a reason for the working memory in the brain16. Although 
many networks exhibit the small-world property and so have an infinite topological dimension, naturally 
occurring networks are always finite, exhibit cutoffs, and therefore GPs can be expected as a consequence 
of inhomogeneous topology17.

Many real networks can be partitioned seamlessly into a collection of modules. Each module is 
expected to perform an identifiable task, separate from the function of others18. It is believed that the 
brain is organized hierarchically into modular networks across many scales, starting from cellular circuits 
and cortical columns via nuclei or cortical areas to large-scale units such as visual or sensory-motor cor-
tex. At each level, connections within modules are denser than between different modules19–22. Although 
empirical data confirm this modular organization on some scales23, the detailed organization of brain 
networks is not yet experimentally accessible.

Two particular kinds of hierarchical modular networks (HMN-1,HMN-2) model were proposed and 
investigated numerically and analytically in24. On large-world HMNs, which imply a finite topologi-
cal dimension D, models of the spread of activity exhibit power-law dynamics and rare region effects. 
However, these power laws are system-size dependent, so that true GP behavior has not yet been proven. 
These authors also simulated spreading on empirical brain networks, such as the human connectome 
and the nervous system of C. elegans. Available empirical networks are much smaller than the synthetic 
ones and deviations from power laws are clearly visible. Both anatomical connections19 and the syn-
chronization networks of cortical neurons25 suggest small-world topology26. The brain network modules 
of24 are weakly coupled in such a way that these HMNs are near the percolation threshold, as in the 
case of the models introduced in15. Note, however that requiring the network to be near percolation 
again raises tuning and robustness issues. Having weaker ties would lead to fragmented networks, while 
stronger ties result in infinite D and the absence of a GP. In the present work we do not assume such 
fine tuning: we maintain a high density of short edges, rendering the networks well connected. Another 
way of preserving the integrity of HMN networks with finite dimension involves the random tree-like 
structures studied here.

To study synchronization27, commonly expected in brain dynamics, the Kuramoto model28 has been 
implemented29 on the same networks as studied in24. In this case even weaker rare-region effects were 
found, resulting in stretched exponential dynamics. One of the main purposes of our study is to delineate 
conditions a GP. While the networks studied are of finite size, repeating the process on many network 
realizations and averaging over them, we clearly see convergence towards GP dynamics. We assume that 
multiple random network realizations may occur in the brain over time, due to reconfigurations of the 
synapses or as a consequence of weakly coupled sub-modules and changes in overall intensity of con-
nections between different brain regions due to neuromodulation.

In addition to the dimension, other topological features, which have yet to be studied systematically, 
may also influence RR effects. The clustering coefficient, defined as
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where ni denotes the number of direct links interconnecting the ki nearest neighbors of node i, exhibits 
different scaling behavior in modular networks than in unstructured networks. While in SF networks 
it decays as C(N) ~ N−3/4 and in random networks as C(N) ~ N−1, in HMNs it is constant. Furthermore, 
while in SF networks the clustering is degree-number independent, in HMNs it decays as C(k) ~ N−β, 
with β in the range 0.75–130. This means that the higher the node degree, the smaller is its clustering 
coefficient, possibly reducing its infectiousness in an epidemic process. This suggests an enhancement of 
localization as in SF models with disassortative weighting schemes31.

In this work we study spreading models defined on HMNs embedded in 2D space, and investigate 
how various inhomogeneities (topological or intrinsic) contribute to the occurrence of localization and 
GPs. We begin by considering purely topological heterogeneity; later we study cases with disorder in 
the connections as well. It is well known that intrinsic link disorder can appear as the consequence of 
asymmetry, connecting nodes in the cortex (see32). It has also been demonstrated that weights can vary 
over 4–6 orders of magnitude; most (including the majority of long-range connections) are actually quite 
weak33.

The relation of RR effects to localization in the steady state has been studied recently17. Here we dis-
cuss localization results obtained via a quenched mean-field (QMF) approximation.

