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Abstract. In this paper, skew-morphisms, which are extensively stud-
ied in graph theory, are considered in the setting of matrix algebras.
Different properties of skew-morphisms are obtained and their classifi-
cation in some specific cases is given.

1. Introduction

Let n ≥ 2 be an integer and let Mn be the algebra of n-by-n matrices over
a field F. We will consider maps φ : Mn →Mn with the following property:
there exists a power function κ : Mn → {0, 1, 2, . . .} such that

(1) φ(AB) = φ(A)φκ(A)(B); ∀A,B ∈Mn,

where as usual φ0 = id, the identity mapping, and φk(x) = φ(φk−1(x)).
Maps satisfying (1) will be called restricted skew-morphisms to distinguish
them from skew-morphisms. Skew-morphisms were recently introduced by
Jajcay and Širáň [6] as bijective unital maps on groups with property (1)
but where κ(A) takes the values in Z, the set of all integers. It needs to be
said that in [6] they considered only unital bijections on finite groups, which
are consequently of finite order and allow one to replace negative powers of φ
by nonnegative powers, modulo the order of φ. Jajcay and Širáň used skew-
morphisms in an attempt to give a unified treatment of regular Cayley maps,
which by definition are 2-cell embeddings of Cayley graphs into orientable
surfaces which preserve a given orientation at each vertex.

Skew-morphisms also arise naturally in studying cyclic extensions of
groups. In fact, if a group G = AC is a product of a subgroup A and a
finite cyclic subgroup C = 〈c〉 with A ∩ C = {1} then each element g ∈ G
can be written uniquely as g = aci for some a ∈ A and some integer i. For
g = ca it follows that ca = φ(a)ci for a unique element φ(a) ∈ A and a
unique integer i ∈ {0, . . . , |c| − 1}, where |c| is the order of c. Given a, b ∈ A
we have

c(ab) = (ca)b = φ(a)cib = φ(a)φi(b)ck
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for appropriate integer k. This gives φ(ab) = φ(a)φi(b) for some integer i
that depends only on a, i.e., φ is a (restricted) skew-morphism. We were
informed by R. Jajcay that this connection between cyclic extensions of
groups and skew-morphisms was observed already in 1938 by Ore [8, p.
805]; see also Conder, Jajcay, and Tucker [1, p. 262–263].

Clearly, skew-morphisms are generalizations of automorphisms. Clas-
sification of automorphisms can be quite involved, see for example
Dieudonné [3, 4] for a general linear group, so it is not surprising that until
now characterizations of skew-morphisms were obtained only for some spe-
cial cases. For example, Kovács and Nedela [7] studied skew-morphisms on
Zn, the cyclic group of order n, and obtained classification for some specific
n. In particular, they showed that every skew-morphism on Zn is an auto-
morphism if and only if n = 4 or n is relatively prime with ϕ(n), the Euler
totient function. Another example of investigation is the result of Zhang [9],
who studied skew-morphisms which are automorphisms on a subgroup of
index three, and whose power function assume three values, one of which
is 1.

It is the aim of this paper to study restricted skew-morphisms on the
semigroup Mn, n ≥ 2. We give a complete classification of linear restricted
skew-morphisms, see Theorem 4. In the case of general restricted surjective
skew-morphisms we prove that they preserve the rank, see Theorem 8, and
describe them when their power functions are constantly equal to one on
GLn, see Theorem 17. We also prove that a surjective restricted skew-
morphism has a finite order if its power function takes a value which is
greater than one on GLn, see Theorem 18. The case when the power function
takes the value zero on GLn was treated in [6], see also Lemma 1 below.

Note that the power function κ from (1) can take negative values only in
the case when φ is a bijective function. Since we will not assume bijectivity
of φ we have to restrict the codomain of the power function κ to the set of
non-negative integers. To simplify the notation we will skip the adjective
“restricted” throughout the paper and refer to maps satisfying (1) simply
as skew-morphisms.

2. Results

Let us denote by GLn the general linear group with identity Id, and by
SLn the special linear group. For every matrix M , including the case when
M is a zero matrix, we define M0 = Id. Let Eij be the standard matrix unit
which has 1 in its (i, j) entry and 0 elsewhere.

Before proving the first result observe that each homomorphism of Mn

is also a skew-morphism with its power function κ constantly equal to 1.
Observe also that if φ is a unital skew-morphism and its power function κ is
a constant, then φ is multiplicative. Namely, from φ(AB) = φ(A)φκ(B), by
inserting A = Id = φ(Id), we get φ(B) = φκ(B), so φ(AB) = φ(A)φκ(B) =
φ(A)φ(B).
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2.1. Preliminary results and characterization of linear skew-
morphisms. Let us start by proving two lemmas which are valid also for
possibly non-linear maps. We remark that the first one was already proved
in [6, p. 171] for skew-morphisms on groups.

Lemma 1. Let φ : Mn → Mn be a skew-morphism. If κ(G0) = 0 for some
G0 ∈ GLn, then there exists M ∈Mn such that φ(X) = MX for all X ∈Mn.
In addition, if φ is surjective, then M ∈ GLn.

