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In order to make the most of the low photon flux in laboratory small-angle X-ray

scattering instruments, the experimental geometry has to be chosen carefully,

with special stress on the beam-shaping system. The optimum collimation

scheme should enable accurate measurements over the desired range of the

scattering variable, while yielding the highest flux and the lowest possible

instrumental background. In order to identify the best setting, a phase-space

optimization of the collimating scheme is carried out in the present work,

including constraints on the beam size at the sample position and on the detector

surface. The resulting formulae are implemented in a Python script with a

graphical user interface, to aid the planning, construction and daily operation of

pinhole small-angle scattering cameras.

1. Introduction

Collimation is arguably the most important aspect of a small-

angle scattering (SAS) instrument, as it is responsible for

shaping the incident radiation by confining it in the transverse

plane and limiting its divergence.

Several designs have been developed for the same task,

including the Kratky-type block collimation (Kratky &

Stabinger, 1984; Fritz & Bergmann, 2006; Bóta, 2013), the

Huxley–Holmes design (Huxley et al., 1965; Huxley & Brown,

1967; Zemb et al., 2003a,b) and the Bonse–Hart camera for

ultra-small-angle scattering (Lambard & Zemb, 1991; Rehm et

al., 2013). In the widely used pinhole camera (e.g. Hendricks,

1978; Haubold et al., 1989; Narayanan et al., 2001; Jakob et al.,

2003; Knaapila et al., 2009; Kirby et al., 2013) the beam is cut by

two or more apertures made from absorbing materials.

The simplest apertures are circular pinholes. Variable-size

slit systems represent another, more sophisticated alternative,

where two pairs of independently movable blades placed just

after each other limit the beam horizontally and vertically,

resulting in a rectangular beam cross section.

The frequently used three-aperture scheme is shown in

Fig. 1. Radiation enters on the left through the entrance

aperture, placed as near as possible to the source. Together

with the second, beam-defining aperture they limit the trans-

verse size and maximum divergence. The third aperture is the

anti-scatter slit or pinhole, because its purpose is to cut away

most of the parasitic scattering which originates from the

collimating elements upstream. Using scatterless pinholes and

slits, however, can render the last aperture obsolete.

The distances between the various elements of the setup

measured along the optical axis are denoted by l. Two different

measures can be defined for the maximal transverse extent of

the beam: in one the parasitic scattering transmitted through
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aperture #3 is neglected (r0 in Fig. 1), while in the other

(denoted by r) it is accounted for.

The first mathematical study on collimation in small-angle

scattering measurements was by Bolduan & Bear (1949). A

sealed X-ray tube with a three-aperture collimating system

was considered and the configuration for fastest camera speed

was derived, given rdet, r0det, r1 and the full camera length,

l1 þ l2 þ l3.

The case study of Wignall et al. (1990) underlines the

importance of the third aperture. Installing an anti-scatter

pinhole in a small-angle X-ray scattering (SAXS) apparatus

(Schelten & Hendricks, 1975; Hendricks, 1978) reduced the

instrumental background by more than one order of magni-

tude.

Another article reports the design of a SAXS camera with

two-pinhole collimation (Bu et al., 1998). The absence of the

third aperture results in a considerable parasitic scattering,

which the authors reduce by other means, e.g. increasing the

thickness of the sample.

Pedersen (2004) carried out a phase-space analysis in order

to minimize the background in a commercial SAXS apparatus.

Flux maximization was done using a Monte Carlo approach

based on a plausible model for the raw beam profile.

In this work a similar phase-space analysis to that of

Pedersen is carried out for both background and flux opti-

mization. The proof-of-concept instrument is a SAXS appa-

ratus (Wacha et al., 2014) with circular apertures; the results

presented here are nevertheless believed to be valid for

neutron instruments as well and also applicable with little

effort in cameras equipped with adjustable slits.

2. Collimation geometry

The fundamental parameters of the three-pinhole collimation

scheme are the sizes (r1;2;3) of the apertures and the spacings

(l1 and l2) between them. Owing to its special role, the size of

pinhole #3 depends on the other four parameters:

r3 ¼ r1

l2
l1
þ r2 1 þ l2

l1

� �
¼ r1�0 þ r2 1 þ �0ð Þ: ð1Þ

The collimated beam has to meet two criteria: its cross section

should not exceed that of the sample and the beamstop at the

respective positions. The latter limitation is imposed by the

smallest desired value of the scattering variable (q =

4� sin �=�, 2� being the scattering angle and � the wave-

length).