In addition to serving as models of brain connectivity, hierarchical modular networks are abundant 
in nature. They occur in social relations34, in the WWW35, metabolic36 and information systems37 for 
example. Thus the results reported here should find application in these and related areas.

Hierarchical modular networks
Recent studies indicate that activity in brain networks persists between the extremes of rapid extinction 
and global excitation. This so-called limited sustained activity (LSA) does not occur in spreading models 
defined on structureless, small-world networks. On the other hand, brain networks are known to exhibit 
hierarchical modular structure. This motivated Kaiser and Hilgetag (KH) to perform numerical studies 
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on such networks, to investigate topological effects on LSA38. Their hierarchical model reflects general 
features of brain connectivity on large and mesoscopic scales. Nodes in the model were intended to 
represent cortical columns rather than individual neurons. The connections between them were taken as 
excitatory, since there appear to be no long-distance inhibitory connections within the cerebral cortex39.

Kaiser and Hilgetag generated networks beginning at the highest level, and adding modules to the 
next lower level, with random connectivity within modules. They explored hierarchical networks with 
different numbers of levels, and numbers of sub-modules at each level. The average degree (over all nodes 
in the network) was set to =k 50, motivated by experimental studies. They investigated different topol-
ogies by varying the edge density across the levels. All the networks studied by KH are of small-world 
type, i.e., they have an infinite topological dimension.

The spreading model investigated by KH is a two-state threshold model, in which, at each time step, 
inactive nodes are activated with probability λ if at least m of their neighbors are currently active, and 
active nodes deactivate spontaneously with probability v. This model is very similar to reaction-diffusion 
models known in statistical physics40–42, with a synchronous cellular automaton (SCA) updates. Starting 
from an initial state in which a localized set of nodes is active, these authors followed the density of active 
sites and their localization up to t 200 time steps on networks of sizes N ≤  512.

Kaiser and Hilgetag found that LSA can be found in a larger parameter range in HMNs, as com-
pared with random and non-hierarchical small-world networks. The optimal range of LSA was found 
in networks in which the edge density increased from the top level (l =  lmax) to the bottom (l =  l1). Such 
topologies foster activity localization and rare-region effects.

In this paper we investigate HMNs which possess increasing edge density from top to bottom levels, 
as did KH, but with finite topological dimension. We will show that although localization is seen in 
small world networks, to observe GPs, with power-law dynamics, we need networks of finite topological 
dimension.

To generate a hierarchical modular network, we define lmax levels on the same set of =N 4lmax nodes; 
on the lth level we define 4l modules. We achieve this by splitting each module into four equal sized 
modules on the next level, as if they were embedded in a regular, two-dimensional (2d) lattice (see 
Fig. 1). The probability pl that two nodes are connected by an edge follows −

p b2l
sl as in38, where l is 

the greatest integer such that the two nodes are in the same module on level l. After selecting the number 
of levels and nodes we fix the average node degree, = /b k 2, and generate the adjacency matrix A by 
proceeding from the highest to the lowest level. We fill the submatrices with zeros and ones and copy 
them to appropriate diagonal locations of A. We allow unidirectional connections, which is more realis-
tic. In fact, disorder associated with the link orientations turns out to be necessary to observe GPs. 
Finally, we connect the lowest-level modules with an edge, chosen randomly from nodes of l1. This 
provides a short-linked base lattice that guarantees connectivity.

In a preliminary study, the extra edges, corresponding to the base lattice, were not added. The result-
ing networks typically consist of a large number of isolated connected components; the GP effects 