Proof. Since κ(G0) = 0 for some invertible matrix G0, then for an arbitrary
matrix X ∈Mn we obtain

φ(X) = φ(G0G
−1
0 X) = φ(G0)φ

0(G−10 X) = φ(G0)G
−1
0 X.

If φ is surjective, then clearly M ∈ GLn, since otherwise the image of φ
would be contained in the set of singular matrices. �

Remark 2. Observe that the skew-morphism φ from Lemma 1 is linear.
Actually, φ(X) = MX is a special case of φ(A) = MAN , which is the
general form of linear skew-morphisms, see Theorem 4 below with s = 0,
λ = 1, and N = Id.

Lemma 3. Let φ : Mn →Mn be a surjective skew-morphism. Then φ maps
0 to 0, singular matrices surjectively onto singular ones, and GLn surjec-
tively onto GLn.

Proof. Observe that, if κ(G0) = 0 for some G0 ∈ GLn, then the conclusion
of Lemma 3 holds by Lemma 1. So in the rest of the proof we will assume
that κ(S) ≥ 1 for every S ∈ GLn.

First we show that φ maps GLn into GLn. By surjectivity there exists
B ∈ Mn such that φ(B) = Id. Since φ is a skew-morphism, it follows from
(1) that

Id = φ(B) = φ(IdB) = φ(Id)φκ(Id)(B),

which shows that φ(Id) is right-invertible, thus invertible. Let A ∈ GLn be
arbitrary. Then

φ(Id) = φ(AA−1) = φ(A)φκ(A)(A−1)

and since φ(Id) is invertible, it follows that φ(A) is also invertible. So
φ(GLn) ⊆ GLn.

Next we show that φ annihilates 0. Observe that φ(0) = φ(0X) =

φ(0)φκ(0)(X) for every X ∈ Mn. By surjectivity of φ, hence also of φκ(0),

we can find X0 such that φκ(0)(X0) = 0, whence

φ(0) = φ(0)0 = 0.

Now, let A ∈ Mn be singular and suppose φ(A) ∈ GLn. Let S, T ∈ GLn
be arbitrary. Then φ(SAT ) = φ(S)φκ(S)(AT ) = φ(S)φκ(S)−1(φ(AT )) =

φ(S)φκ(S)−1(φ(A)φκ(A)(T )). Since φ(A) ∈ GLn and GLn is invariant for
φ, we see that every matrix with the same rank as A is mapped into an

invertible one. In particular, the nilpotent matrix N =
∑rkA

i=1 Ei (i+1) with
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rank equal to rkA, is mapped into an invertible one. Let us show that
κ(N) = 0 is not possible. Otherwise we would have φ(NX) = φ(N)X
and so X = φ(N)−1φ(NX) for each X ∈ Mn. Since N is singular we
can choose a nonzero matrix X with NX = 0. It follows that for this X
we have 0 6= X = φ(N)−1φ(0) = φ(N)−1 · 0 = 0, a contradiction. Hence

κ(N) ≥ 1. But then φ(N2) = φ(N)φκ(N)(N) is the product of two invertible
matrices and therefore invertible. Proceeding in the same way we obtain that

φ(N2i) is invertible for every positive integer i. Hence φ(0) is invertible, a
contradiction.

The conclusions of Lemma 3 now follow by surjectivity of φ. �

Theorem 4. A linear map φ : Mn →Mn is a skew-morphism, i.e., satisfies
equation (1), if and only if there exist a nonnegative integer s, a nonzero
scalar λ, and matrices M,N ∈ Mn with N invertible and N1−s = NM s =
λ Id, such that φ is of the form

(2) φ(A) = MAN (A ∈Mn).

Remark 5. Observe that M does not need to be invertible. In this case,
s = 0 and we can take N = Id.

Proof of Theorem 4. If φ is of the form (2), then φ clearly satisfies equation
(1) with the choice κ(A) = s for all A ∈Mn and hence φ is a skew-morphism.

As for the converse, assume first that φ is not bijective, i.e., φ(A) = 0 for
some nonzero matrix A ∈Mn. We distinguish two subcases.

(i) Suppose κ(G) ≥ 1 for every invertible matrix G ∈Mn. Let R ∈Mn be
an arbitrary rank-one matrix. Then there exist an invertible matrix S and a
rank-one matrix T , such that R = SAT . Recall that φ(A) = 0 and that by

linearity φ(0) = 0. It follows that φ(R) = φ(SAT ) = φ(S)φκ(S)−1(φ(AT )) =

φ(S)φκ(S)−1(φ(A)φκ(A)(T )) = φ(S)φκ(S)−1(0) = 0 for every rank-one matrix
R, hence by linearity φ is a zero map, i.e., φ is of the form (2) with s = 0,
λ = 1, M = 0, and N = Id.

(ii) Suppose κ(G0) = 0 for some invertible matrix G0. Then by Lemma 1,
φ is of the form (2) with s = 0, λ = 1, and N = Id.

