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Abstract

This note is meant to elucidate the difference between intersection cuts as originally

defined, and intersection cuts as defined in the more recent literature. It also states a

basic property of intersection cuts under their original definition.

Intersection cuts for mixed integer programs were introduced in the early 1970’s [1, 2] as
inequalities obtained by intersecting the extreme rays of the polyhedral cone C(B), where
B is a basis of the linear programming relaxation P , with the boundary of some convex set
T whose interior contains the vertex v(B) of P but no feasible integer point. Such a set T
will be called PI-free, where PI is the set of feasible integer points.

In particular, if the simplex tableau associated with the basis B is

xB = x̄B −
∑

j∈J

ājxj ,

where J indexes the co-basis of B (i.e. the set of nonbasic variables) and if the extreme rays

(

x̄B

0

)

+

(

āj

ej

)

λj, j ∈ J

of the cone C(B) (where ej is the j-th unit vector) intersect the boundary of T at the
points defined by λj = λ∗

j , j ∈ J , then the hyperplane through these n points defines the
intersection cut

∑

j∈J

1

λ∗

j

xj ≥ 1. (1)

More recently, intersection cuts became the focus of renewed interest as a result of the
seminal paper by Andersen, Louveaux, Weismantel and Wolsey [3], which highlights their
significance in the context of cut generation from multiple rows of the simplex tableau.
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However, this paper and the ensuing voluminous literature used a narrower definition of
intersection cuts, namely as inequalities obtained by intersecting the extreme rays of C(B)
with the boundary of some convex set T ′ whose interior contains v(B) but no integer point.
Such a set T ′ is called lattice-free. This definition is more restrictive than the original one,
since it excludes intersection cuts obtained from PI-free sets that are not lattice-free, whereas
the original definition includes all intersection cuts from convex lattice-free sets, as these are
all PI-free. In the sequel we will refer to intersection cuts obtained from PI-free convex sets
as standard (SIC), and to those obtained from lattice-free convex sets as restricted (RIC).

In most of the specific cases considered so far in the literature this difference does not
matter, since the lattice-free sets used to generate cuts are PI-free. This is the case with split
cuts and cuts obtained by combining splits, like cuts from triangles or qualdrilaterals. But
if the lattice-free set T ′ has a facet whose relative interior contains only infeasible integer
points, then switching to a PI-free set T larger than T ′ may yield a stronger cut. Furthermore,
intersection cuts from a lattice-free set T ′, when expressed in terms of the nonbasic variables,
have all their coefficients nonnegative, as is easily seen from the definition (1) of the cut. On
the other hand, intersection cuts from a PI-free set may have negative coefficients in terms
of the nonbasic variables. This is easiest to see if we express the intersection cut from the
PI-free polyhedron T with facets defined by

∑

j∈J dijxj ≤ di0, i ∈ Q, as disjunctive cuts,

δx ≥ 1 from ∨i∈Q(
∑

j∈J dijxj ≥ di0), having coefficients

δj = max
i∈Q

dij

di0
, j ∈ J.

Clearly, if dij < 0 for all i ∈ Q, then δj < 0. This cannot occur for a lattice-free convex
set T ′, since in the case of the latter, the only rays that do no intersect the boundary of
T ′ are those parallel to some facet of T ′, in which case they have dij = 0 in the inequality
defining that facet.

Example. Consider the instance

x1

x2

(0,1)

(0,2)

(0,0) (1,0) (2,0)

r

Figure 1:
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min x1 + 2x2

4x1 + 4x2 ≥ 3

−x1 + 3x2 ≥ 5

4

2x1 + 4x2 ≤ 5

x1, x2 ≥ 0 integer

whose linear programming relaxation is the shaded area in Figure 1. The optimal LP solution
is x̄ = (1

4
, 2

4
), and the associated simplex tableau is

x1 x2 s1 s2 s3

x1
1

4
1 3

16
−1

4

x2
1

2
1 1

16

1

4

s3
5

2
−5

8
−1

2
1

The intersection cut from the lattice-free triangle T ′ := {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, x1+x2 ≤
2}, shown in Figure 2, is (− 1

19
)x1+x2 ≥

3

4
, defined by the two intersection points

(

0, 3
4

)

and
(

19

16
, 13

16

)

. But since the integer point (1, 1) is infeasible, the lattice-free set T ′ can be replaced

x1

x2

(0,1)

(0,2)

(1,1)

(0,0) (1,0) (2,0)

(19
16
, 13
16
)

x̄
(0,3

4
)

(0, 5

12
)

Figure 2:

with the PI-free set T := {x ∈ R
2 : x1 ≥ 0, x2 ≥ 0} which yields the cut x1 ≤ 0, defined

by the two intersection points
(

0, 3

4

)

and
(

0, 5

12

)

. Note that the latter point is obtained by

intersecting bdS with the negative extension of the edge
(

x̄1

x̄2

)

+
( 3

16

1

16

)

λ.

More generally, when considering the class of cuts from lattice-free convex sets versus the
class of cuts from PI-free convex sets, the two are significantly different and the latter, as it
is to be expected, is considerably larger than the former and its strongest members dominate
those of the former. In the context of cut-generating functions and group relaxations of mixed
integer programs, several authors have considered cuts from “S-free” convex sets, where S
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is some arbitrary set [6, 4]. Of course, this category includes as a special case intersection
cuts from PI-free convex sets. Nevertheless, these papers do not make the connection with
the original definition of intersection cuts, which is replaced with the narrower definition
of intersection cuts from lattice-free convex sets. This has led to the discovery of some
basic properties of RIC’s described as properties of intersection cuts, although they do not
apply to intersection cuts as originally defined. In particular, an interesting feature of RIC’s
described in [5] is that if corner(B) denotes the corner polyhedron associated with the basis
B, i.e. the convex hull of integer points in C(B), then every nontrivial inequality defining a
facet of corner(B) is an intersection cut. The proof uses the definition of intersection cuts
from lattice-free sets, and it breaks down if we replace the lattice-free set by a PI-free set.
In other words, the result, while correct for RIC’s, is not valid for SIC’s. On the other hand,
SIC’s have a much stronger property: they define the facets of the integer hull itself:

Theorem 1. Every facet of convPI that cuts off some vertex of P is defined by a standard
intersection cut.

Proof. Let F be a facet of convPI defined by the inequality ϕx ≥ ϕ0 satisfied by all x ∈ PI ,
but violated by some x ∈ P . Then F contains dim convPI affinely independent integer
points of convPI , and

{x ∈ R
n : ϕx < ϕ0} ∩ PI = ∅.

Hence the interior of the set T := {x ∈ R : ϕx ≤ ϕ0} contains no point of PI , i.e. T is a
PI-free convex set. On the other hand, intT contains some vertex v of P cut off by F . Hence
the standard intersection cut from C(B(v)), the cone associated with the basis B defining
the vertex v, is precisely ϕx ≥ ϕ0.

Corollary 2. Every vertex v of a corner polyhedron such that v 6∈ convPI is cut off by some
SIC.

The authors have benefitted from helpful comments by Gérard Cornuéjols and an anony-
mous referee.
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