R2

R1

Figure 1. Two lowest levels of the HMN2d hierarchical network construction. Dashed lines frame 
bottom level nodes, which are fully connected there, dotted lines frame the nodes of the next level. The 
solid lines denoted R1 are randomly chosen connections among the bottom level modules, ensuring single 
connectedness of the network, while those denoted R2 provide random connections on the next level. Links 
can be directed.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:14451 | DOi: 10.1038/srep14451

observed in these structures are a consequence of fragmented domains of limited size. Measurements of 
axon-length distributions in several real neural networks show a large peak at short distances followed 
by a long flat tail. Thus there is a dense set of local edges in addition to a sparse network of long-range 
connections, best fit by an exponential function43. Typical estimates indicate that %90  of all cortical 
connections are formed at the local level (i.e., within a radius of 0.5mm); only the remainder leave the 
local gray matter and project to remote targets. Therefore, we also investigate a variant of HMN2d net-
works in which the lowest-level modules are fully connected, and there is a single link among the nodes 
of modules on level l2. To broaden further the range of structures, we study hierarchical modular trees 
(HMTs), which possess the minimum number of edges required for connectivity, and so have no loops. 
Construction of HMTs is described in the Supplementary material.

Relation to Benjamini-Berger networks. Due to the embedding, there is a correspondence with 
Benjamini-Berger (BB) networks44. BB networks are generated on Euclidean lattices, with short links 
connecting nearest neighbors. In addition, the network contains long links, whose probability decays 
algebraically with Euclidean distance R:

( ) . ( )−~p R R 2s

Here we consider modified BB networks, in which the long links are added level by level, from top to 
bottom, as in38. The levels: = , …,l l1 max are numbered from the bottom to top. The size of domains, 
i.e., the number of nodes in a level, grows as Nl =  4l in the 4-module construction, related to a tiling of 
the two dimensional base lattice. Due to the approximate distance-level relation, R 2l, the long-link 
connection probability on level l is:
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Here b is related to the average degree of a node k .
It is known that in a one-dimensional base lattice the BB construction results in a marginal case, s =  2, 

in which the topological dimension is finite and changes continuously with b. For s <  2 we have small 
world networks, while for s >  2 the the topological dimension is the same as the base lattice (d =  1) in 
BB networks. The HMN-1 networks studied by Moretti and Muñoz24 are similar to the BB model, with-
out the 1d base lattice, but with the inclusion of a HMN topology. These authors simulated spreading 
models on HMN-1 with finite topological dimension at ( )~pl

l1
4

 and found GPs. Given the above 
mapping, this result is not very surprising, because this HMN corresponds to the s =  2 case, staying close 
to the percolation threshold of the network. To ensure connectivity, Moretti and Muñoz added extra links 
to the large connected components24; they assert that the topological dimension remains finite, despite 
the additional links. In networks with finite sizes this is certainly true, however in the infinite size limit 
such a system is also infinite dimensional, so that we don’t expect true GPs. For the HMN-2, the number 
of connections between blocks at every level is a priori set to a constant value. In this case numerics of24,45 
suggest GP effects.

Here we embed the HMNs in 2d base lattices, which is closer to the real topology of cortical net-
works. In this case the threshold for marginality (i.e., continuously changing dimension and exponents) 
is expected to be at s =  4. We confirm this by explicit measurements of the topological dimension. 
Furthermore, we study two-dimensional HMNs with different s values and find GP effects for finite 
topological dimensions, both at the percolation threshold (for s =  3), and for s =  6, where the tail dis-
tribution of the link lengths decays very rapidly, in agreement with empirical results for axon lengths.

In addition to the CP (m =  1), we also consider threshold models (m ≥  2), which are expected to be 
more realistic for neuronal systems.

Dimension measurements. To measure the dimension of the network we first compute the level 
structure by running a breadth-first search from several, randomly selected seeds. We count the number 
of nodes N(r) with chemical distance r or less from the seeds and calculate averages over the trials. We 
determined the dimension of the network from the scaling relation N ~ rd, by fitting a power-law to the 
data for N(r).

At s =  3 we observe a percolation threshold near =k 4, for which the topological dimension is 
finite: .d 1 4 (see Fig.  2). Note that the curves with large k  exhibit saturation, corresponding to a 
finite-size effect. The case s =  4 appears to correspond to a marginal dimension, for which, above the 
percolation threshold >k 6, one observes a continuously varying topological dimension (see Fig. 3). 
A more detailed, local slopes analysis via the effective topological dimension
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is shown in the inset of Fig.  3, where r and r′  are neighboring measurement points. Saturation to 
s-dependent dimensions can be read off the plot for r >  100.