Second, assume that φ is bijective. Then by Lemma 3, φ maps invertible
matrices surjectively onto invertible matrices. Hence, φ−1 maps singular ma-
trices into singular ones. The structure of such linear maps was determined
by Dieudonné [2], they are of the form

(3) φ(A) = MAN (A ∈Mn)

or of the form

(4) φ(A) = MAtN (A ∈Mn)

for some invertible matrices M and N .
Let us show that map (4) is not a skew-morphism. In fact, for rank-

one matrices A = E11 and B = E12 we see that M−1φ(AB)N−1 = E21 6=
E11N · φκ(A)(E12)N

−1 = M−1φ(A)φκ(A)(B)N−1. So φ is of the form (3).
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Set s = κ(Id). Let x be an arbitrary column vector. If we insert A = Id
and B = xxt into (1), then the equation B = IdB transforms into

MxxtN = MNM sxxtN s

which yields that

xxt = (NM sx)((N s−1)tx)t.

In particular, every vector x is an eigenvector of NM s and of (N s−1)t. It
follows that there exists a nonzero scalar λ, such that

NM s = λ Id and λN s−1 = Id,

which completes the proof. �

Recall that φ is unital if φ(Id) = Id .

Corollary 6. A unital linear skew-morphism φ is of the form

φ(A) = SAS−1 (A ∈Mn)

for some invertible matrix S ∈Mn.

As the following example shows, in general skew-morphisms are not linear
and therefore are not of the form (2).

Example 7. By a straightforward computation we see that the map
φ : M2(Z2) → M2(Z2) defined below is a nonlinear bijective unital skew-
morphism.

φ(( 0 1
1 0 ))=( 0 1

1 1 ), κ(( 0 1
1 0 ))=2 , φ(( 0 1

1 1 ))=( 1 1
1 0 ), κ(( 0 1

1 1 ))=3 ,

φ(( 1 1
1 0 ))=( 1 1

0 1 ), κ(( 1 1
1 0 ))=2 , φ(( 1 1

0 1 ))=( 0 1
1 0 ), κ(( 1 1

0 1 ))=1 ,

φ(( 1 0
0 1 ))=( 1 0

0 1 ), κ(( 1 0
0 1 ))=1 , φ(( 1 0

1 1 ))=( 1 0
1 1 ), κ(( 1 0

1 1 ))=3 ,

φ(( 0 0
1 0 ))=( 0 0

1 0 ), κ(( 0 0
1 0 ))=2 , φ(( 0 0

0 1 ))=( 0 0
1 1 ), κ(( 0 0

0 1 ))=1 ,

φ(( 0 0
1 1 ))=( 0 0

0 1 ), κ(( 0 0
1 1 ))=3 , φ(( 0 1

0 0 ))=( 0 1
0 1 ), κ(( 0 1

0 0 ))=0 ,

φ(( 0 1
0 1 ))=( 1 1

0 0 ), κ(( 0 1
0 1 ))=1 , φ(( 1 1

0 0 ))=( 1 1
1 1 ), κ(( 1 1

0 0 ))=0 ,

φ(( 1 1
1 1 ))=( 0 1

0 0 ), κ(( 1 1
1 1 ))=3 , φ(( 1 0

1 0 ))=( 1 0
0 0 ), κ(( 1 0

1 0 ))=2 ,

φ(( 1 0
0 0 ))=( 1 0

1 0 ), κ(( 1 0
0 0 ))=0 , φ(( 0 0

0 0 ))=( 0 0
0 0 ), κ(( 0 0

0 0 ))=1 .

2.2. Every surjective skew-morphism is a rank preserver. Note that
the skew-morphism φ defined in Example 7 maps rank-one matrices onto
rank-one matrices. In the sequel we will show that this is true also in the
general case. Even more, we will prove that every surjective skew-morphism
on Mn(F) maps the set of rank k matrices onto itself for every k ∈ {0, . . . , n}.

Observe that by Lemma 1 every surjective skew-morphism φ preserves
the rank if κ(A) = 0 for some invertible matrix A. Therefore we will assume
from now on that φ : Mn →Mn is a surjective skew-morphism with

(5) κ(A) ≥ 1 for every A ∈ GLn .

The main result in this subsection is the following.
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Theorem 8. Let φ : Mn → Mn be a surjective skew-morphism. Then
rkφ(A) = rkA for every A ∈Mn.

The proof will be given at the end of this section after a series of prelim-
inary lemmas.

Lemma 9. If φ(A) = 0 for some A, then φ(X) = 0 for every X with
rkX ≤ rkA.

Proof. Let T be invertible. Then κ(T ) ≥ 1 by the assumption (5), and
therefore, with every matrix S

φ(TAS) = φ(T )φκ(T )(AS) = φ(T )φκ(T )−1(φ(A)φκ(A)(S)) = 0

by Lemma 3. Every matrix with rank at most rkA can be written as TAS
for appropriate matrices T, S with T invertible. Thus, φ annihilates each
matrix with rank at most rkA. �

Lemma 10. φ(X) = 0 if and only if X = 0.

Proof. By Lemma 3, φ(0) = 0, and φ maps the set of singular matrices
surjectively onto itself and GLn surjectively onto GLn. Assume φ(A) = 0
for some A with rkA ≥ 1. Lemma 9 implies that φ(X) = 0 for every X with
rkX = 1. This is the starting point of induction to prove that φk(X) = 0
for each X with rkX ≤ k, k = 1, . . . , n − 1, which is in contradiction with
the fact that φn−1 maps singular matrices surjectively onto themselves.