As parasitic scattering is not expected to make a measur-

able contribution to sample scattering, the relevant quantity

for the beam size at the sample is r0s. On the other hand, the

beamstop must be large enough to cover it on the detector;

therefore the correct measure for the beamstop size is rbs.

From similar considerations to equation (1) we find

r0s � r1

l2 þ ls
l1

þ r2 1 þ l2 þ ls
l1

� �
¼ r1�1 þ r2 1 þ �1ð Þ; ð2Þ

rbs � r2

l3 � lbs

l2
þ r3 1 þ l3 � lbs

l2

� �
¼ r2�2 þ r3 1 þ �2ð Þ

¼ r1�0ð1 þ �2Þ þ r2 ð1 þ �0Þð1 þ �2Þ þ �2

� �
; ð3Þ

where the auxiliary quantities �0, �1 and �2 have been intro-

duced.

The distance between the third pinhole and the sample (ls),

as well as that between the detector and the beamstop (lbs), is

ideally very small, because a smaller beam size on the sample,

as well as a larger beamstop, is almost always desirable. l3 (or

equivalently the sample-to-detector distance) can be adjusted

in most pinhole instruments either continuously or in discrete

steps.

The above two constraints ensure the low background of

the instrument, leaving from the original four parameters only

two independent. Assuming an analytical form of the primary

beam intensity after the third pinhole, parameters for the

maximum-flux geometry can be obtained.

If the flux of the X-ray source is homogeneous over the

cross section of the first aperture, the transmitted intensity is
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Figure 1
Schematic drawing of the three-pinhole collimation scheme.

Figure 2
Measured versus predicted beam intensity. The data points correspond to
different alignments of the CREDO instrument from January to July
2015. Measured intensities have been determined from the absolute
intensity scaling factors of glassy carbon measurements from the same
specimen.
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proportional to r2
1�. Furthermore, if the directions of the rays

passing through the entrance aperture follow a uniform

distribution over the angular range defined by the first two

pinholes, the first aperture is seen by the second one under

approximately r2
2=4l21 solid angle. Since the third pinhole does

not cut the main beam, the intensity at the sample is propor-

tional to (Bu et al., 1998)

I � �

4

r2
1r

2
2

l21
: ð4Þ

As noted previously, scattering of parasitic photons on the

sample is neglected.

This simple approximation meets surprisingly well the

results obtained on the test instrument. Fig. 2 shows a

comparison of measured intensities to the corresponding

values of I. The slight deviations from linear behaviour can be

ascribed to uncertainties of the determination of absolute

intensity scaling factors and stability issues – or misalignment

– in the X-ray source over several months.

Bolduan & Bear (1949) made the disputable choice of using

the intensity of the transmitted beam on the detector surface

for characterizing the camera speed, which is proportional to

4r2
1=ðl1 þ l2 þ l3Þ2. The problem with this quantity is that it

does not depend on r2, and should be independent of l3 if

absorption in the flight path is negligible.

3. Fixed pinhole distances

In most SAS instruments the source is fixed; thus adjusting

distances l1 and l2 would mean moving the remainder of the

camera, which is usually not feasible. The spacings of the

collimating elements are therefore fixed; only the choice of

pinhole diameters is retained. Equations (2) and (3) translate

to two constraints on r2 in terms of r1:

r2 �
r0s � r1�1

1 þ �1

ð5Þ

for the sample size, and

r2 �
rbs � r1�0ð1 þ �2Þ

1 þ �0ð Þ 1 þ �2ð Þ þ �2

ð6Þ

for the beamstop size. ðr1; r2Þ pairs where the intensity is at its

maximum can be found for both inequalities:

ðr1;s; r2;sÞ ¼
r0s

2�1

;
r0s

2�1 þ 2

� �
; ð7Þ

ðr1;bs; r2;bsÞ ¼
rbs

2�0ð1 þ �1Þ
;

rbs

2ð1 þ �0Þð1 þ �2Þ þ �2

� �
: ð8Þ

In the following the relation of the two constraints is analysed,

i.e. if – and when – the fulfilment of one criterion implies the

other one. Three possibilities exist (cf. Fig. 3): the sample-

limited, the beamstop-limited and an intermediate case.