Random hierarchical trees also exhibit a finite topological dimension. Fig. 4 shows N(r) for a set of 
ten independent random trees. The average of N(r) over the set of ten trees follows a power law to good 
approximation, with .d 0 72. (Note that in this case N(r) is an average over all nodes.) For regular trees, 
by contrast, N(r) grows exponentially with r, as shown in Fig. 5. Thus the regular tree construction results 
in a structure with infinite topological dimension.

Dynamic simulations. Contact process. The contact process (CP)46,47, a Markov process defined on 
a network, can be interpreted as a simple model of information spreading in social48, epidemic spread-
ing49–51, or in brain networks24. In the CP sites can be active or inactive. Active sites propagate the activity 
to their neighbors at rate λ/k, or spontaneously deactivate with rate v =  1 (for simplicity).

We perform extensive activity-decay simulations for HMN2d models with = =b k2 4 and maxi-
mum levels: lmax =  8, 9, 10. In these networks we use directed links between nodes, similar to real nervous 
systems. We follow ρ(t) in 10–100 runs for each independent random network sample, starting from fully 
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Figure 2. Number of nodes within the chemical distance r in the s = 3 HMN2d models with lmax = 9. 
Different curves correspond to different parameters: = /b k 2 as indicated. The dashed line shows a power-
law fit for b =  2, with N(r) ~ r1.4, suggesting a topological dimension of d =  1.4 at the percolation threshold.
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active initial states, and averaging ρ(t) over thousands of independent random network samples for each 
λ. In the marginal long-link decay case at s =  4, a clear GP behavior is found (see Fig. 6).

We show that a GP can occur for more general parameters than those studied in24, by following the 
density decay in networks with s =  3 and =k 4 (i.e., at the percolation threshold). Size-independent, 
nonuniversal power laws can be seen in Fig. 7.

When we increase the average degree k , the GP shrinks to a smaller range of λ values, as in15, tend-
ing toward a simple critical phase transition. However, it is hard to determine at precisely which value 
of k  this happens. We note that the connectivity of the network is not assured, without the addition of 
extra links. Strictly speaking, however, with this extension s ≤  4 networks become infinite-dimensional 
in the → ∞N  limit.

More importantly, GPs are also found in networks connected on the base level via short edges. We 
study the activity decay for s =  6, which corresponds to fast decaying tail distribution for the long links, 
preserving finite topological dimension d. In this construction the average degree at the bottom level is 

k 6, decreasing systematically with l, so that 
k 1 for lmax. Note that that the ratio of short to long 

links is ~0.11, in agreement with results for real neural networks43. Simulations again yield size-independent 
power-law decay curves, confirming GP behavior, as shown in Fig. 8.

We also determined the effective decay exponent in the usual manner (see42), via
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Figure 4. Number of nodes within chemical distance r in a set of ten random hierarchical trees with 
262144 nodes (thin curves). The broad yellow curve is an average over the set of ten structures.

Figure 5. Number of nodes within chemical distance r in regular hierarchical trees with 1024, 4096, …, 
262144 nodes (lower to upper curves). 
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where ρ(t) and ρ ( ′)t  are neighboring data points. The critical point can be located at λc =  2.53(1), show-
ing mean-field scaling: ρ(t) ~ t−1. Above this threshold power-laws can still be seen for smaller sizes 
(lmax =  8, 9), up to λ . 2 55, but corrections to scaling become stronger; the curves for lmax =  10 exhibit 
saturation. This is surprising, because in a disordered system with short ranged interactions one would 
expect a critical phase transition with an ultra-slow, logarithmic scaling. However, recent studies of the 
CP in higher dimensions find mean-field criticality and GP52. Our result suggests that the topological 
heterogeneity generated by the long edges is not strong enough to induce an infinite-randomness fixed 
point. Otherwise we must assume very strong corrections to scaling in this case.