Set A1 = A and assume A2, . . . , Ak are such that rkAi ≥ i and φ(Ai) =
Ai−1, i = 2, . . . , k. Since φ is surjective on singular matrices, there exists a
singular matrix Ak+1 with φ(Ak+1) = Ak. By the inductive step, rkAk+1 >
k, for otherwise, A = A1 = φk(Ak+1) = 0, a contradiction. However, note
that

(6) φk+1(Ak+1) = φ(A) = 0.

Let T be invertible and let S be an arbitrary matrix. Then by Jajcay and
Širáň [6, Lemma 2]
(7)

φk+1(TAk+1S) = φk+1(T )φκk+1(T )(Ak+1S), κk+1(T ) =

k∑
i=0

κ(φi(T )).

Since φi(T ) ∈ GLn for i = 0, . . . , k, and as κ(G) ≥ 1 for every invertible
matrix G by the assumption (5), we see that κk+1(T ) ≥ k+ 1. Hence by (6)

φk+1(TAk+1S) = φk+1(T )φκk+1(T )−k−1(φk+1(Ak+1)φ
κk+1(Ak+1)(S)) = 0.

Thus, as in the final step in the proof of Lemma 9, φk+1 annihilates all
matrices X with rkX ≤ rkAk+1. �

Lemma 11. Let k ∈ {0, 1}. If y ∈ Fn is a nonzero vector, then there exists
a rank-one matrix R such that φk(R) = ygt for some nonzero vector g ∈ Fn.
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Proof. Observe that for k = 0 we can take R = yyt. If k = 1, then by
surjectivity of φ there exists a matrix A such that φ(A) = yyt. Also, there
exists a matrix B with rk(AB) = 1. By Lemma 10 and by definition of
skew-morphisms it follows that

0 < rkφ(AB) = rk(φ(A)φκ(A)(B)) ≤ rkφ(A) = 1.

Hence R = AB is a rank-one matrix and 0 6= φ(R) = φ(AB) = φ(A)M =

yytM where M = φκ(A)(B). Defining gt = ytM finishes the proof of the
claim for k = 1. �

Let us define sets Lx, x 6= 0, of rank-one matrices as

Lx = {xf t : f ∈ Fn\{0}}.

Lemma 12. Let k ≥ 0 be an integer. If y ∈ Fn is a nonzero vector, then
there exists a nonzero vector x ∈ Fn, such that

φk(Lx) = Ly.

Proof. The case k = 0 is trivial so let k = 1. By Lemma 11 there exists
a rank-one matrix xf t, where x, f ∈ Fn, such that φ(xf t) = ygt for some
nonzero vector g ∈ Fn. By Lemma 3 the set of invertible matrices is mapped
surjectively onto itself, therefore

φ(Lx) = φ(xf t GLn) = φ(xf t)φκ(xf
t)(GLn) = ygt GLn = Ly.

The case k ≥ 2 now follows trivially. �

Lemma 13. The set of rank-one matrices is mapped surjectively onto itself
by φ.

Proof. Let A = xf t ∈ Mn be a rank-one matrix. By Lemma 10, φ(A) 6= 0.
So there exists a rank-one matrix B ∈ Mn such that rk(φ(A)B) = 1. By

Lemma 12 there exists a rank-one matrix R ∈Mn with φκ(A)(R) = B. So

rkφ(AR) = rk(φ(A)φκ(A)(R)) = rk(φ(A)B) = 1

and therefore by Lemma 10 we have AR 6= 0. Since AR = x(Rtf)t it
is easy to see that there exists an invertible matrix S ∈ Mn such that
ARS = x(StRtf)t = xf t = A. Hence by Lemma 3 we obtain

rkφ(A) = rkφ(ARS) = rk(φ(AR)φκ(AR)(S)) = rkφ(AR) = 1.

We proved that φ maps the set of rank-one matrices into the set of rank-one
matrices. The surjectivity of the restriction of φ to rank-one matrices follows
by Lemma 12. �

Lemma 14. If rkA ∈ {0, 1, n− 1, n}, then rkφ(A) = rkA.

Proof. We already know this if rkA ∈ {0, 1, n}. So let rkA = n − 1. By
Lemma 3, rkφ(A) ≤ n − 1. Assume that rkφ(A) < rkA. Then there
exist at least 2 linearly independent vectors y1, y2 in the kernel of φ(A). By
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Lemma 13 there exist rank-one matrices R1, R2 such that φκ(A)(Ri) = yiy
t
i .

Observe that

φ(ARi) = φ(A)φκ(A)(Ri) = φ(A)yiy
t
i = 0,

so by Lemma 10 also ARi = 0. If R1, R2 ∈ Lx for some x,
then R2 = R1S for some invertible matrix S, hence φκ(A)(R2) =

φκ(A)(R1)φ
κ(A)+κ(φ(A))+···+κ(φκ(A)−1(A))(S), and so φκ(A)(R2) ∈ Ly1 which

contradicts the linear independence of y1, y2. Thus, Ri = xif
t
i and x1, x2

are linearly independent vectors in the kernel of A. This implies rkA ≤ n−2,
a contradiction. �

Proof of Theorem 8. Recall that by the assumption (5), κ(GLn) ≥ 1. Next,
Sylvester’s rank inequality states that for A,B ∈ Mn, rk(AB) ≥ rkA +
rkB − n, so by induction, for A1, . . . , Ak ∈Mn,

(8) rk(Ak · · ·A1) ≥ rkAk + · · ·+ rkA1 − (k − 1)n.