In the first case the optimum of equation (2) satisfies

equation (3). Substituting equation (7) into equation (6) yields

an upper bound on the sample-to-detector distance, below

which the sample size constraint is dominant:

d � l2
2�1ð1 þ �1Þ � �ð�0 þ �1 þ 2�0�1Þ

�ð�0 þ 2�1 þ 2�0�1Þ
� �

þ lbs � ls � ds;

ð9Þ

where � � r0s=rbs.

When the beamstop criterion dominates a quadratic

inequality in �2 is reached:

�2
2 4��0 þ 2��2

0

� 	þ �2 6��0 þ 4��2
0 � �0 � 2�1 � 2�0�1

� 	
þ 2��0ð1 þ �0Þ � �0 � �1 � 2�0�1

� � � 0: ð10Þ

The left-hand side has one positive and one negative root in all

physically relevant cases. The positive root yields a lower

bound on the beamstop-limited case in terms of d:
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Figure 3
Graphical representations of the beam size criteria in the d1–d2

configuration space: sample-limited (top), beamstop-limited (centre)
and intermediate (bottom) cases. Large solid circles mark the optimal
configurations satisfying either of the constraints. The white dot marks
the optimum setup. The corresponding sample-to-detector distances are
520, 800 and 1000 mm, respectively. The remaining parameters are
l1 ¼ 500 mm, l2 ¼ 200 mm, ls ¼ 130 mm, lbs ¼ 54 mm, r0s ¼ 0:4 mm,
rbs ¼ 2 mm, � ¼ 0:15418 nm. The greyscale background represents I.
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dþ;bs ¼ l2
�½�0 þ 2�1 þ 2�0�1 � 2��0ð3 þ 2�0Þ�

þ f4��0½�0ð�þ 1Þ � 2�1� þ ð�0 þ 2�1 þ 2�0�1Þ2g1=2
	

=½4��0ð2 þ �0Þ� þ lbs � ls: ð11Þ
The existence of a finite �ds; dþ;bs½, in which neither of the two

criteria implies the other (Fig. 3, bottom), can be proven

algebraically. In this range the optimum apertures are given by

the intersection of the two lines defined by equations (5) and

(6):

r1;intermed ¼ r0s 1 þ �0ð Þ 1 þ �2ð Þ þ �2

� �� rbsð1 þ �1Þ
ð�1 � �0Þð1 þ �2Þ þ �1�2

; ð12Þ

r2;intermed ¼ rbs�1 � r0s�0ð1 þ �2Þ
ð�1 � �0Þð1 þ �2Þ þ �1�2

: ð13Þ

The main difference between the above three cases lies in how

much the limits on the sample and beamstop size are

exhausted. In the sample-limited geometry the whole avail-

able cross section of the sample is irradiated, making the

scattering signal stronger and the results more representative.

The maximum size of the beamstop is not reached, though,

which means that its diameter can be reduced (or conversely

the sample-to-detector distance can be increased), leading to a

lower qmin. As seen in Fig. 4, I is constant in the sample-

limited range and starts to decrease just as the beamstop

criterion begins not to be satisfied by the sample constraint.

After the intermediate range the beamstop-limited case

ensues, in which the beam size at the sample does not reach its

upper limit, making the camera flux low. The real solution here

would be to use different pinhole-to-pinhole distances, which

would make the sample-to-detector distance fall once again

into the sample-limited range.

4. Fixed apertures

Another class of SAS instruments operates with fixed-size

apertures. It is thus worth considering the dependence of the

collimation geometry on l1 and l2. Equations (2) and (3) can be

reformulated as

l1 �
ðr1 þ r2Þðl2 þ lsÞ

r0s � r2

ð14Þ

for the sample, and

l1 �
ðr1 þ r2Þðl2 þ l03Þ

rbs � r2 1 þ 2l03=l2
� 	 ð15Þ

for the beamstop, where l03 � l3 � lbs. Both inequalities give

lower bounds for l1 in terms of l2, as represented graphically in

Fig. 5.