Disorder due to the randomly chosen orientations of the links turns out to be relevant. For symmetric 
links our simulations yield nonuniversal power laws, which appear to be sensitive to the system size, 
suggesting the lack of a true GP in the infinite-size limit.

Burstyness in the CP. We study the distribution of inter-event times in the CP on asymmetric, HMN2d 
networks with s =  6, in a manner similar to that described in14. Starting from fully active states, on net-
works of size lmax =  10, we measured Δt  between successive activation attempts. We followed the evo-
lution up to tmax =  218 Monte Carlo steps (MCs), averaging over 1000–2000 independent random networks 
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with 10–100 runs for each. Througout this paper time is measured by MCs. As Fig. 9 shows, fat-tailed 
distributions, (∆ ) (∆ )−~P t t x, emerge in the GP for 2.46 <  λ <  2.6, while P(Δ t) decays exponentially 
outside this region. The slopes of the decay curves are determined via least-squares fits in the window 
20 <  Δ t <  7000. For λ =  2.5 we find x =  1.753(4), while for λ =  2.52 the exponent is slightly larger: 
x =  1.81(1). These values are close to the auto-correlation exponent of the critical 1 +  1 dimensional CP 
as in14, but exhibit deviations due to the heterogeneities. This is understandable, since the effective 
dimension of this HMN2d is close to one. The scaling variable (∆ ) ≡ (∆ ) (∆ ).⁎P t t P t1 79  exhibits 
log-periodic oscillations. This is the consequence of the modular structure of the network. Furthermore, 
as in other GP models, logarithmic corrections to scaling are expected.

Figure 8. CP on asymmetric HMN2d networks with s = 6 and 〈k〉 ≃ 4: decay of activity for λ values as 
indicated. System sizes as in Fig. 6. Size-independent power laws are observed for 2.45 <  λ <  2.53. Inset: 
local slopes of the curves in the main plot. In the GP αeff tends to nonuniversal values with logarithmic 
corrections. At λc =  2.53(1) we observe convergence to αeff =  1; above this threshold the effective exponents 
of larger systems veer upwards toward zero as t tends to infinity.
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We expect similar nonuniversal, control parameter dependent tails in P(Δ t) in the GPs exhibited by 
the other HMN2d networks. Furthermore, as shown in14, power-law distributions should arise for other 
initial conditions, such as localized activity. This suggests that bursty inter-communication events in 
brain dynamics arise spontaneously near the critical point, in the GP.

CP on random hierarchical trees. We simulate the CP with symmetric links on random hierarchical trees 
(RHTs) of 262144 nodes. We first perform quasistationary (QS) simulations53, of the CP on a single RHT. 
For one structure this yields λ . 2 72c ; for another, independently generated structure of the same kind, 
we find λ . 2 76c .

Our principal interest is in the decay of activity starting from all nodes active. The decay of activity on 
a single RHT appears to follow the scenario familiar from the CP on regular lattices: power-law decay is 
observed at λc but not at nearby values, as illustrated in Fig. 10. The randomness associated with a single 
RHT appears to be insufficient to generate a Griffiths phase.

By contrast, evidence of a GP is found if we average over many RHTs. The activity averaged over a 
large set (103–104) of independent realizations, each on a different RHT, shown in Fig. 11, decays asymp-
totically as a power-law over a fairly broad range of subcritical λ values. The decay exponent α extrapo-
lates to zero at λ λ= . ( ) 2 760 2 c, as shown in the inset. We note that the average is over all realizations, 
including those that become inactive before the maximum time of 2 ×  106 MCs. If we instead restrict the 

Figure 10. CP on a random hierarchical tree: activity versus time for λ = 2.73, 2.74, …, 2.77 (lower 
to upper); system size: N = 262144. Power-law decay is evident only for λ =  2.75, close to the estimate 
λc =  2.76 derived from QS simulations. Each curve represents an average over 100 realizations; all 
realizations are performed on the same network.