Now, let B ∈ Mn and let r = rkB, i.e., B = S(0n−r ⊕ Idr)T for some
S, T ∈ GLn. Then B =

∏n−r
i=1 Bi is the product of n− r matrices with rank

equal to n − 1, where B1 = S(Id−E11), Bn−r = (Id−E(n−r) (n−r))T , and
Bi = (Id−Eii), i = 2, . . . , n− r − 1. By (1) it follows that

φ(B) = φs1(B1) · · ·φsn−r(Bn−r)

for some nonnegative integers s1, . . . , sn−r with s1 = 1. Hence by Lemma 14
and inequality (8),

(9) rkφ(B) ≥ (n− r)(n− 1)− (n− r − 1)n = r = rkB.

Suppose there exists B ∈Mn with rkφ(B) > rkB. Among all such matrices
we choose B0 with the smallest possible rank and set r0 = rkB0. Then, (9)
implies that

(10) rkφ(B) = rkB for every matrix B with rkB < r0.

Moreover, for arbitrary matrices S, T ∈ GLn we obtain (see (7) for the
definition of κκ(S))

(11) φ(SB0T ) = φ(S)φκ(S)(B0)φ
κκ(S)(B0)(T ).

By (5), κ(S) ≥ 1 for every invertible matrix S, so inequality (9) im-

plies rkφκ(S)(B0) > rkB0. In addition, by Lemma 3, rkφ(SB0T ) =

rkφκ(S)(B0) > rkB0. Since every matrix with rank equal to r0 = rkB0

can be written as SB0T , S, T ∈ GLn, we see that

rkφ(B) > r0 whenever rkB = r0.

By (9) the same inequality holds also if rkB > r0. However, we already
showed that rkφ(B) = rkB if rkB < r0. This contradicts the surjectivity
of φ. �
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In the rest of the paper we describe surjective skew-morphisms φ with
respect to the values that the power function κ takes on GLn. The case
when κ(G0) = 0 for some G0 ∈ GLn was treated in Lemma 1. We continue
with the case when κ(G) = 1 for every G ∈ GLn, i.e., φ|GLn is multiplicative.
Note that in this case φ maps GLn surjectively onto itself, see Lemma 3.

2.3. Surjective skew-morphisms that are multiplicative on GLn. Let
us start with the following remark.

Remark 15. Observe that each surjective group homomorphism φ : GLn →
GLn is nontrivial on SLn, since otherwise φ would induce a surjective group
homomorphism from the abelian quotient group GLn / SLn onto GLn, a con-
tradiction. Therefore by Guralnick, Li, and Rodman [5, Theorem 2.7] sur-
jective group homomorphisms are of the following two forms

(12) (i) A 7→ ρ(detA)S−1AσS or (ii) A 7→ ρ(detA)S−1(A−1σ )tS,

where ρ is a multiplicative function of the underlying field, Aσ denotes the
matrix obtained from A by applying the field automorphism σ entry-wise,
and S ∈ GLn.
When n = 2 only the case (i) appears because for 2-by-2 matrices, (A−1σ )t =
KAσK

−1 for K =
(
0 −1
1 0

)
.

Lemma 16. Let n ≥ 2. Assume a surjective skew-morphism φ : Mn →Mn

satisfies κ|GLn = 1. Then φ|GLn : A 7→ S−1AσS for some S ∈ GLn and
some field automorphism σ. Moreover, for every vectors x and f we have

(13) φ(xf t) ∈ {S−1xσgt : g ∈ Fn}.

Proof. By the assumptions and Lemma 3, φ|GLn is a surjective group homo-
morphism on GLn. By Remark 15, if n = 2, then the restriction φ|GLn takes
the form (i) in equation (12). Let us show that for n ≥ 3 the restriction
φ|GLn cannot take the form (ii) in (12).

Assume otherwise and consider the n-by-n invertible matrices (n ≥ 3)

A = Id +J, B = 1⊕ C

where J =
∑n−1

i=1 Ei (i+1) is an upper-triangular Jordan cell and where C is

a companion matrix of a polynomial λn−1 + (−1)nλ+ (−1)n−1. Clearly, 1 is
not an eigenvalue of C. Thus, it easily follows that detA = detB = 1, and
that Ker(A− Id) = Ker(B − Id) = Fe1, where e1, e2, . . . , en is the standard
basis of column vectors for Fn. Clearly, E11 = AE11 = BE11, and so

(14)

φ(A)φ(E11) = φ(A)φκ(A)(E11) = φ(AE11)

= φ(E11) = φ(BE11) = φ(B)φκ(B)(E11)

= φ(B)φ(E11).