Because r1 and r2 are fixed, I can be maximized by mini-

mizing l1. Since l2 is a free parameter entering both inequal-

ities above, a minimum l1 can be found, satisfying the two

lower bounds simultaneously. The corresponding l2 is obtained

as the positive root of the following second-order polynomial:

l22ðrbs � r0sÞ � l2ðl03r2 � lsrbs þ lsr2 þ l03r
0
sÞ � 2lsl

0
3r2 ¼ 0: ð16Þ

The value for l1 is then obtained by substituting the resulting l2
into, for example, equation (14).

5. Global optimization

In special cases, such as when constructing a new instrument,

all four of l1, l2, r1 and r2 are free for continuous variation.

Apart from the sample and beamstop size, further limitations

may also arise, including the highest and lowest allowed

aperture sizes, the maximum camera length etc. Finding an

analytical solution for the optimum geometry is feasible in this

case only by a Monte Carlo approach after fixing ls, lbs and d.

The optimal geometry (maximizing I while satisfying all the

criteria) is then found in terms of the four parameters.

The optimization routine starts with a random state

conforming to the criteria. Next, a small modification is done

in one of the parameters. If this results in the violation of any

of the constraints, the change is rejected and a new trial

ensues. If all of the criteria are met, the change is accepted if

the difference in I is positive, or rejected with a probability of

1 � expð�I=TÞ if it is negative. Here T is the equivalent of the
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Figure 4
Maximum intensity as a function of the sample-to-detector distance. The
geometrical parameters are l1 ¼ 500 mm, l2 ¼ 100 mm, ls ¼ 130 mm,
lbs ¼ 54 mm, r0s ¼ 0:4 mm, rbs ¼ 2 mm. Dotted vertical lines separate the
three regions defined by the relation of criteria.

Figure 5
Geometrical representation of the sample and beamstop size criteria in
the l1–l2 space. The diameters of the first and second apertures are 500
and 200 mm, respectively. ls ¼ 130 mm, lbs ¼ 54 mm, r0s ¼ 0:4 mm,
rbs ¼ 2 mm, d ¼ 520 mm. The shaded areas signify the fulfilment of the
respective criteria.
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Boltzmann energy scale, governing the size of the fluctuations

in I .

Several runs of this loop are executed, each starting where

the previous one left off. At the end of each run the accep-

tance ratio is evaluated, and T is tuned to ensure that the ratio

remains near a given value, e.g. 0.4. The optimum setup is

always kept and is given as a result.

6. Discrete variations in the apertures and the
separations

In CREDO (Wacha et al., 2014) a different approach had to be

implemented, as all the apertures and their spacings can be

varied, but only in discrete steps. Calculating the optimum

collimation for a given problem therefore involves a brute-

force filtering of all the possible configurations – that is, all

combinations of available pinholes and spacing elements –

against an acceptance interval for r0s and rbs. The accepted

configurations are then sorted according to I .

7. Software for an optimum collimation

The above described results have been implemented in

SASCollOpt.py (see the supporting information), a proof-of-

concept software implemented in Python (version 3), using the

freely available packages numpy (Oliphant, 2007) and

matplotlib (Hunter, 2007) for numerical operations and plot-

ting, respectively, and the native Tk widget set. More details

can be found in the supporting information.

8. Examples

In CREDO, water-based samples are measured in approxi-

mately 1 mm-thick borosilicate capillaries. This limits the

maximum beam size at the sample position to 0.8 or 0.9 mm.

Cylindrical beamstops are currently available in 4 and 2.6 mm

diameters. The typical sample-to-detector distance for the q

range of [0.2, 5] nm�1 is approximately 520 mm. Before the

development of SASCollOpt.py, a naı̈ve setup was used with

pinholes of diameters 500, 400 and 600 mm and 816 and

312 mm spacings. According to equation (4) I ’
2949 mm4 mm�2, which corresponds to �150 000 arbitrary

units of measured intensity (inverse of the absolute intensity

scaling factor). Nowadays we use a similar setup with pinholes

of 600, 400 and 750 mm (spacings 612 and 212 mm), with

I ’ 7549 mm4 mm�2 (2.5	 increase), while the measured

relative intensity is nearly 224 000 (1.5	 the original value).