Figure 11. CP on a random hierarchical trees: activity versus time for λ = 2.60, 2.62, 2.64, 2.68, 2.69, …, 
2.75 (lower to upper); system size N = 262144. Each curve represents an average over 103–104 realizations, 
each performed on a different network. Inset: decay exponent − α versus λ.
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average of ρ(t) to trials that survive to time t (or greater), the result is a stretched exponential, 
ρ ( ) − β~t Ctexp[ ], where C is a constant and the exponent β varies with λ. For λ =  2.70, for example, 
β . 0 25.

Threshold model simulations. Threshold models represent an attempt to capture the activation threshold 
of real neurons, by requiring at least m active neighbors associated with incoming links to activate a node 
with probability λ. In case of active nodes spontanous deactivation occurs with probability v written in 
the reaction-diffusion model notation as:

(a) → ( + )mA m A1  with probability λ,
(b) with probability ν.

We use SCA updating, as in38. Since there is no spatial anisotropy (which might generate activity 
currents), we can assume that the SCA follow the same asymptotic dynamics as the corresponding model 
with random sequential updating. Thanks to the synchronous updates, we can speed up the simulations 
by ~np times by distributing the nodes among np multiprocessor cores; by swapping the random num-
ber generation on parallel running graphics cards we obtain a further reduction of 50% decrease in the 
simulation times. The spatio-temporal evolution of the HMN2d network with m =  6, in a single network 
realization, starting from a fully active state, is shown in Fig. 12. After a sharp initial drop in activity, due 
to spontaneous deactivation of nodes with few neighbors, one observes domains (modules) on which 
activity survives for a long time, suggesting rare region effects.

Results for threshold models. We begin by discussing the m =  2 case, for which extensive simulations are 
performed. We generate networks with average degree =k 24 and s =  6. Note that in this case values 
of k  higher than the percolation threshold are needed to avoid modules having separated activities. As 
before, we averaged over hundreds of independent random networks and thousands of independent 
realizations. We followed the density up to tmax =  105 MCs, starting from a fully active initial condition.

In this case the mean activity density decays more rapidly than in mean-field theory, and is 
size-independent (see Fig. 13). For large branching probabilities, ρ ( )t  seems to take a constant value, 
suggesting an active steady state, but at late times some deviation is observed, possibly due to finite-size 
effects.

Homogeneous triplet creation models (i.e., m =  3) are expected to exhibit a mean-field-like discontin-
uous phase transition in two or more dimensions (see for example54). Disorder induces rounding effects, 
producing continuous phase transitions or GPs45,55. We study a threshold model with m =  3 and s =  6, 
using =k 36. Our results are similar to those for m =  2: non-universal power-laws, again suggesting a 
GP.

Quenched Mean-field approximation for SIS. Heterogeneous mean-field theory provides a good 
description of network models when fluctuations are irrelevant. This approximation is attractive because 
is can be solved analytically in many cases; the results agree with simulation56,57. This analysis treats nodes 
with different degrees as distinct, but finally averages over all degree values, providing a homogeneous 
solution for the order parameter. To describe the effects of quasi-static heterogeneities in a more precise 
way, the so-called Quenched Mean-Field (QMF) approximation was introduced58,59. For SIS models this 
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Figure 12. Spatio-temporal evolution of the density of the m = 6 threshold model, proportional to the 
color coding on the right. The simulation is started from an active state, with v =  0.9 and λ =  1.
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leads to a spectral analysis of the adjacency matrix Aij of the network. The susceptible-infected-susceptible 
(SIS)60 model is similar to the CP, except that branching rates are not normalized by k, leading to sym-
metric governing equations. A rate equation for the SIS model can be set up for the vector of activity 
probabilities ρi(t) of node i at time t:

∑
ρ

ρ λ ρ ρ
( )
= − ( ) + ( − ( )) ( ).

( )=

d t
dt

t t A w t1
6

i
i i

j

N

ij ij j
1

Here the wij =  wji are weights attributed to the edges. For large times the SIS model evolves to a steady 
state, with an order parameter ρ ρ≡ i . Since this equation is symmetric under the exchange ↔i j, a 
spectral decomposition can be performed on a basis of orthonormal eigenvectors (y).