Yet, one sees that Aσ = A, Bσ = B, and ρ(detA) = ρ(detB) = ρ(1) = 1,
and so φ(A) = ρ(detA)S−1(A−1σ )tS = S−1(A−1)tS and likewise φ(B) =
S−1(B−1)tS. It further follows that 1 is an eigenvalue for both φ(A) and
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φ(B) and that the corresponding eigenvectors for φ(A) are all spanned by
S−1en, while for φ(B) all the corresponding eigenvectors are spanned by
S−1e1. However by Lemma 13, φ(E11) = uvt is of rank-one, so by (14), u is
a common fixed point for both φ(A), φ(B), a contradiction. Thus,

(15) φ|GLn : A 7→ ρ(detA)S−1AσS.

Let x, f be fixed nonzero vectors and let A be an invertible unipotent matrix
(i.e., its spectrum equals {1}) such that Ker(A − Id) = Fx. It then follows
from xf t = A(xf t) that

φ(xf t) = φ(Axf t) = φ(A)φκ(A)(xf t) = ρ(detA)S−1AσSφ(xf t),

and thus (ρ(detA)S−1AσS − Id)φ(xf t) = 0. By Lemma 13, φ(xf t) = ygt

is also of rank-one. Note that map X 7→ S−1XσS is multiplicative, and
from its Jordan structure we see that S−1AσS is also unipotent, and the
geometric multiplicity of its eigenvalue is one. Thus, y is an eigenvector
of ρ(detA)S−1AσS, corresponding to eigenvalue 1, which is possible only if
ρ(detA) = 1 and y ∈ FS−1xσ. This proves (13).

To finish the proof we only need to show that in (15), ρ(detX) = 1 for
every invertible X. To this end, pick a scalar λ ∈ F\{0} and consider the
invertible matrix Aλ = Idn−1⊕λ. Then, E11 = AλE11, and as (e1)σ = e1
we have, by (13), that there is a vector g such that S−1e1g

t = φ(E11) =

φ(AλE11) = φ(Aλ)φκ(Aλ)(E11) = φ(Aλ)φ(e1e
t
1) = ρ(detAλ)S−1(Aλ)σS ·

S−1e1g
t = ρ(λ)S−1e1g

t. Comparing both sides yields ρ(λ) = 1, wherefrom
ρ(detX) = 1 for invertible X. �

Theorem 17. Let n ≥ 2. Assume a surjective skew-morphism φ : Mn →
Mn satisfies κ|GLn = 1. Then there exist S ∈ GLn, a field automorphism σ,
and an integer s ≥ 0 such that

φ(X) =

{
S−1XσS, X ∈ GLn

γS−1XσG, X ∈Mn\GLn,

where γ ∈ F\{0}, G = Sσs−1 · · ·SσS for s > 0 and G = Id for s = 0.
Moreover, σs = σ.

Proof. By Lemma 16, φ|GLn : A 7→ S−1AσS. So it remains to consider φ on
singular matrices.

Step 1. We start by proving the Theorem for rank-one matrices.

Fix an arbitrary rank-one matrix
◦
R =

◦
x

◦
f t and define s = κ(

◦
x

◦
f t) ≥

0. Let {x1, . . . , xn−1} be a basis for
◦
f⊥ and let Ri = xif

t for some

nonzero vector f ∈ Fn. Then 0 =
◦
RRi, i = 1, . . . , n − 1, so by

(13) and Lemma 16, 0 = φ(0) = φ(
◦
RRi) = φ(

◦
R)φs(Ri) = S−1(

◦
xσ)

◦
gt ·

S−1(S−1σ )(S−1
σ2 ) . . . (S−1

σs−1)((xi)σs)g
t
i for suitable nonzero vectors

◦
g, gi (if

s = 0 we get 0 = S−1(
◦
xσ)

◦
gt · xif t). Setting

(16) G =

{
(Sσs−1) · · · (Sσ2)SσS; s ≥ 1

Id; s = 0
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we see that
◦
gt is annihilated by n − 1 linearly independent vectors

G−1((xi)σs), i = 1, . . . , n− 1, and hence

◦
gt = γ · (

◦
f tσs)G

for some nonzero scalar γ. Therefore,

φ(
◦
R) = γS−1(

◦
xσ)(

◦
f tσs)G.

Choose nonzero vectors x, f and invertible matrices A,B with x = A
◦
x and

f t =
◦
f tB. Then R = xf t = A

◦
RB, so

φ(R) = φ(A
◦
RB) = φ(A)φκ(A)(

◦
RB) = φ(A)φ(

◦
RB) = S−1AσS · φ(

◦
R)φs(B)

= S−1AσS · S−1(
◦
xσ)(γ

◦
f tσsG) ·G−1BσsG = γ S−1(A

◦
x)σ(

◦
f tB)σsG

= γ S−1xσf
t
σsG.

It remains to show that σs = σ. Pick any nonzero scalar λ. Then

γσ(λ)S−1xσ(f tσs)G = γ S−1(λx)σ(f tσs)G

= φ((λx)f t) = φ(x(λf)t) = γ S−1xσ(λf t)σsG

= γ σs(λ)S−1xσ(f tσs)G,

and since γ 6= 0 we obtain σs(λ) = σ(λ). Therefore

(17) φ(R) = γS−1RσG, rkR = 1.