While the improvement is substantial, it is less than expected,

which may be due to the different alignment of the optics of

the X-ray source between the two setups.

Monte Carlo simulations revealed that the maximization of

r1 – even at the cost of lengthening l1 – always increases the

available intensity at the sample, consistent with the studies of

Bolduan & Bear (1949) and Pedersen (2004). Consequently,

using the widest available pinhole in the first position

(1250 mm, the others being 500 and 750 mm and with spacings

1520 and 212 mm), I became nearly 8300 mm4 mm�2, while

the measured intensity increased to 264 000. The increase is

still substantial, although once again non-proportional,

because the size of the first aperture is near the cross section of

the raw beam of the X-ray source (1.1 	 1.5 mm); thus the

approximation leading to equation (4) starts to break down.

Another general property of the structures created by the

Monte Carlo algorithm is that the size of the second aperture

is smaller than that of the first one, a feature already reported

by Bolduan & Bear (1949).

The instrumental background is also a crucial point. In a

typical setup for weak scatterers on CREDO the basic para-

meters are l1 ¼ 1116 mm, l2 ¼ 212 mm, r1 ¼ 625 mm, r2 ¼
300 mm. The calculated radius of the anti-scatter pinhole is

r3 ¼ 297 mm; thus the next available size, i.e. 300 mm, is

employed. A 4 mm beamstop is used with a 523.7 mm sample-

to-detector distance, yielding a q range from 0.2 to 5.33 nm�1.

An empty beam measurement for more than 30 min revealed

the instrumental background (including effects from cosmic

radiation) to be 1:7 	 10�6 counts s�1 pixel�1, corresponding

to less than 0.5 counts s�1 on the whole detector surface.

Measurements of cosmic and natural background radiation

(with the X-ray generator turned off) yielded the same result.

By comparison, scattering of water with this setup is nearly

3 counts s�1 on the whole surface after removing most of the

traces of high-energy particles from the detector images (de-

zingering).

9. Conclusion

Alignment and fine-tuning of a three-aperture collimating

system is basically a straightforward procedure: with a little

practice, good configurations can be easily achieved with

relatively high intensity and reasonably low instrumental

background. In contrast to high-brilliance synchrotron

beamlines (e.g. Urban et al., 2003; Nielsen et al., 2012; Blanchet

et al., 2015), where obtaining results of good statistical quality

is a matter of a few seconds, laboratory SAXS instruments and

small-angle neutron scattering facilities suffer from very low

flux; thus a compromise must be made between the signal-to-

noise ratio (beam intensity) and the spatial resolution

(attainable range of q), while keeping the instrumental

background as low as possible.

A phase-space analysis of the three-pinhole collimation

scheme, based on a simple analytical model for the intensity of

the transmitted radiation, enabled the determination of the

optimal setup, with constraints on the beam cross section at

the sample and the beamstop.

Optimal aperture sizes have been determined for fixed

pinhole spacings and continuously variable apertures. An

analysis of the dependence on the sample-to-detector distance

revealed that the highest intensity is obtained when only the

limit on the sample size is exhausted.

The converse, although less typical, situation of continu-

ously variable spacings has also been solved.

A general case relevant in the design of new pinhole SAXS

cameras, where both the apertures and their spacings are

freely variable, has been treated using a Monte Carlo method.
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It was found that, in order to maximize the intensity, the first

pinhole should be as large as possible, even at the cost of a

lengthened collimating system. This was also confirmed in the

brute-force enumeration approach of discrete pinhole aper-

tures and spacings.

Finally, SASCollOpt.py, a proof-of-concept program, has

been developed, wherein the results of this study have been

implemented. It is made available as supporting information.

Up-to-date versions and bug fixes can be requested from the

author.
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Rehm, C., Brûlé, A., Freund, A. K. & Kennedy, S. J. (2013). J. Appl.
Cryst. 46, 1699–1704.

Schelten, J. & Hendricks, R. W. (1975). J. Appl. Cryst. 8, 421–429.
Urban, V., Panine, P., Ponchut, C., Boesecke, P. & Narayanan, T.

(2003). J. Appl. Cryst. 36, 809–811.
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