∑ρ = (Λ) (Λ).
( )Λ

c e
7i i

Non-negativity of the matrix ≡B A wij ij ij assures a unique, real, non-negative largest eigenvalue yM.
In the long-time limit the system evolves into a steady state and we can express the solution via Bij as

ρ
λ ρ

λ ρ
=

∑

+ ∑
.

( )

B

B1 8
i

j ij j

j ij j

Stability analysis shows that ρ > 0i  above a threshold λc, with an order parameter ρ ρ≡ i . In the 
eigenvector basis equation (8) can be expanded by the coefficients c(Λ ) as

∑ ∑λ
λ

(Λ) = Λ′ (Λ′)
(Λ) (Λ′)

+ ∑ Λ (Λ) (Λ) ( )
∼ ∼ ∼

Λ′ = Λ
c c

e e

c e1 9i

N
i i

i1

and near the threshold we can express ρ (Λ ) (Λ )~ c ei i i1 1  with the principal eigenvector. In the QMF 
approximation λ/ = y1 c 1 and the order parameter can be approximated by the eigenvectors of the largest 
eigenvalues

ρ λ( ) ≈ ∆ + ∆ + …, ( )a a 101 2
2

where λ∆ = Λ − 1 11  with the coefficients

( ) ( )∑ ∑= Λ /




 Λ





. ( )= =
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11j
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Figure 13. Decay of activity in the m = 2 threshold model with s = 6, and 〈k〉 = 24. The curves correspond 
to branching rates: λ =  0.65, 0.66, 0.67, 0.68, 0.83 (lower to upper) and v =  0.7 fixed. Levels: lmax =  8, 9 (thin, 
thick lines). Size-independent power-laws, reflecting a GP are observed.
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As proposed in59, and tested on several SIS network models17, localization in the active steady state 
can be quantified by calculating the inverse participation ratio (IPR) of the principal eigenvector, related 
to the eigenvector of the largest eigenvalue e(y1) of the adjacency matrix as

∑( ) ≡ ( ).
( )=

I N e y
12i

N

i
1

4
1

This quantity vanishes ~1/N in the case of homogeneous eigenvector components, but remains finite 
as → ∞N  if activity is concentrated on a finite number of nodes. Numerical evidence has also been 
provided for the relation of localization to RR effects, slowing down the dynamics to follow power-laws17.

We study localization of the SIS in the HMN2d models introduced in the previous section*s. We 
analyze the eigenvectors of Bij for b =  2 (

k 4), varying s, using system sizes ranging from N =  256 to 
N =  262144. In particular, we performed a FSS scaling study of the IPR in these systems. First we deter-
mined the behavior on the small world network of38 corresponding to s =  3/2. As one can see in Fig. 14, 
the localization at small sizes disappears as ( ) /~I N N1 3. By contrast, for s =  3 and s =  4, the graphs are 
finite-dimensional, and the IPR increases with N, tending to a finite limiting value, suggesting 
localization.

One might question the relevance of network models with small connectivity to mammalian brains, 
in which k  is on the order of 103. To answer this we study s ≤  4 models with higher connectivity, i.e., 

k 50. As Fig. 15 shows, the sign of localization, which is weak but nonzero for =k 4, now disap-
pears. Next, we add random weights wij, distributed uniformly over the interval (0, 1), to the links of the 
networks. A consequence of this explicit disorder is localization even in highly connected networks, as 
shown in Fig. 15. This result is in agreement with the expectation of limited sustained activity in brain 
networks38, meaning that the link disorder prevents over-excitation of a network of high connectivity.