Step 2. Next, we consider the action of φ on idempotent matrices. Let
P be an idempotent with rkP = k ∈ {2, . . . , n− 1} and let {g1, . . . , gn} be
a basis of Fn such that Pgi = gi, i = 1, . . . , k, and {gk+1, . . . , gn} ⊆ kerP .
For each matrix X ∈ GLn and nonzero scalar β ∈ F set

X(P ) = (Xσκ(P )−1) · · · (Xσ2)XσX,

β(P ) = (βσκ(P )−1) · · · (βσ2)βσβ

(if κ(P ) = 0, then X(P ) = Id and β(P ) = 1). Then for an arbitrary nonzero
vector f ∈ Fn and an arbitrary nonzero scalar λ ∈ F we have for i = 1, . . . , k,

(18)

σ(λ)γS−1(gif
t)σG = γS−1(λgif

t)σG = φ(λgif
t) = φ(λPgif

t)

= φ(P )φκ(P )(λgif
t)

= γ(P ) φ(P )(S(P ))−1((λgif
t)σκ(P ))G(P )

= σκ(P )(λ)γ(P ) φ(P )(S(P ))−1((gif
t)σκ(P ))G(P ).

Observe that σ, σκ(P ) are field isomorphisms and so σ(0) = σκ(P )(0) =

0 and σ(1) = σκ(P )(1) = 1. Inserting λ = 1 into (18), the latter gives

γ(P ) φ(P )(S(P ))−1((gif
t)σκ(P ))G(P ) = γS−1(gif

t)σG 6= 0. Hence, it follows
from (18) that

(19) σ = σκ(P )
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and therefore since f ∈ Fn was arbitrary we further obtain that G(P ) = αPG
for some nonzero scalar αP ∈ F. So for i = 1, . . . , k we have

γS−1(gif
t)σG = αPγ

(P ) φ(P )(S(P ))−1(gif
t)σG.(20)

In addition, for i = k + 1, . . . , n we have

(21)

0 = φ(0) = φ(Pgif
t) = φ(P )φκ(P )(gif

t)

= γ(P ) φ(P )(S(P ))−1((gif
t)σκ(P ))G(P )

= αPγ
(P ) φ(P )(S(P ))−1(gif

t)σG.

Comparing (20) and (21) we deduce that Pσ and αP ·γ(P )

γ · Sφ(P )(S(P ))−1

coincide on the basis {(g1)σ, . . . , (gn)σ}, therefore

φ(P ) = γS−1Pσ
S(P )

αP ·γ(P ) .

Step 3. Lastly, we consider the action of φ on arbitrary singular matrices.
First recall that each matrix M of rank k can be written as M = APB for
some A,B ∈ GLn and thus

(22)

φ(M) = φ(APB) = φ(A)φ(PB) = φ(A)φ(P )φκ(P )(B)

= S−1AσS · γS−1Pσ S(P )

αP ·γ(P ) · (S(P ))−1Bσκ(P )S(P )

= γS−1AσPσBσ
S(P )

αP ·γ(P )

= γS−1Mσ
S(P )

αP ·γ(P ) , rkM = k ≥ 2.

Hence, if Pk = E11 + · · · + Ekk is the standard idempotent of rank k and

if we set γ(k) = γ(Pk), S(k) = S(Pk), and αk = αPk , then γS−1Mσ
S(P )

αP ·γ(P ) =

γS−1Mσ
S(k)

αk·γ(k)
for every matrix M of rank k. After simplification, this gives

Mσ

(
S(P )

αP ·γ(P ) − S(k)

αk·γ(k)
)

= 0

for every matrix M of rank k and hence

(23) S(P )

αP ·γ(P ) = S(k)

αk·γ(k)
.

We finish the proof of the assertion that φ(M) = γS−1MσG, rkM = k ≤
n − 1, by using induction on k = 1, . . . , n − 1. Take any idempotent K of
rank (k − 1), 2 ≤ k ≤ n − 1. We can find two idempotents P, P ′ of rank k
such that PP ′ = K. Then by the inductive step and using (19), (22) and
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(23) we obtain

γS−1KσG = φ(PP ′) = φ(P )φκ(P )(P ′)

= γS−1Pσ
S(P )

αP ·γ(P ) · γ(P )(S(P ))−1P ′
σκ(P )

(
S(P )

αP ·γ(P )

)(P )

= γS−1PσP
′
σ

1

αP

(
S(P )

αP ·γ(P )

)(P )

= γS−1Kσ
1

αP

(
S(P )

αP ·γ(P )

)(P )

= γS−1Kσ
1

αP

(
S(k)

αk·γ(k)

)(P )
.

If r is the order of the automorphism σ, then by (19), r|(κ(P ) − 1) and

r|(κ(Pk) − 1). Hence, if for each X ∈ GLn we define X(k) in the same way

as S(k) we easily deduce that

(X(k))(P ) = ((Xσκ(Pk)−1) · · · (Xσ2)XσX)(P ) = (X(Xσr−1 · · ·XσX)
κ(Pk)−1

r )(P )

= X(Xσr−1 · · ·XσX)
κ(Pk)·κ(P )−1

r = (X(P ))(k)

which by (23) and some simplifications gives

KσG = (αP )
(k)

αP ·(αk)(P ) ·Kσ

(
S(k)

αkγ(k)

)(k)
.

Hence for each idempotent K of rank k − 1 we obtain that

Kσ

(
G− (αP )

(k)

αP ·(αk)(P ) · ( S(k)

αk·γ(k)
)(k)
)

= 0.(24)

Recall that σ is a bijective homomorphism. So by multiplying the last
equation from the left with a rank-one matrix we obtain that

f t(G− βf ( S(k)

αk·γ(k)
)(k)) = 0

for every vector f ∈ Fn and some βf ∈ F which depends on f . It follows that

the transpose of G and the transpose of ( S(k)

αk·γ(k)
)(k) are locally linearly de-

pendent matrices and since both are invertible, they are linearly dependent.
So also

( S(k)

αk·γ(k)
)(k) = εkG,(25)

where εk ∈ F. By (24) and since G is invertible, it follows that (αP )
(k)

αP ·(αk)(P ) =
1
εk

for every rank k idempotent P .

Let P be any idempotent of rank k. Then simplifying φ(P ) = φ(P 2) =

φ(P )φκ(P )(P ) using (22), (23), and (25) we obtain

Pσ · S(k)

αkγ(k)
= Pσ · (αP )

(k)

αP ·(αk)(P )

(
S(k)

αkγ(k)

)(k)
= PσG.

It follows that S(k)

αkγ(k)
= G, hence φ(M) = γS−1MσG for every matrix M of

rank k. This finishes the inductive step. �
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2.4. On general surjective skew-morphisms.

Theorem 18. Assume a surjective skew-morphism φ : Mn → Mn satisfies
κ|GLn ≥ 1 and κ(B) ≥ 2 for some B ∈ GLn. Then there exists an integer
s ≥ 1 such that φs is the identity map on Mn and hence φ is bijective.

Proof. First, let us assume that κ(Id) = 1. Then φ(Id) = φ(Id · Id) =

φ(Id) ·φκ(Id)(Id) = φ(Id)φ(Id) and since φ maps GLn onto GLn by Lemma 3,
it follows that φ(Id) = Id. Using the identity X = (BB−1)X = B(B−1X),
X ∈Mn, and since κ(B) ≥ 2 it further follows that

φ(B)φκ(B)(B−1)φ(X) = φ(BB−1)φ(X) = φ(Id)φ(X) = φ(X)

= φ(BB−1X) = φ(B(B−1X)) = φ(B)φκ(B)(B−1X)

= φ(B)φκ(B)(B−1)φκ(B
−1)+κ(φ(B−1))+···+κ(φκ(B)−1(B−1))(X).

After canceling out the invertible matrix φ(B)φκ(B)(B−1) we obtain

φ(X) = φκ(B
−1)+κ(φ(B−1))+···+κ(φκ(B)−1(B−1))(X).

By our hypothesis, κ(A) ≥ 1 for each A ∈ GLn and κ(B) ≥ 2, so r =

κ(B−1) + κ(φ(B−1)) + · · · + κ(φκ(B)−1(B−1)) ≥ κ(B−1) + κ(φ(B−1)) ≥ 2.
Hence φ(X) = φr(X) for each X ∈ Mn. Let Y ∈ Mn be arbitrary. By
surjectivity there exists X ∈ Mn with φ(X) = Y , and hence Y = φ(X) =
φr(X) = φr−1(φ(X)) = φr−1(Y ). So φs is the identity for s = r − 1 ≥ 1.

Second, let us assume that κ(Id) ≥ 2. Then φ(Id) = φ(Id · Id) =

φ(Id)φκ(Id)(Id), so φκ(Id)(Id) = Id. Let p ≥ 1 be the smallest integer
such that φp(Id) = Id. Consider an arbitrary matrix A ∈ GLn. Then

φ(A) = φ(A · Id) = φ(A)φκ(A)(Id), so φκ(A)(Id) = Id which implies that
κ(A) is a multiple of p. In particular κ(φ(Id)) ≥ p. Then for each X ∈Mn,

φp(X) = φp(Id ·X) = φp(Id)φκ(Id)+κ(φ(Id))+···+κ(φ
p−1(Id))(X)

= φκ(Id)+κ(φ(Id))+···+κ(φ
p−1(Id))(X).

Since κ(Id) ≥ max{p, 2} and therefore s = κ(Id) + κ(φ(Id)) + · · · +
κ(φp−1(Id)) − p ≥ 1, and since φp is surjective, we obtain as before that
φs(Y ) = Y for every Y ∈Mn. �

Remark 19. If G is an arbitrary group, φ : G → G is a restricted skew-
morphism, and κ(g0) ≥ 2 for some g0 ∈ G, then we can apply the same
arguments as in the proof of Theorem 18 to show that φ is bijective and has
finite order.

Acknowledgment. The authors are deeply grateful to the anonymous
referee for suggesting many improvements of the initial draft. In addition
we acknowledge that it was suggested by the referee to use matrices K in
Remark 15 and B in Lemma 16 to shorten the initial draft.



RESTRICTED SKEW-MORPHISMS ON MATRIX ALGEBRAS 15

References

1. M.D.E. Conder, R. Jajcay, and T.W. Tucker, Regular Cayley maps for finite abelian
groups, J. Algebr. Comb. 25 (2007), no. 3, 259–283.
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