Localization suggests rare-region effects, thus a dynamic GP. Nevertheless, simulations of the CP on 
such networks do not show extended regions of power-laws for s ≤  4, but rather a nontrivial 
(non-mean-field) continuous phase transition (Fig. 16). Decay simulations for l =  9 yield ρ ( ) − . ( )

t t 0 50 1  
at λ . ( ) 2 588 1c , albeit with a cutoff due to the finite system size. This agrees with our result for 1D BB 
networks with s =  315. Spreading simulations starting from single, randomly placed seed result in the 
survival probability scaling at this critical point: ( ) − . ( )

P t t 0 50 1  (that is, the symmetry α =  δ holds to 
within uncertainty). Here the density increases initially as ρ ( ) . ( )

t t0 23 1 . One can understand these 
results, noting that the localization values are rather small, I ~ 0.08, so that RR effects are too weak to 
generate observable GP effects in the dynamics.

Naturally, for s >  4 networks, where already the topological disorder is strong enough to create a GP, 
inhomogeneities in the interaction strengths amplify the RR effects. This induces GPs even for larger 
values of k , as well as in the threshold models. Further studies of disorder effects are under way.
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Figure 14. Finite size scaling of the inverse participation ratio in weakly coupled HMN2d models, with 
maximum levels lmax = 4, 5, ..9. The s =  3 (bullets) and s =  4 (boxes) results suggest localization (finite I) in 
the infinite-size limit. Lines are power-law fits to the data. For s =  1.5, corresponding to the symmetrized, 
small-world network (model-6 of38) no evidence of localization is seen.
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Conclusions
We investigate the dynamical behavior of spreading models on hierarchical modular networks embedded 
in two-dimensional space, with long links whose probability decays as a power-law with distance. This 
corresponds to an exponentially decreasing connection probability, as a function of the level in the hier-
archical construction. The aim of this study is to understand the effects of intrinsic and topological disor-
der, in particular, extended critical regions in the parameter space, without any (self) tuning mechanism.

If we eliminate the underlying lattice structure we observe power-law dynamics for networks near 
the percolation threshold, when the effective dimension is finite. However, size-independent power-laws, 
corresponding to GPs, are only seen if we have directed links. Since connectivity of these structures is 
not guaranteed, we also study random hierarchical trees, with full connectivity. GPs are observed upon 
averaging over many independent network realizations. The relation to brain networks can be envisaged 
in the large-size limit, if we regard independent realizations as (almost decoupled) sub-modules of the 
entire brain.
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Figure 15. Finite size scaling of the inverse participation ratio in HMN2d models with higher average 
degree (〈k〉 ≃ 50) for maximum levels: lmax = 4, 5, 6, 7, 8. Bullets: s =  3 with uniform randomly distributed 
weights; boxes: without weights. Diamonds: s =  4 with randomly distributed weights. Lines show power-law 
fits to the data. In the unweighted case, no localization effect can be seen, and I decays linearly with N.
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When we ensure connectivity via short edges on the lowest level, we find GPs for rapidly decaying 
long-link probabilities. Both of these network assumptions are in accordance with empirical brain net-
works. Above the GP, at the critical point, we find mean-field-like decay of activity, in agreement with 
results on the CP with quenched disorder on higher-dimensional, regular lattices. We have also shown 
that bursty behavior arises naturally in the GPs, due to autocorrelations which decay via a power-law.

We perform a quenched mean-field study of the SIS model on these networks; in the SIS, nodes are 
connected symmetrically. Finite size scaling of the inverse participation ratio suggests localization on 
large-world networks and de-localization on small world structures. However, when we add intrinsic 
weight disorder, localization can be seen even on small-world networks. Weight disorder is again to be 
expected in real brain networks, since the strength of couplings varies over many orders of magnitude. 
Despite this, we saw no GP effects in the dynamics of weighted CPs with s =  4. Instead, we find a non-
trivial critical scaling, as has already been observed in other networks. The possibility of a narrow GP 
in this case is an open issue.

In conclusion, we believe our synthetic HMN2ds are closer to experimental brain networks than pre-
viously proposed models, and find numerical evidence for GPs in extended phases in simple models with 
spreading dynamics. Although we eliminate any self-tuning mechanisms, we still find nontrivial slow 
dynamics as well as localization of activity, which is crucial for understanding real brain network data.
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